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(57) ABSTRACT

A real-time multi-channel EEG signal processor based on an
on-line recursive independent component analysis is pro-
vided. A whitening unit generates covariance matrix by com-
puting covariance according to a received sampling signal. A
covariance matrix generates a whitening matrix by a compu-
tation of an inverse square root matrix calculation unit. An
ORICA calculation unit computes the sampling signal and
the whitening matrix to obtain a post-whitening sampling
signal. The post-whitening sampling signal and an unmixing
matrix implement an independent component analysis com-
putation to obtain an independent component data. An
ORICA training unit implements training of the unmixing
matrix according to the independent component data to gen-
erate a new unmixing matrix. The ORICA calculation unit
may use the new unmixing matrix to implement an indepen-
dent component analysis computation. Hardware complexity
and power consumption can be reduced by sharing registers
and arithmetic calculation units.
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REAL-TIME MULTI-CHANNEL EEG SIGNAL
PROCESSOR BASED ON ON-LINE
RECURSIVE INDEPENDENT COMPONENT
ANALYSIS

TECHNICAL FIELD

[0001] The present invention relates to a technique of ana-
lyzing a brainwave independent component, and more par-
ticularly, to a real time multi-channel EEG signal processor
based on an on-line recursive independent component analy-
sis.

BACKGROUND

[0002] Neurons in brain operate constantly day after day.
Electromagnetic waves (the so-called brainwaves) are trans-
mitted among neurons. States of the brainwaves can be dis-
played through an electroencephalogram (EEG).

[0003] Specifically, an EEG is a diagram that records the
potential difference of two points on a skull changing with
time, usually in micro-volts. Generation of the potential dif-
ference relates to potential of the membrane. There are poten-
tial differences between both sides of the cell membrane. The
extra negative ions in a cell attract positive ions outside the
cell, and thus form the potential on the inner and outer layers
of the cell membrane. The potential difference recorded by
the EEG is collectively created by the thousands of neurons
near the surface of the cerebral cortex, and is the consolidated
potential of the majority of brain cells for a specific period of
time, rather than the potential change of a single brain cell.
[0004] The potential change of neurons in brain recorded
by measuring the brainwave may determine whether there is
abnormal discharge or potential abnormal of the brain func-
tion, and can be used as a physician diagnosis, such as diag-
nosis of epilepsy, central nervous system or dementia psycho-
sis. However, when measuring the brainwave, in order to
pursue high spatial resolution to facilitate diagnosis, more
measurement channels are used to improve the spatial reso-
lution of the brainwave. An independent component analysis
method is effective for separating independent component
signal of the brainwave and the noise. However, in perform-
ing high channel independent analysis for the brainwave in
the portable medical equipment, computation and complexity
ofthe hardware are quite huge. It is a challenge for persons in
the art to achieve an effective real time brainwave analysis,
while taking into consideration the volume and hardware
costs

[0005] Therefore, there exists a need to achieve the real
time analysis of the brainwave independent component by the
hardware in a portable device.

SUMMARY

[0006] The present invention provides an effective VLSI
hardware implementation to implement a multi-channel on-
line recursive independent component analysis (ORICA)
processor.

[0007] The present invention provides a real time multi-
channel EEG signal processor based on on-line recursive
independent component analysis (ORICA), including: an
inverse square root matrix calculation unit for computation of
eigen, eigen vector and inverse square root matrix; a whiten-
ing unit coupled to the inverse square root matrix calculation
unit for covariance computation of a sampling signal to gen-
erate a covariance matrix, wherein the covariance matrix
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generates a whitening matrix based on the computation of the
inverse square root matrix calculation unit; an ORICA calcu-
lation unit coupled to the inverse square root matrix calcula-
tion unit and the whitening unit for computing the sampling
signal and the whitening matrix to obtain a post-whitening
sampling signal, wherein an independent component analysis
computation of the post-whitening sampling signal and a
predetermined vnmixing matrix is performed to obtain inde-
pendent component data; and an ORICA training unit
coupled to the inverse square root matrix calculation unit and
the ORICA calculation unit for training the unmixing matrix
according to the independent component data to obtain an
inverse matrix of the unmixing matrix by the computation of
the inverse square root matrix calculation unit, and computing
the unmixing matrix and the inverse matrix of the unmixing
matrix to generate a new unmixing matrix, wherein the new
unmixing matrix is used for the ORICA calculation unit to
perform a next independent component analysis computation
of a next post-whitening sampling signal and the new unmix-
ing matrix, so as to obtain next independent component data.
[0008] In one embodiment, the real time multi-channel
EEG signal processor further includes a memory unit coupled
to the inverse square root matrix calculation unit, the whiten-
ing unit, the ORICA calculation unit and the ORICA training
unit for storing the sampling signal, the whitening matrix and
the unmixing matrix.

[0009] In another embodiment, the ORICA training unit
further comprises a nonlinearity module for computing the
independent component data to obtain a non-linear transfer
function; a kurtosis estimation module for identifying the
independent component data to be a super Gaussian signal or
sub-Gaussian signal and generating a kurtosis value; a mul-
tiplexer coupled to the nonlinearity module and the kurtosis
estimation module for obtaining a nonlinear transfer function
ofthe independent component distribution data in accordance
with the Gaussian signal or the sub-Gaussian signal and the
kurtosis value; a learning rate module for computing a learn-
ing rate determining convergence and steady state perfor-
mance of the unmixing matrix during training; and a weight
training module for implementing an iterative computation
using the independent component data, the nonlinear transfer
function of the independent component distribution data, the
learning rate and the unmixing matrix, so as to generate the
next unmixing matrix.

[0010] Also, the whitening unit of the real time multi-chan-
nel EEG signal processor contains an average covariance
module having a multiply-adder.

[0011] Inaddition, the ORICA training unit of the real time
multi-channel EEG signal processor further includes a learn-
ing rate module coupled to the weight training module for
providing a plurality of learning rates, so as for the ORICA
training unit to change a convergence rate of the unmixing
matrix.

[0012] Furthermore, the inverse square root matrix calcu-
lation unit of the real time multi-channel EEG signal proces-
sor contains a singular value decomposition processor, a
floating point square root module and a floating point divider.
[0013] Compared to the prior art, the real time multi-chan-
nel EEG signal processor based on on-line recursive indepen-
dent component analysis has four arithmetic units and a
shared memory unit. With the design of sharing the memory
and sorting the data flow, each one of the arithmetic units uses
the memory unit in order, so as to achieve smaller memory
complexity and lower power consumption. Accordingly, the
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present invention effectively implements the multichannel
ORICA processor with VLSI hardware for performing inde-
pendent component analysis of the brainwave, such that sepa-
ration of the brainwave signal and noise is subsequently
implemented. Therefore, real time, light and portable imple-
menting separation and monitor of the brainwave signal and
noise can be achieved, and can be used as applications on a
fast, lightweight and portable medical equipment.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] Thepresent disclosure can be more fully understood
by reading the following detailed description of the preferred
embodiments, with reference made to the accompanying
drawings, wherein:

[0015] FIG.11is ablock schematic diagram depicting a real
time multi-channel EEG signal processor based on an on-line
recursive independent component analysis in accordance
with the present disclosure;

[0016] FIG.2is aschematic diagram depicting the real time
multi-channel EEG signal processor based on the on-line
recursive independent component analysis in accordance
with an embodiment of the present disclosure;

[0017] FIGS. 3A to 3D are schematic diagrams depicting
internal operation of each unit of the real time multi-channel
EEG signal processor based on the on-line recursive indepen-
dent component analysis in accordance with the present dis-
closure;

[0018] FIG. 4 is a diagram showing relationship between
the learning rate and time in the real time multi-channel EEG
signal processor based on the on-line recursive independent
component analysis in accordance with the present disclo-
sure;

[0019] FIGS. 5A to 5C are signal diagrams showing simu-
lation of the real time multi-channel EEG signal processor
based on the on-line recursive independent component analy-
sis in accordance with the present disclosure; and

[0020] FIG. 6 is a diagram showing results and off-line
processing of the real time multi-channel EEG signal proces-
sor based on the on-line recursive independent component
analysis in accordance with the present disclosure.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

[0021] The present disclosure is described by the following
specific embodiments. Those with ordinary skills in the arts
can readily understand the other advantages and functions of
the present disclosure after reading this specification.

[0022] Referring to FIG. 1, FIG. 1 is a block schematic
diagram depicting a real time multi-channel EEG signal pro-
cessor based on an on-line recursive independent component
analysis in accordance with the present disclosure As shown
in F1G. 1, the real time multi-channel EEG signal processor 1
based on on-line recursive independent component analysis
includes a inverse square root matrix calculation unit 10, a
whitening unit 11, an ORICA calculation unit 12, and an
ORICA ftraining unit 13.

[0023] The inverse square root matrix calculation unit 10 is
used for a computation of eigen, eigen vector and inverse
square root matrix. Specifically, the inverse square root
matrix calculation unit 10 mainly executes and provides
matrix computation of data such as eigen, eigen vector or
inverse square root matrix, for the ORICA calculation unit or
the ORICA training unit.
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[0024] The whitening unit 11 is coupled to the inverse
square root matrix calculation unit 10. The whitening unit 11
may be used for covariance computation of the received sam-
pling signal 100 to generate a covariance matrix. The covari-
ance matrix will be sent to the inverse square root matrix
calculation unit 10 for computation in order to obtain a whit-
ening matrix.

[0025] The ORICA calculation unit 12 is coupled to the
inverse square root matrix calculation unit 10 and the whit-
ening unit 11, and is used for computation of the sampling
signal 100 and the whitening matrix generated by the whit-
ening unit 11, so as to whiten the sampling signal 100 to
obtain a post-whitening sampling signal. The whitening pro-
cess described herein is to remove data dependencies between
data of the sampling signal 100. Since the ORICA computa-
tion needs iterative training to compute the convergent
unmixing matrix, pre-whitening can accelerate the above pro-
cess.

[0026] In addition, the ORICA calculation unit 12 is also
used for implementing independent component analysis
computation of the post-whitening sampling signal and a
predetermined unmixing matrix, in order to obtain indepen-
dent component data 101. This ORICA computation is to
analyze the independent component analysis within the sam-
pling signal and distinguish useful signals from noise signals
of the brainwave signals. Therefore, the ORICA calculation
unit 12 implements computation of the independent compo-
nent analysis of the post-whitening sampling signal and
unmixing matrix, and the independent component data 101
are thus obtained.

[0027] The ORICA training unit 13 is coupled to the
inverse square root matrix calculation unit 10 and the ORICA
calculation unit 12. The ORICA training unit 13 implements
training of the original unmixing matrix, according to the
independent component data generated by the ORICA calcu-
lation unit 12. The training means that the inverse matrix of
the unmixing matrix is obtained via the inverse square root
matrix calculation unit 10, and the computation of the unmix-
ing matrix and the inverse matrix of the unmixing matrix are
implemented to generate a new unmixing matrix. The new
unmixing matrix is used for the ORICA calculation unit 12 to
implement computation of the independent component
analysis of the next post-whitening sampling signal and the
new unmixing matrix in the next computation process of the
independent component analysis, so as to obtain the new
independent component data 101. The training performed by
the ORICA training unit 13 requires iterative training to
achieve convergence and obtain the more accurate unmixing
weight matrix, in that the ORICA computation has an adap-
tive learning rule.

[0028] From the above, in the computation process of the
independent component data 101, the ORICA calculation
unit 12 implements independent component analysis of the
post-whitening sampling signal and the unmixing matrix, that
is, each post-whitening sampling signal is implemented by a
computation with the trained unmixing matrix, so as to gen-
erate the independent component data 101.

[0029] It should be noted, due to the computation charac-
teristic of the ORICA, for sampling rate of 128, the compu-
tation output of the ORICA must be implemented prior to
sampling completion of the next data, within 28 seconds.
That is, in limit under time specifications of the real-time
computation, the designed ORICA processor uses mixed par-
allel architecture, that is different hardware parallelism is
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allocated in accordance with the computing complexity of the
processing unit. Thus, to avoid the time- and energy-consum-
ing computation, in addition to performing the ORICA com-
putation, the real time multi-channel EEG signal processor
based on on-line recursive independent component analysis
of the present invention uses a shared buffer and shared arith-
metic computation.

[0030] Accordingly, in another embodiment, the real time
multi-channel EEG signal processor based on on-line recur-
sive independent component analysis of the present invention
further includes a memory unit for storing data such as the
sampling signal 100, the whitening matrix and the unmixing
matrix. The memory unit is coupled to the inverse square root
matrix calculation unit 10, the whitening unit 11, the ORICA
calculation unit 12 and the ORICA training unit 13, for tem-
porarily storing data generated by the inverse square root
matrix calculation unit 10, the whitening unit 11, the ORICA
calculation unit 12 and the ORICA training unit 13, in order
10 achieve effective data arrangements and memory sharing.

[0031] Inorderto clearly illustrate the internal architecture
ofthe real time multi-channel EEG signal processor based on
on-line recursive independent component analysis of the
present invention, FIGS. 2 and 3A-3D further illustrate the
internal structure of the real time multi-channel EEG signal
processor based on on-line recursive independent component
analysis.

[0032] FIG.2isaschematic diagram depicting thereal time
multi-channel EEG signal processor based on the on-line
recursive independent component analysis in accordance
with an embodiment of the present disclosure. As shown in
FIG. 2, the real time multi-channel EEG signal processor 1
based on on-line recursive independent component analysis
includes the inverse square root matrix calculationunit 10, the
whitening unit 11, the ORICA calculation unit 12, the
ORICA training unit 13, the memory unit 14, and the output
interface 15.

[0033] The inverse square root matrix calculation unit 10
has a singular value decomposition (SVD) processor, a float-
ing point square root unit and a floating point divider, wherein
the singular value decomposition processor includes two
angle coordinate rotation digital computers and four vector
coordinate rotation digital computers.

[0034] The whitening unit 11 mainly has a register, an
average-covariance module and an adder and a multiplier
located in the average-covariance module.

[0035] The ORICA calculation unit 12 includes a floating
point adder and a floating point multiplier.

[0036] The ORICA training unit 13 is formed by a register,
eight adders, eight multipliers, a divider, a hyperbolic tangent
function lookup table, a learning rate module and a kurtosis
estimation module.

[0037] Inorderto achieve the shared memory, the memory
unit 14 can be coupled to the inverse square root matrix
calculation unit 10, the whitening unit 11, the ORICA calcu-
lation unit 12, the ORICA training unit 13 and the output
interface 15, for storing or temporarily storing needed or
generated data of each unit.

[0038] The output interface 15 may output the independent
component data and the former trained unmixing matrix. The
output result, [CA_OUT, is an element of the independent
component data y(n) and the unmixing matrix W(n) to seri-
ally output column by column.
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[0039] Based on the internal structure and relationship of
the foregoing units, data transmission states between the units
will be specifically described as follows.

[0040] The whitening unit 11 obtains the sampling signal X
from the outside, and the sampling signal X can be sent to the
memory unit 14 for storage. The whitening unit 11 imple-
ments the covariance computation through the ORICA cal-
culation unit 12 for generating the covariance matrix COV_
X. The covariance matrix COV_X is transmitted to the
inverse square root matrix calculation unit 10 for implement-
ing computation in order to obtain a whitening matrix P.

[0041] The ORICA calculationunit 12 can obtain the origi-
nal sampling signal X which is not whitened from the
memory unit 14 to be implemented by a computation with the
whitening matrix P, so as to whiten the sampling signal X.
Afterwards, the post-whitening sampling signal Z can be
obtained and sent back to the storage unit 14 for temporary
storage.

[0042] The ORICA training unit 13 obtains the post-whit-
ening sampling signal Z and the unmixing matrix W(n) from
the memory unit 14 and implements the independent compo-
nent analysis computation of the post-whitening sampling
signal 7 and the unmixing matrix W(n) through the ORICA
calculation unit 12, in order to obtain independent component
data y(n), and stores it in the memory unit 14.

[0043] Inaddition, the ORICA training unit 13 implements
training of the original unmixing matrix W(n) according to
the independent component data y(n) generated by the
ORICA calculation unit 12, to compute the unmixing matrix
WO which is not whitened. The training includes the compu-
tation by the inverse square root matrix calculation unit 10 to
obtain the inverse matrix W0~ of the un-whitening unmix-
ing matrix W0. The ORICA training unit 13 implements
computation of the un-whitening unmixing matrix W0 and
the inverse matrix WO0™V? of the un-whitening unmixing
matrix through the ORICA calculation unit 12, to generate a
new unmixing matrix W(n+1). The new unmixing matrix
W(n+1) generated by the training provides the ORICA cal-
culation unit 12 with replacing the original unmixing matrix
Wi(n) in the next independent component analysis computa-
tion. The independent component analysis computation of the
next post-whitening sampling signal 7 and the new unmixing
matrix W(n+1) is implemented, such that a new independent
component data y(n+1) will be obtained. The generated new
unmixing matrix W(n+1) and the new independent compo-
nent data y(n+1) are temporarily stored in the memory unit
14.

[0044] The outputinterface 15 may output the independent
component data y(n) (followed by y(n+1), . . . ) and the
unmixing matrix W(n) (followed by W(n+1), ... ).

[0045] From the foregoing, the data of the inverse square
root matrix calculation unit 10, the whitening unit 11, the
ORICA calculation unit 12 and the ORICA training unit 13
may be stored in the memory unit 14. In addition, the ORICA
calculation unit 12 implements computations from the whit-
ening unit 11 and the ORICA training unit 13. Through the
effective data arrangement, each calculation unit using the
memory is ordered. The demand for memory is significantly
reduced so as to achieve effective memory sharing, while the
design of a smaller memory complexity and low power con-
sumption can be achieved.

[0046] FIGS. 3A to 3D are schematic diagrams depicting
internal operation of each unit of the real time multi-channel
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EEG signal processor based on the on-line recursive indepen-
dent component analysis in accordance with the present dis-
closure.

[0047] AsshowninFIG. 3A, steps ofthe whitening process
is described. The sampling signal X is obtained and transmit-
ted to the average-covariance module 210 for generating a
covariance matrix COV_X. The covariance matrix COV_Xis
transmitted to the singular value decomposition processor
200 in the inverse square root matrix calculation unit 10 of
FIG. 2. The singular value decomposition processor 200
includes the angle coordinate rotation digital computer and
the vector coordinate rotation digital computer. Upon pro-
cessing of the singular value decomposition processor 200,
the covariance matrix COV_X obtains diagonal matrix D and
orthogonal matrix E. The diagonal matrix D and the orthogo-
nal matrix E contain a covariance matrix eigen and a covari-
ance matrix eigen vector.

[0048] The diagonal matrix D generates the inverse matrix
D_INSQ ofthe diagonal matrix D through computation of the
inverse square root module 201. The matrix multiplier 220 in
the ORICA calculation unit 12 of FIG. 2 is used for comput-
ing the orthogonal matrix E and the inverse matrix D_INSQ
of the diagonal matrix D, to generate a whitening matrix P. In
addition, the matrix multiplier 221 is used for computing the
sampling signal X and the whitening matrix P, in order to
obtain the post-whitening sampling signal 7.

[0049]  As shown in FIG. 3B, the computing process pro-
vided in the ORICA calculation unit 22 is described. The
ORICA calculation unit 22 provides the independent compo-
nent analysis and outputs the result. The ORICA calculation
unit 22 implements individual computations of the sampling
signal X and the whitening matrix P, the unmixing matrix W0
and the inverse matrix W0~'"2, and the unmixing matrix W(n)
and the post-whitening sampling signal Z, respectively. The
data are respectively sent to the first multiplexer 222. Based
on the control of the mode of the first multiplexer 222, which
input should be implemented by computation is determined
and sent to the matrix multipliers 220 and 221. The respective
computing results, such as the post-whitening sampling sig-
nal Z generated by computing the sampling signal X and the
whitening matrix P, the new unmixing matrix W(n+1) gener-
ated by computing the unmixing matrix W0 and the inverse
matrix W02, and the independent component data y(n)
generated by computing the unmixing matrix W(n) and the
post-whitening sampling signal Z, are obtained, and the mode
of the second multiplexer 223 is selectively controlled to
input associated data. For example, the unmixing matrix W is
trained to change the value, and therefore through the com-
puting of the matrix multipliers 220 and 221, the n-th unmix-
ing matrix W(n) and the post-whitening sampling signal Z
generate the n-th independent component data y(n), so that
the independent component analysis will be completed. Fur-
ther, in order to achieve sharing of hardware, the matrix
multiplier selects the input for computation based ondifferent
mode demands.

[0050] Subsequently, as shown in FIG. 3C, the operations
within the ORICA training unit 23 are described. The ORICA
training unit 23 has a nonlinearity module 230, a kurtosis
estimation module 231, a multiplexer 232, a weight training
module 233 and a learning rate module 234.

[0051] TheORICA training unit 23 transmits the n-th inde-
pendent component data y(n) to the nonlinearity module 230,
the kurtosis estimation module 231 and the weight training
module 233. The nonlinearity module 230 is used for distri-
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bution of the n-th independent component data y(n) to obtain
the non-linear transfer function. The kurtosis estimation mod-
ule 231 is used for identifying the independent component
data as a super Gaussian signal or a sub-Gaussian signal and
generating a kurtosis value KUR sent to the multiplexer 232.
The multiplexer 232 receives the kurtosis value KUR, the
value TF_SUP (the value is 1) representing the super Gauss-
ian distribution from the nonlinearity module 230 and the
value TF_SUB (the value is 0) representing the sub-Gaussian
distribution from the nonlinearity module 230, to generate the
nonlinear transfer function of the independent component
distribution data and obtain the nonlinearity F_Y.

[0052] The weight training module 233 is the most impor-
tant part of the ORICA training unit 23, and is used for
computing the (n+1)-th unmixing matrix W(n+1), that is,
implementing iterative computation using the nonlinear con-
version function of the independent component data y(n), the
independent component distribution data, the learning rate
LEARN_R and the unmixing matrix, so as to generate a new
unmixing matrix.

[0053] In addition, the aforementioned learning rate
LEARN_R means that prior to computing the (n+1)-th
unmixing matrix W(n+1), the learning rate module 234 deter-
mines the learning rate LEARN_R. The learning rate module
234 is an automatic learning program. At the beginning, the
learning rate LEARN_R is a greater value, and is gradually
decreased for converging the ORICA training unit 23. There-
fore, upon the nonlinearity F_Y, the learning rate LEARN_R
and the n-th unmixing matrix W(n) are determined, the
weight training module 233 computes the (n+1)-th unmixing
matrix W(n+1) and transmits the result to the memory unit for
a next independent component analysis computation.

[0054] As shown in FIG. 3D, the operation of the ORICA
training unit 23 of FIG. 3C is illustrated based on the math-
ematical model of the finite state machine.

[0055] At the beginning, the state machine is placed in
standby state (state=0). When the post-whitening brainwave
(EEG), the post-whitening sampling signal Z, is input, the
state machine is entered to input state (state=1), and the input
signal is stored in the register. After the input, the state
machine is entered to state of computing Y value (indepen-
dent component data) (state=2). The unmixing matrix W is
called from the memory unit. The post-whitening sampling
signal 7 is computed by the vector multiply-adder. The kur-
tosis value computation needs 512 Y values, in order to
achieve the real-time computation. Each calculated Y value
will be implemented by computations of square and the
power of four. respectively, and added with the prior accumu-
lation stored in multiple registers, and then stored in those
registers. That is, when the kurtosis value counter is equal to
512, the 512 data are accumulated, and the state machine is
entered to the kurtosis value state (state=3). After computing,
the kurtosis value equal to 1 is the super Gaussian channel,
and the kurtosis value equal to 0 is the sub-Gaussian channel.
[0056] The kurtosis value counter will reset to zero for next
computing. When the kurtosis value counter is less than 512,
the state machine is directly entered to lookup state (state=4).
The further computation is implemented based on the kurto-
sis value, which is the difference of the super Gaussian and
sub-Gaussian. Afterwards the state machine is entered to state
of computing the learning rate (state=5). The learning rate
determines the calculated accuracy and convergence rate of
the training module. In other words, the learning rate affects
the convergence rate and the accuracy.
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[0057] Once the learning rate is determined, the state
machineis entered to state of updating the W matrix (state=6),
that is, the calculated new unmixing matrix W is output to the
memory unit. The state machine will once again be entered to
the standby state state=0, for the next input.

[0058] Referring to FIG. 4, FIG. 4 is a diagram showing
relationship between learning rate and time in the real time
multi-channel EEG signal processor based on the on-line
recursive independent component analysis in accordance
with the present disclosure. As shown in FIG. 4, the learning
rate will affect the accuracy and the convergence rate calcu-
lated by the weight training module. If the learning rate is too
large, although the convergence rate is fast, the accuracy is
poor. If the learning rate is too small, the convergence rate is
slower and the accuracy is better. The simulation is imple-
mented using Matlab, and the curve shown in FIG. 4 is
formed. At the beginning, the learning rate is larger. With
converging the data and increasing the times of training, the
learning rate is decreased gradually, so as to achieve the fast
convergence and good computing accuracy.

[0059] FIGS.5A to 5C are diagrams showing simulation of
the real time multi-channel EEG signal processor based on
the on-line recursive independent component analysis in
accordance with the present disclosure. The forementioned
figures take the 8-channel EEG formula based processor for
example, and simulation results of the brainwave signal and
the super Gaussian and the sub-Gaussian test signal are
entered. As shown in FIG. 5A, distribution of the original
source signals of each channel is shown, i.e., the independent
source signals simulating the super Gaussian and the sub-
Gaussian the generated by the Matlab. The tested mixed sig-
nal is further generated with multiplying the random matrix
and the source signal, as the distribution of the mixed signal of
each of the channels as shown in FIG. 5B. The tested mixed
signal is input to the real time multi-channel EEG signal
processor based on on-line recursive independent component
analysis of the present invention to generate the output result,
and the distribution of the extracted ORICA signal of each
channel is generated as shown in FIG. 5C. Afterwards corre-
lation comparison between the independent source signal
(FIG. 5A) and the output results is performed. The result of
the real time multi-channel EEG signal processor based on
on-line recursive independent component analysis of the
present invention under the simulation test is consistent with
the result under the off-line mode, and will not be affected by
the present invention implementing independent component
analysis using the real-time computing process.

[0060] FIG. 6 is a diagram showing results and off-line
processing of the real time multi-channel EEG signal proces-
sor based on the on-line recursive independent component
analysis in accordance with the present disclosure. FIG. 6
shows that the correlation of the sampling signal of the origi-
nal source and the extracted ICA signal is compared to show
the difference of the effect of the brainwave signal processing
between on-line implementation and off-line implementa-
tion. As shown in FIG. 6, in general, the result correlation of
the off-line is better than the correlation of the result of the
on-line processing. However, in analyzing the correlation of
the original sampling signal and the extracted ICA signal, the
average correlation coefficient of the real time multi-channel
EEG signal processor of the present invention is 0.9583 per
second signal frame, which is similar to the difference in the
correlation between the two under the off-line mode. That is,
through the real time multi-channel EEG signal processor
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based on on-line recursive independent component analysis
of the present invention, in the real time multi-channel, the
result is not poorer than the processing of the off-line mode.
[0061] Inaparticularembodiment, according to the volume
size, cost considerations and objects, etc., the real time multi-
channel EEG signal processor based on on-line recursive
independent component analysis of the present invention may
be designed and manufactured by the following data. For
example, chip area is $00x800 um?, operating frequency is up
to 50 MHz. The power of the chip is implemented as simula-
tion power with Nanosim. The power is about 4.18 mW at
1.0V, under operating frequency of 50 MHz. The chip can be
used in portable EEG measurement equipment, so as to
achieve small size and be easily portable.

[0062] The present invention allocates the hardware com-
puting the complexity based on the computed timing and the
complexity. Under the limitations of the real-time timing
specification, the high computing complexity is given a
higher parallelism, and the low computing complexity
employs order. In addition, the design of fixed point and
floating point is used when computing. Bandwidth of data is
assessed and simulated in order to design a data width with an
appropriate fixed point. Data required high accuracy further
uses floating point data width and uses hardware sharing to
save hardware costs and power consumption. The present
invention utilizes various design features in multi-channel
real-time specification, to achieve effective design of hard-
ware processing unit and low input memory hardware com-
plexity, and the power consumption is reduced.

[0063] Insummary, the real time multi-channel EEG signal
processor based on on-line recursive independent component
analysis of the present invention achieves effective data
arrangement through the design of sharing memory and sort-
ing data flow, such that each calculation unit uses memory
unit in order, and thus can achieve the design of smaller
memory complexity and lower power consumption. In the
specific implementation, VLSI hardware can be used to
achieve the multi-channel ORICA processor, real-time, light-
weight and portable implementing separation and monitor of
the brainwave signal, and can be used as in fast, lightweight
and portable medical equipment applications.

[0064] It will be apparent to those skilled in the art that
various modifications and variations can be made to the dis-
closed embodiments. It is intended that the specification and
examples be considered as exemplary only, with a true scope
of the disclosure being indicated by the following claims and
their equivalents.

What is claimed is:

1. A real-time multi-channel EEG signal processor based
on an on-line recursive independent component analysis
(ORICA), the real-time multi-channel EEG signal processor
comprising:

an inverse square root matrix calculation unit for providing
a computation of eigen, eigen vector and inverse square
root matrix;

a whitening unit coupled to the inverse square root matrix
calculation unit for covariance computation of a sam-
pling signal to generate a covariance matrix, wherein the
covariance matrix generates a whitening matrix based
on the computation of the inverse square root matrix
calculation unit;

an ORICA calculation unit coupled to the inverse square
root matrix calculation unit and the whitening unit for
computing the sampling signal and the whitening matrix
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to obtain a post-whitening sampling signal, wherein an
independent component analysis computation of the
post-whitening sampling signal and a predetermined
unmixing matrix is performed to obtain independent
component data; and

an ORICA training unit coupled to the inverse square root
matrix calculation unit and the ORICA calculation unit
for training the unmixing matrix according to the inde-
pendent component data to obtain an inverse matrix of
the unmixing matrix by the computation of the inverse
square root matrix calculation unit, and computing the
unmixing matrix and the inverse matrix of the unmixing
matrix to generate a new unmixing matrix, wherein the
new unmixing matrix is used for the ORICA calculation
unit to perform a next independent component analysis
computation of a next post-whitening sampling signal
and the new unmixing matrix, so as to obtain next inde-
pendent component data.

2. The real-time multi-channel EEG signal processor of
claim 1, further comprising a memory unit coupled to the
inverse square root matrix calculation unit, the whitening
unit, the ORICA calculation unit and the ORICA training unit
for storing the sampling signal, the whitening matrix and the
unmixing matrix.

3. The real-time multi-channel EEG signal processor of
claim 1, wherein the ORICA training unit further comprises:

anonlinearity module for computing the independent com-
ponent data to obtain a non-linear transfer function;

a kurtosis estimation module for identifying the indepen-
dent component data to be a super Gaussian signal or
sub-Gaussian signal and generating a kurtosis value;

a multiplexer coupled to the nonlinearity module and the
kurtosis estimation module for obtaining a nonlinear
transfer function of independent component distribution
data in accordance with the Gaussian signal or the sub-
Gaussian signal and the kurtosis value;

Nov. 27, 2014

a learning rate module for computing a learning rate deter-
mining convergence and steady state performance of the
unmixing matrix during training; and

a weight training module for implementing an iterative
computation using the independent component data, the
nonlinear transfer function of the independent compo-
nentdistribution data, the learning rate and the unmixing
matrix, so as to generate the next unmixing matrix.

4. The real-time multi-channel EEG signal processor of
claim 3, wherein the weight training module comprises eight
multipliers and eight adders.

5. The real-time multi-channel EEG signal processor of
claim 1, wherein the ORICA training unit further includes a
learning rate module coupled to the weight training module
forproviding a plurality of learning rates, so as for the ORICA
training unit to change a convergence rate of the unmixing
matrix.

6. The real-time multi-channel EEG signal processor of
claim 1, wherein the whitening unit comprises an average
covariance module having a multiply-adder.

7. The real-time multi-channel EEG signal processor of
claim 1, wherein the inverse square root matrix calculation
unit comprises a singular value decomposition processor, a
floating point square root module and a floating point divider.

8. The real-time multi-channel EEG signal processor of
claim 7, wherein the singular value decomposition processor
comprises two angle coordinate rotation digital computers
and four vector coordinate rotation digital computers.

9. The real-time multi-channel EEG signal processor of
claim 1, wherein the ORICA calculation unit comprises a
scalar floating point multiply-adder.

10. The real-time multi-channel EEG signal processor of
claim 1, wherein a sampling rate of the sampling signalis ¥i2s
second.



