
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 8, AUGUST 2007 1509

Observability Analysis on HDL Descriptions for
Effective Functional Validation

Tai-Ying Jiang, Chien-Nan Jimmy Liu, and Jing-Yang Jou, Fellow, IEEE

Abstract—Simulation-based functional validation is still one of
the primary approaches for verifying designs described in hard-
ware description languages. Traditional code coverage metrics
do not address the observability issue and may overestimate the
extent of functional validation. Observability-based code coverage
metric (OCCOM) is the first code coverage metric considering the
essential observability issue. However, tags can only be observed
or unobserved, providing only two levels of measurement (i.e.,
1 and 0). Errors with lower opportunities to be observed may
still be judged as observable, thus misleading the verification
results. Therefore, instead of extending tag coverage, we develop
a probabilistic observability measure and its efficient computation
algorithm. Besides being used as a new OCCOM, our new measure
can point out hard-to-observe points for inserting assertions to pre-
vent bugs from hiding behind these points. Experimental results
show that the detection of the injected errors and the degree of
our observability measure are strongly related. The results also
show that our fine-grained observability measure is less likely
to overestimate the extent of validation with reasonable compu-
tation time.

Index Terms—Code coverage metric, hardware description
language (HDL), observability analysis.

I. INTRODUCTION

HARDWARE description languages (HDLs) are widely
applied in modeling the behaviors of digital circuits.

Researchers have extensively studied how to verify HDL de-
scriptions for the last decade. Formal verification methods
for language containment and property checking have made
progress on this verification problem. However, there is still
no indication that these formal techniques can verify all kinds
of hardware designs completely. Simulation-based functional
validation still remains the primary approach for verifying HDL
descriptions.

In functional validation, the simulation values of some sig-
nals of interest must be compared with their expected values
to determine the consistency with the specification. In this
paper, the term observation points (OPs) is used to describe

Manuscript received December 13, 2005; revised May 5, 2006 and August 6,
2006. This work was supported by the National Science Council, Taiwan,
R.O.C., under Grant NSC94-2220-E-009-041. This paper was recommended
by Associate Editor R. F. Damianu.

T.-Y. Jiang is with the Department of Electronics Engineering, National
Chiao Tung University, Hsinchu 300, Taiwan, R.O.C. (e-mail: giani@eda.ee.
nctu.edu.tw).

C.-N. J. Liu is with the Department of Electrical Engineering, National
Central University, Jhongli City 320, Taiwan, R.O.C. (e-mail: jimmy@ee.
nctu.edu.tw).

J.-Y. Jou is with the Department of Electronics Engineering, National Chiao
Tung University, Hsinchu 300, Taiwan, R.O.C., and also with the National Chip
Implementation Center, National Applied Research Laboratories, Hsinchu 300,
Taiwan, R.O.C. (e-mail: jyjou@faculty.nctu.edu.tw).

Digital Object Identifier 10.1109/TCAD.2007.891366

these signals because they act like observation windows to
uncover bugs. Designers often select OPs according to their
understanding of the specification and the availability of the
expected values. However, erroneous effects caused by bugs
are not always propagated to the assigned OPs. They may be
masked while propagating to OPs. This situation prevents bug
finding. Even worse, bugs may remain undiscovered through
the manufacturing process if validation is not accurately
gauged.

Most code coverage metrics, such as statement coverage,
branch coverage, and path coverage metrics, only consider
whether their concerned code structures are exercised [2]. They
do not explicitly check whether erroneous effects caused by
bugs propagate to OPs [3]. Bugs may still remain undetected
even if they have been activated under these coverage metrics in
the verification scenarios. Therefore, the aforementioned cover-
age metrics may overestimate the extent of the validation. The
observability-based code coverage metric (OCCOM) is the first
code coverage metric that considers the essential observability
issue [3]–[5]. In their approach, the propagation of special tags
that are attached to internal signals is simulated to predict the
actual propagation of erroneous effects of bugs. The observed
tags percentage is the OCCOM coverage. However, tags can
only be observed or unobserved, providing only two levels of
measurement, i.e., 1 and 0. Errors that have lower observation
opportunities may still be judged as observable, thus giving
misleading verification results. Moreover, if multiple errors
exist in the design under validation (DUV), the single tag model
in tag simulation may not precisely determine whether the tag
can be observed.

Therefore, this paper attempts to develop a different observ-
ability measure for HDL descriptions that can provide interme-
diate values between 1 (observed) and 0 (unobserved) instead
of merely extending tags. This could reduce the likelihood of
misestimating real observability. In the software testing arena,
Voas proposed a concept called sensitivity analysis [14], [15].
The propagation probability (PP) proposed in those papers may
be a good observability measure for software programs written
in C, C++, or even HDLs. Using a concept similar to the PP in
[14], we define a probabilistic observability measure for HDL.
However, the proposed statistics-based approach for calculating
PP is quite time consuming. Thus, it may not be suitable for the
HDL models of commercial products.

Since the computation time to obtain accurate PP in [14]
is too long, we also develop a topology-based observability
computation algorithm that can quickly produce results from
the simulation dump file and provide a closed lower bound
of observability measures. Although our algorithm uses some

0278-0070/$25.00 © 2007 IEEE

1510 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 8, AUGUST 2007

heuristics, its estimated observability is still very close to
statistics-based estimations but with a much shorter computa-
tion time.

With the proposed observability measure, there are some
possible applications.

1) A new OCCOM. In our new OCCOM, a statement is
considered as covered if it is first exercised and the
observability of the statement’s output variable is high
enough. This is similar to the well-known fault simulation
that requires fault activation and propagation.

2) Indicating hard-to-observe points. If some signals are less
likely to be observed, bugs may hide behind these points
and become very difficult to reveal via limited OPs. By
using our observability analysis, designers can designate
candidates for assertion insertion to prevent potential
bugs from hiding. This can increase the verification ef-
ficiency, too.

The remainder of this paper is organized as follows:
Section II describes related works. Section III introduces the
motivation and the definition of our observability measures.
Section IV presents our observability computation algorithm
and related theorems. Experimental results are given in
Section V. Section VI discusses conclusion and potential di-
rections for future research.

II. RELATED WORKS

A. Testability Analysis in Manufacturing Test

Manufacturing test is a process of checking that inte-
grated circuits are manufactured correctly. The well-known
stuck-at-fault model is often used to capture manufacturing de-
fects [17]. Based on the fault models, test vectors are generated
and applied to manufactured integrated circuits. Fault coverage
analysis is then conducted to judge whether the integrated
circuits are well tested or not. Testability here is used to guide
test pattern generation or as a direct substitution of a fault
coverage report. Observability is often defined as the difficulty
of observing erroneous effects caused by some bit-level stuck-
at-faults [18], [19]. This is quite different from our word-level
observability measures for HDL descriptions without underly-
ing design error models.

Recent research abstracted defects as higher level logical
fault models [20]–[24]. However, the correspondence between
logical fault models and HDL design errors is still weak in two
aspects: 1) an erroneous statement may be synthesized into hun-
dreds of erroneous gates and erroneous wires and 2) there are
almost no credible design error models for HDL descriptions.
Thus, logical fault models hardly link to HDL design errors.
Testability for these logical fault models consequently differs
from our observability measure.

Some RTL testability analysis research exploits the idea
of hierarchical testing with a precomputed test vector set
[25]–[27]. These studies define testability as the difficulty of
generating input patterns for RTL circuits or instructions for
processors to test internal RTL modules. They are different
from our observability measures.

B. Sensitivity Analysis in Software Testing

Voas first proposed sensitivity analysis for software programs
[14]–[16]. He estimates three probabilities for locating hard-to-
detect bugs in a software program. The PP of a variable is the
estimated probability that a variable’s erroneous values caused
by some bugs are observed in the program outputs. PP is a good
observability measure for software programs, even for HDL
programs. The PP of a variable v in the program is estimated by
a statistics-based approach, repeatedly infecting the data state
of v (injecting erroneous values on variables in memory) and
simulating the program. The ratio of the number of program
failures to the total number of experiments is the PP of v. This
approach obviously requires lots of simulation and is very time
consuming. A faster approach is desirable, especially for the
HDL models of commercial products.

C. OCCOM

OCCOM is the pioneer that addresses the essential ob-
servability issue [3]. Dump-file-based OCCOM computation
facilitates integration with commercial simulators and thus ac-
celerates the analysis process [4], [5]. Tag-based observability
measures also assess the extent of validation for C programs
in recent works [6], [7]. Test pattern generation approaches
for OCCOM make the entire work more practical [8]–[10]. In
[10], the authors define detectability of a tag that consists of
controllability and observability of a tag to guide test vector
generation for tag coverage.

All of the works just mentioned adopt tag-based observabil-
ity measures. Two special tags, i.e., ∆ and −∆, are attached
to each signal to simulate potential increasing and decreasing
value changes caused by bugs on the signal, respectively. The
propagation of tags is determined by tag propagation rules
[3]–[5]. The OCCOM coverage is the percentage of tags ob-
served at the OPs.

In the tag-based approaches, tags can either be observed (1)
or unobserved (0), providing only two levels of measurement.
Since some errors can only be observed under specific condi-
tions, they may not always be observed at the OPs. However,
because they can propagate to the OPs in some cases, they will
be judged as observed in tag-based approaches. If the specific
conditions in which those errors can be observed rarely happen,
treating them as observable in all cases may give misleading
verification results. Therefore, if the granularity of observabil-
ity measures can be improved to provide intermediate values
between 1 (observed) and 0 (unobserved), the possibility of
having misleading verification results might be greatly reduced.
Moreover, if multiple errors exist in the DUV, the single tag
model in tag simulation may not precisely determine whether
the tag can be observed.

III. PROBABILISTIC OBSERVABILITY MEASURE

A. Motivation

A simple HDL example shown in Fig. 1(a) demonstrates
what error masking is. We will also show how tags can help pre-
dict the propagation of bugs. Applying the input stimulus shown

JIANG et al.: OBSERVABILITY ANALYSIS ON HDL DESCRIPTIONS FOR EFFECTIVE FUNCTIONAL VALIDATION 1511

Fig. 1. HDL example. (a) HDL code. (b) Input stimulus. (c) Simulation result.

in Fig. 1(b) to simulate the HDL code fragment in Fig. 1(a), we
can obtain the simulation results shown in Fig. 1(c). According
to the results, both statement coverage and branch coverage
metrics achieve 100%. The quality of the input stimulus is
sufficient if the aforementioned code coverage metrics can be
trusted.

However, if statement 7 is changed to “counter = counter +
2,” the input stimulus cannot reveal this bug. The design bug
causes an incorrect value 3 (different from the correct value 11)
on the signal counter at t = 5. However, this incorrect value is
masked by statement 2 “if(counter < PI2)” since the evaluation
results of the correct and incorrect values are the same; i.e., 11
and 3 are both bigger than 2. Therefore, the observability, or the
error masking, issue is essential to be considered while gauging
the extent of the validation.

Applying OCCOM [3]–[5] to gauge the extent of the vali-
dation can also obtain 100% OCCOM coverage in this case.
The tag propagation rule for “<” in [4] indicates that tag ∆
and tag −∆ injected on the signal counter can pass through
statement 2 “if(counter < PI2)” and appear at PO1 at t = 1 and
t = 5, respectively. Both tags injected on the signal a also pass
through the operation “=” at t = 5. However, in this example,
the incorrect value 3 (which can be regard as 11 − ∆) does not
propagate to PO1 as the tags predict.
Tag propagation rules assume that a decreasing value change

can “often” be so dramatic that the evaluation result of
“counter < PI2” changes from FALSE to TRUE [4]. However,
the actual value change caused by design errors is not always
dramatic enough to change the result of “counter < PI2,” as
demonstrated in this example. If the likelihood that erroneous
values change the result of “counter < PI2,” i.e., the likelihood
that erroneous effects can propagate through the operation
“counter < PI2” can be estimated, we can obtain closer esti-
mations for the real observability of those signals.

B. Probabilistic Observability Measure

Despite completion of a successful simulation in which the
simulated values of all the OPs are consistent with the correct
values, it is still possible that some incorrect values existed
at some time instances but remain hidden due to the error
masking. Assuming that the simulation values of all the OPs
are consistent with the expected values, the goal of our work is
to analyze which signals will most likely have incorrect values
hiding at which time instances. This prevents overestimating

Fig. 2. CDFG of the HDL code in Fig. 1.

validation completeness and points out hard-to-observe points.
In the following descriptions, the error masking model and our
observability will be introduced.

The DUV is modeled as a modified control/data flow graph
(CDFG) G = (V ,E), where V is the set of vertices and E
is the set of edges connecting vertices. In order to explain the
CDFG more clearly, the CDFG appearing in Fig. 2 is used
as an example of the HDL code shown in Fig. 1. Let v be
a vertex in V . Each vertex v corresponds to an operation in
the HDL code. Function fv and variable yv are also associated
with vertex v. Function fv is the function of the operation that
v corresponds to. Variable yv is the output variable of fv or
the left-hand variable of the operation. For example, vertex
“1 :∗” in Fig. 2 corresponds to the operation “a = PI1 ∗ 4” at
line 1 in the HDL code. Function f1:∗ is multiplication “∗,”
and y1:∗ is signal a. Vertex “2 : if” corresponds to the operation
“if(. . .) . . . else . . .” in lines 2–4 of the HDL code, and its
functionality is quite similar to a multiplexer. Vertex PO1 is
a special vertex representing the primary output PO1 in the
circuit. An edge (v, u) ∈ E indicates that the input of vertex
u is data dependent on the output of v. As shown in Fig. 2,
an edge (1 :∗, 4 :=) exists since the operation “4 :=” takes the
output of vertex “1 :∗” as its input. The fan-out of v is a set
of vertices u such that there is an edge from v to u. Similarly,
the fan-in of v is a set of vertices k such that there is an edge
from k to v. A path from vertex u to vertex u′ is a sequence
〈v0, v1, v2, . . . , vk〉 of vertices such that u = v0, u′ = vk and
(vi−1, vi) ∈ E.

If a single incorrect value w ever existed on the output
variable of vertex vyv at time instance t = ti in the DUV during
simulation, this incorrect value w should cause no incorrect
behaviors at any OPs at all positive edges of clock.1 If not,
the simulation phase is not successful. More specifically, the
simulated value of an OPj at an arbitrary positive edge of clock
t = ck must be the same as the correct value. The incorrect
value w must be masked by some vertices on the paths from
vertex v at t = ti (denoted as v@t = ti) to OPj at t = ck

(denoted as OPj@t = ck). In the following descriptions, “v at
t = ti” and “v in time frame t = ti” will be used in turn. A
formal description of error masking is given as

fv@t=ti→OPj@t=ck
(w) = CV (OPj@t = ck) (1)

1We assume that the simulation values of all the observation points are
compared with the correct values only on the positive edges of clock signal. If
the design under validation is a falling-edge-triggered or double-edge-triggered
design, the assumption along with the modeling and the computation can easily
be changed to fit to it.

1512 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 8, AUGUST 2007

where fv@t=ti→OPj@t=ck
is the function of the paths from

v in time frame t = ti to OPj in time frame t = ck, and
CV (OPj@t = ck) is the correct value of OPj at t = ck.

If there are m total OPs {OP1, OP2, . . . , OPm} and n clock
cycles in the simulation phase, the incorrect value w must be
masked on its way to all the OPs in all time frames such that
it is not uncovered during the entire simulation process. More
formally, for each OPj in each time frame t = ck, the function
of the paths from vertex v in time frame t = ti that go to OPj

at t = ck must generate the correct value of OPj at t = ck with
this incorrect value w, i.e.,

m⋂
j=1

n⋂
k=0

fv@t=ti→OPj@t=ck
(w) = CV (OPj@t = ck). (2)

The set of all possible values of vertex v’s output that can
satisfy (2) is defined as the masked value set (MVS) of vertex
v at time instance t = ti (MVS(v@t = ti)). A more formal
definition is given in (3). Each element in MVS(v@t = ti)
retains the correct values of all the OPs at all positive edges
during simulation, i.e.,

MVS(v@t = ti) =

{
x|

m⋂
j=1

n⋂
k=0

fv@t=ti→OPj@t=ck
(x)

= CV (OPj@t = ck)

}
. (3)

The correct value of the output of vertex v at t = ti
is in MVS(v@t = ti), and this can justify the existence of
MVS(v@t = ti). If MVS(v@t = ti) has only one element, this
element must be the correct value, and no error masking can
occur. On the other hand, if the set contains many elements,
there will be many elements other than the correct values2 in the
set. An incorrect value caused by some bugs may very possibly
be one of these elements and thus be masked. (The incorrect
value can also be outside the set such that it is revealed.)
The more elements in MVS(v@t = ti), the more likely the
simulation value of v is one of these masked incorrect values.
Hence, the likelihood of error masking (LOEM) of v at t = ti
is defined as (4). Its complement is the observability measure
of v at t = ti, as described in (5), i.e.,

LOEM(v@t = ti) =
|MVS(v@t = ti)| − 1

2n − 1
(4)

Observability(v@t = ti) = 1 − |MVS(v@t = ti)| − 1
2n − 1

. (5)

IV. OBSERVABILITY COMPUTATION ALGORITHM

Our observability computation algorithm is a topology-based
analysis with time frame expansion to handle the sequential
behavior of the DUV. While calculating the observability of the

2Although the elements other than incorrect value in the MVS of v at t = ti
are not all masked incorrect values, some of them may be don’t care values
of v at t = ti. However, the identification of don’t care values requires formal
proofs or probably many more simulations. Thus, for safety, we here consider
these values other than the correct ones as masked incorrect values.

Fig. 3. Path from b@t = ti to OPj@t = ck .

output variable of vertex v in time frame t = ti, the algorithm
will consider each sensitized path from v in time frame t = ti
that goes to any OP in each time frame. The path-oriented
computation scheme is defined in (6), which can be transformed
from (3), i.e.,

MVS(v@t = ti) =
m⋂

j=1

n⋂
k=0

{
x|fv@t=ti→OPj@t=ck

(x)

= CV (OPj@t = ck)} . (6)

The set {x|fv@t=ti→OPj@t=ck
(x) = CV (OPj@t = ck)} is

defined as the MVS of vertex v at time instance t = ti with re-
spect to OPj at t = ck (denoted as MVS(v@t = ti)OPj@t=ck).
An element of the set other than the correct value can be
regarded as an incorrect value that is masked by some vertices
on the paths from v at t = ti to OPj at t = ck, thus keeping the
correct value of OPj at t = ck.

According to (6), if it is possible to derive MVS(v@t =
ti)OPj@t=ck for each OPj at each time frame t = ck, then
intersecting these sets produces MVS(v@t = ti). If there is
exactly one path from v at t = ti to an OPj at t = ck, an
induction-based computation approach is proposed to com-
pute exact MVS(v@t = ti)OPj@t=ck , which is introduced in
Sections IV-A and B. If there are multiple paths from v at t = ti
to OPj at t = ck, i.e., reconvergent paths, a quick estimation
approach that guarantees lower bound observability estima-
tions will be applied, which is introduced in Section IV-C.
Section IV-E introduces the entire algorithm incorporating both
of them, and Section IV-D discusses time-saving strategies.

A. MVS Computation for Single Path

Assume that there is a sensitized path P from a vertex b
at time instance t = ti to an OPj at a positive edge of clock
t = ck. As an example, one such path 〈b@t = ti, an, an−1,
. . . , a2, a1, OPj@t = ck〉 is shown in Fig. 3 and will be used
in the following explanations. For the case of a single path, we
develop an algorithm to compute MVS(b@t = ti)OPj@t=ck , as
shown in the pseudocode in Fig. 4.

For each OP at each positive clock edge, the algorithm will
recursively call subroutine MVS_for_vertex to perform MVS
computation and use a depth first search strategy for backward
traversals. The input of the subroutine is a previously computed
set of integers (PreviousMVS), the currently traversed vertex
v, and the current time frame ti. If the currently traversed
vertex v is a normal vertex, all the fan-in vertices of vertex
v will be traversed (line 7). However, if vertex v is a control

JIANG et al.: OBSERVABILITY ANALYSIS ON HDL DESCRIPTIONS FOR EFFECTIVE FUNCTIONAL VALIDATION 1513

Fig. 4. Pseudocode of MVS computation for a single path.

vertex, the fan-in vertices on the untaken branch(es) will be
marked as “inactive” and will not be traversed (line 5). The
key step of this algorithm (line 12) is computing the set of all
the u’s output values (CurrentMVS) that can make the func-
tion of vfv generate an output value that is in PreviousMVS.
Then, the newly computed set CurrentMVS will become the
input PreviousMVS of subroutine MVS_for_vertex and will be
recorded on vertex u along with time information after the
subroutine is called again. Section IV-B will introduce how to
compute CurrentMVS based on PreviousMVS (line 12). The
following explains how this algorithm can derive MVS(b@t =
ti)OPj@t=ck in the case of a single path from b at t = ti to OPj

at t = ck.
Theorem 1: As shown in Fig. 3, function fn is the composite

function of the vertices from a1 to an and comprises fan
(x)

and fn−1. For an arbitrary value x on the output of vertex b at
t = ti, x is in MVS(b@t = ti)OPj@t=ck if and only if fan(x)
is in MVS(c@t = ti)OPj@t=ck , which can be represented as

MVS(b@t = ti)OPj@t=ck

=
{
x|fan

(x) ∈ MVS(c@t = ti)OPj@t=ck

}
. (7)

Proof:

Claim 1:

MVS(b@t = ti)OPj@t=ck

⊇ {
x|fan

(x) ∈ MVS(c@t = ti)OPj@t=ck

}
.

For each value x in {x | fan
(x) ∈ MVS (c@t =

ti)OPj@t= ck}, x must satisfy fn−1 (fan
(x)) =

CV (OPj@t = ck) and, thus, also satisfy fn(x)=
CV (OPj@t = ck). That is, x is in MVS(b@t =
ti)OPj@t=ck . This proves that MVS(b@t =
ti)OPj@t=ck

⊇ {x|fan
(x) ∈ MVS(c@t = ti)OPj@t=ck

}.
Claim 2:

MVS(b@t = ti)OPj@t=ck

⊆ {
x|fan

(x) ∈ MVS(c@t = ti)OPj@t=ck

}
.

By way of contradiction, first, assume that there is a value
x that is in MVS(b@t = ti)OPj@t=ck , but fan

(x) is not
in MVS(c@t = ti)OPj@t=ck . Since x is in MVS(b@t =
ti)OPj@t=ck , then fn(x) = CV (OPj@t = ck) implies
that fn−1(fan

(x)) = CV (OPj@t = ck). This means
that fan

(x) is in MVS(c@t = ti)OPj@t=ck . This is a
contradiction!

From Claims 1 and 2, it is proven that

MVS(b@t = ti)OPj@t=ck

=
{
x|fan

(x) ∈ MVS(c@t = ti)OPj@t=ck

}
.

When subroutine MVS_for_vertex is called for the first time,
the computed CurrentCVS {x|fa1(x) ∈ {CV (OPj@t = ck)}}
is actually MVS(g@t = ck)OPj@t=ck according to the
definition. When the subroutine is called for the second
time, the computed CurrentMVS {x|fa2(x) ∈ MVS(g@t =
ck)OPj@t=ck} should be MVS(e@t = ck)OPj@t=ck ac-
cording to Theorem 1. Similarly, the computed
CurrentMVS {x|fa3(x) ∈ MVS(e@t = ck)OPj@t=ck} is
MVS(d@t = ck)OPj@t=ck when the subroutine is called for
the third time. Therefore, when the computation reaches vertex
an, the computed CurrentMVS {x|fan

(x) ∈ MVS(c@t =
ti)OPj@t=ck} is the MVS of b at t = ti with respect to OPj

at t = ck.
From the aforementioned discussion, it shows that a Current-

MVS set is an MVS of a traversed vertex with respect to OPj

at t = ck. These MVSs will be intersected with the other MVSs
of the same vertex with respect to other OPs at different time
instances, according to (6). After all the OPs at all the positive
clock edges have been applied, the MVS of each traversed
vertex in a time frame will be computed and recorded for the
later observability calculation.

B. MVS Formula for Operations

Given a previously computed MVS set (PreviousMVS),
a vertex v, and one of v’s fan-in vertex u, computing
CurrentMVS is to find the set of all the values at u’s output
yu that make the function of vfv generate an output value
that is in PreviousMVS. First, consider a particular value p in
PreviousMVS and find the set of all the values that make fv

generate p at v’s output yv . If such a set can be derived for each
particular value p in PreviousMVS, then the union of these sets
derives CurrentMVS. The set of all such values for a particular
p is denoted as Sub_CurrentMVSp.

For most unary and binary operations, inversing fv can easily
derive Sub_CurrentMVSp. Take the operation “yv = −yu” as
an example. If p = −2, inversing the minus operation “−”
produces yu = 2. Take the operation “yv = yu + b1” as another
example. If p = 8 and b1 = 3, inversing “+,” i.e., yu = 8 − 3,
shows that yu is equal to 5. The integer b1 is the simulated value
of the operand other than the output of uyu, and it is recorded
in the dump file. The formula to compute Sub_CurrentMVSp

is summarized in the third column of Table I. The column
“condition” shows the necessary conditions for the result of
Sub_CurrentMVSp. If the conditions are not met, in most of the

1514 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 8, AUGUST 2007

TABLE I
FORMULAS OF Sub_CurrentMVSp

cases, Sub_CurrentMVSp = {∅} except for comparisons. The
following explains how to derive Sub_CurrentMVSp for some
representative operations.
1) Operations That Choose a Bit Range “[i]” and “[i : j]”:

For an operation “[i : j],” the only constraint on the input values
is that the bit assignment of the bits selected by “[i : j]” must
be the same as the output value p. The bit assignment of the
unselected bits can be any combination. Thus, the value of the
unselected bits from 0 to j − 1 can be any integer in the range
from 0 to 2j − 1. The value of the unselected bits from i + 1
to w − 1 can be any integer in the range from 0 to 2w−i−1 − 1.
Hence, the formula for operation “[i : j]” appears in the third
column of Table I. Deriving Sub_CurrentMVSp for “[i]” can be
achieved by treating i the same as j in the “[i : j]” formula.
2) Control Vertexes: If yu is the control signal, yu can only

be the values that select suitable branches to keep the output of
vertex vyv at p. This can be done by comparing the value of
each variable on each branch with p. If yu is the signal on the
taken branch, yu can only be p such that yv is p.
3) Comparison Operations “>,” “<,” etc.: Take “<” as an

example. If p is equal to 1, yu can only be values smaller than
b1. These values are {[0 ∼ b1 − 1]}. The derivations for other
comparisons are quite similar.
4) Right Shift “�” and Left Shift “�”: Either right shift or

left shift by the amount b1 incurs information loss. The “[i : j]”
formula can tackle this. As illustrated in Fig. 5(a) and (b), the

Fig. 5. Modeling information loss in right shift and left shift.

entire right shift (left shift) is the cascade of an operation that
selects the bit range from i to j “[i : j]” and a divide (multiply)
operation. Therefore, to derive the formula of right shift (left
shift), first, apply the divide (multiply) formula and, then, the
“[i : j]” formula. If information loss is encountered in other
operations, e.g., “+,” “−,” and “∗,” the “[i : j]” MVS formula
can also model it.

If the formulas listed in the third column of Table I are
directly applied to compute CurrentMVS, for a PreviousMVS
with n integers, the formula should be applied n times, and
then, the union of all the Sub_CurrentMVSp produces Current-
MVS. Take the operation “b = a[1 : 0]” as an example. Assume

JIANG et al.: OBSERVABILITY ANALYSIS ON HDL DESCRIPTIONS FOR EFFECTIVE FUNCTIONAL VALIDATION 1515

that a is 4-bit wide, b is 2-bit wide, and PreviousMVS =
{0, 1, 2}. To compute CurrentMVS, first, apply the “[i : j]”
formula with i = 1, j = 0, w = 4, and p = 0. The result is

24−1−1−1⋃
k=0

{
[0 · 20 + k · 21+1 ∼ 0 · 20 + k · 21+1 + 20 − 1]

}
= {0, 4, 8, 12}. (8)

The same formula can be used with p = 1 and p = 2 in
sequence to obtain {1, 5, 9, 13} and {2, 6, 10, 14}, respectively.
The union {0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14} is CurrentMVS.
The computation may take lots of time if there are many
elements in PreviousMVS. The following observations can be
used to improve this MVS computation.

Taking a closer look at the results obtained with p = 0, p =
1, and p = 2, we observe that 0 ∗ 20 + k ∗ 21+1 + 20 − 1 =
k ∗ 21+1 and 1 ∗ 20 + k ∗ 21+1 = k ∗ 21+1 + 1 are two contin-
uous integers. Also, 1 ∗ 20 + k ∗ 21+1 + 20 − 1 = k ∗ 21+1 +
1 and 2 ∗ 20 + k ∗ 21+1 = k ∗ 21+1 + 2 are two continuous
integers. Therefore, the union of the aforementioned three sets
can be represented more concisely as

24−1−1−1⋃
k=0

{
[0 · 20 + k · 21+1 ∼ 2 · 20 + k · 21+1 + 20 − 1]

}

=
3⋃

k=0

{[k · 4 ∼ 2 + k · 4]} . (9)

More generally, for a set of continuous integers from p to q in
PreviousMVS, the computed CurrentMVS is

2w−i−1−1⋃
k=0

{
[p × 2j +k × 2i+1 ∼ q × 2j +k × 2i+1+2j − 1]

}
.

(10)

The “[i : j]” MVS formula is derived now and listed in the third
column of Table II.

The operation “�” is another example of how to derive
the “�” formula listed in the third column of Table II. First,
try to find the smallest integer p′ in the set {[p ∼ q]}, which
satisfies p′%2b1 == 0. If there is no such p′ in the set {[p ∼
q]}, CurrentMVS will be φ. If p′ exists in {[p ∼ q]}, check if
p′ + 2b1 is in the range from p to q. If so, the union of the two
result sets obtained by p′ and p′ + 2b1 can be represented as

2b1−1⋃
k=0

{[
k · 2b1 + p′/2b1 ∼ k · 2b1 + (p′ + 2b1)/2b1

]}
. (11)

Repeating the aforementioned derivations produces the formula
in the third column in Table II.

For a subset of integers {[p ∼ q]} in PreviousMVS, applying
the MVS formulas listed in the third column in Table II can
derive results much more quickly than applying the formulas
in Table I. In addition, all the integers in the subset {[p ∼ q]}
can be memorized by recording only p, q, and the special tag
“∼.” This storage format enhances memory usage efficiency
and alleviates the memory explosion problem.

C. MVS Estimations for Reconvergent Paths

The algorithm shown in Fig. 4 can compute the exact MVS
of vertex b in time frame t = ti with respect to an OPj in time
frame t = ck only if there is just one single path from b at
t = ti to OPj at t = ck. If there are multiple reconvergent paths,
another approach is necessary because possible propagation
methods become more complex.

In tag-based approaches [3]–[5], the authors simply put un-
known tags “?” on the reconvergent paths instead of computing
exact solutions because precisely handling the reconvergent
paths is too complex. If unknown tags are propagated to OPs,
they seem to be considered as not covered with respect to
OCCOM. In other words, the contributions of reconvergent
paths are handled in a conservative way.

In order to reduce the complexity, we adopt a strategy to
handle reconvergent paths similar to tag-based approaches. If
there are multiple reconvergent paths from v at t = ti to an OPj

at t = ck, the universe (U) is used instead of real MVS(b@t =
ti)OPj@t=ck in the intersection operation. This estimation result
obtained using the universe must include the exact result ob-
tained by intersecting with the real MVS(b@t = ti)OPj@t=ck

because the universe includes MVS(b@t = ti)OPj@t=ck . Con-
sequently, this estimation result has a larger MVS set, which
turns out to be less observable according to the definition
of observability in (5). Therefore, this estimation approach
guarantees lower bound estimations of observability.

This estimation approach may incur some accuracy loss. Be-
cause the estimated observability may be lower than the actual
value, it is possible to underestimate the coverage or insert as-
sertions on some points that are actually safe. While conducting
verifications, this conservative strategy that checks more points
is often acceptable and will not cause too many problems.

D. Time-Saving Strategies

To reduce computation time, we develop: 1) the bounding
traversal strategy and 2) the limited-traversed-frame (LTF)
strategy. Bounding traversal strategy can avoid unnecessary
traversals during MVS computation without causing any accu-
racy loss. LTF strategy saves additional time at the expense of
accuracy loss. However, it can always have a lower bound of
observability (a pessimistic estimation).
1) Bounding Traversal Strategy: In our observability com-

putation, after some backward traversals, there are MVS sets
recorded on vertices that have been traversed. As shown in
Fig. 6, let a vertex v in time frame t = tn be a vertex that
was traversed, and let v′ be one of v’s fan-in vertices that was
also traversed. Hence, MVS(v@t = tn) and MVS(v′@t = tn)
are already recorded on v and v′. In addition, MVS(v′@t = tn)
should be {x|fv(x)MVS(v@t = tn)} according to the Current-
MVS computation shown in line 12 of the MVS_for_vertex
pseudocode in Fig. 4.

If another backward traversal from an OP arrives at
vertex v in time frame t = tn again, PreviousMVS and
MVS(v@t = tn) are intersected, as described in line 4 of
the MVS_for_vertex pseudocode. If the result of the in-
tersection remains MVS(v@t = tn), i.e., MVS(v@t = tn) ⊆
PreviousMVS, then when the computation arrives at v′, the

1516 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 8, AUGUST 2007

TABLE II
MVS FORMULAS FOR HDL OPERATIONS

Fig. 6. Vertex v and one of its fan-in vertex v′.

result of the intersection will also be MVS(v′@t = tn).
More formally, if MVS(v@t = tn) ⊆ PreviousMVS, then
MVS(v′@t = tn) ⊆ {x|fv(x) ∈ PreviousMVS}. Theorem 2
provides a formal description and proof.
Theorem 2: If MVS(v@t = tn) ⊆ PreviousMVS, then

MVS(v′@t = tn)⊆{x|fv(x)∈PreviousMVS}. The originally
recorded MVS(v′@t = tn) remains unchanged after the
intersection.

Proof: The MVS(v′@t = tn) is computed based on
the MVS(v@t = tn). That is, MVS(v′@t = tn) is the set
{x|fv(x) ∈ MVS(v@t = tn)}. For an arbitrary element x in
MVS(v′@t = tn), fv(x) is in MVS(v@t = tn) and, thus, is
also in PreviousMVS since MVS(v@t = tn) ⊆ PreviousMVS.
Therefore, if MVS(v@t = tn) ⊆ PreviousMVS, MVS(v′@t =
tn) ⊆ {x|fv(x) ∈ PreviousMVS}. The originally recorded
MVS(v′@t = tn) remains unchanged after the intersection.

If v′ has at least one fan-in vertex v′′, by mathematical de-
duction, MVS(v′′@t = tn) should also remain unchanged after
the intersection. So do the vertices that are in transitive fan-in of
vertex v. Therefore, when PreviousMVS includes the recorded
MVS of a vertex v, return from subroutine MVS_for_vertex
can avoid unnecessary traversals and computations since further
computations will not change the recorded MVSs.
2) LTF Strategy: The bounding traversal strategy can avoid

unnecessary traversals. However, in some cases, necessary
backward traversals can still expand many frames. Although
accurate results are produced, the required computation time
may become unaffordable. Therefore, we propose an LTF
strategy, which provides an optional and flexible tradeoff be-
tween accuracy and speed.

The idea of LTF strategy is to restrict the number of
backward-traversed frames in time frame expansion. It only
requires a simple check on whether the number of expanded
frames reaches the maximum allowable number of frames (de-
noted as frame_limit). frame_limit is a configurable parameter
that can be adjusted by users. It can be set as a small number
for a quick estimation or as infinite to disable LTF strategy for
the highest accuracy. Unlike the bounding traversal strategy,

JIANG et al.: OBSERVABILITY ANALYSIS ON HDL DESCRIPTIONS FOR EFFECTIVE FUNCTIONAL VALIDATION 1517

Fig. 7. Pseudocode of observability computation algorithm.

this strategy may experience some accuracy loss. However, a
lower bound estimation of observability is always guaranteed
such that our observability measures seldom overestimate the
correctness of the DUV. The reason is given as follows.

For a vertex u in time frame t = ck, if expanded frames
are not limited, each MVS of u at t = ck will be inter-
sected with respect to an OP at a positive clock edge in
the set of MVS sets {MVS1, MVS2, . . . , MVSm}. With the
frame_limit restriction, some MVS of u at t = ck with respect
to some OPs are not obtained since the backward traversals
are bounded and do not reach u in time frame t = tk. As-
sume that the obtained MVSs are {MVS1, MVS2, . . . , MVSn},
where n < m. The intersection of all the MVSs in the set
{MVS1, MVS2, . . . , MVSn} includes the intersection of all the
MVSs in the set {MVS1, MVS2, . . . , MVSm}. Larger MVS set
intersections turn out to be less observable according to the
definition of observability in (5). Therefore, our LTF strategy
also guarantees lower bound estimations of observability.

E. Algorithm of Observability and MVS Computation

The entire algorithm of our observability computation is
abstracted as the pseudocode in Fig. 7. This incorporates:
1) MVS estimation for single path; 2) MVS computation for
reconvergent paths; 3) bounding traversal strategy; and 4) LTF
strategy. The entire algorithm is quite similar to the one in
Fig. 4. The modifications are indicated with comments.

The modification on the steps in subroutine
MVS_Com_for_vertex from line 1 to line 10 incorporates
MVS estimation for reconvergent paths. During traversal(s)
starting from an OP (StartOP) at a time instance (StartTime),
if vertex v is visited for the first time, it is treated as the
single-path case. This PreviousMVS is intersected with
MVS(v@t = ti), which is already the result of intersecting
many PreviousMVSs. Then, if this vertex v is traversed for
two or more times in the traversal(s) starting from StartOP at
StartTime, there are reconvergent paths from v at t = ti to
StartOP at StartTime. Then, the MVSforRecovery(v@t = ti)
subroutine is used to resume the status of MVS(v@t = ti) to
the status without intersection in this traversal.

Two conditions are added for incorporating the two time-
saving strategies into the algorithm. The condition in line 5 of
the MVS_Com_for_vertex subroutine is for bounding traversal
strategy. The last condition in line 16 is for the LTF strategy.
Once one of the conditions is met, succeeding computation
processes can be skipped, and the program can directly return
from the subroutine to save computation time. Besides being
bounded by time-saving strategies, traversals are also bounded
if there is no frame to expand (th < 0) or there is no fan-in
vertex to traverse.

Some preparations are required before observability com-
putation can begin. The three-address code generations and
the conditional statement modification developed in [4] and
[5] must be conducted first for the information required in

1518 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 8, AUGUST 2007

Fig. 8. Computation processes starting from PO1 at t = 1.

computing MVSs for control vertices (conditional statements).
The detailed conditional statement modification algorithm can
be found in [4] and [5]. Next, run a simulation and obtain the
value change dump file (Dumpfile), which is one of the essential
inputs of our algorithm. The other inputs are DUV described
in an HDL, the list of OPs, and an LTF strategy parameter
frame_limit as introduced in Section IV-D.

The example in Fig. 1 can also be used to demonstrate the
processes of our observability computation. We first construct
the CDFG of the DUV. The CDFG of the HDL code in
Fig. 1 is shown in Fig. 8(a). After some initializations, we
start backward traversal from PO1 at t = 1 by calling sub-
routine MVS_Com_for_vertex with the inputs PreviousMVS =
{1}, vertex v = “2 : if”, StartOP = PO1, StartTime = 1, and
frame_limit = ∞.

When subroutine MVS_Com_for_vertex is called for the first
time, the traversal reaches vertex “2 : if” in time frame t = 1
for the first time. As shown in Fig. 8(b), the recorded MVS(2 :
if@t = 1) = {1}, and no MVSforRecovery is recorded. Vertex
“2 : if” in time frame t = 1 is a control vertex. Therefore, there
are two fan-in vertices “2 :<” and “3 :=” for further backward
traversals. Here, assume that “2 :<” is traversed first. Based
on PreviousMVS = {1}, the MVS computation for conditional
statements will be used to compute CurrentMVS and obtain the
result {1}.

Subroutine MVS_Com_for_vertex is then called for the
second time to traverse to “2 :<” in time frame t = 1. When
the traversal arrives at vertex “2 :<” in time frame t = 1, the
computation status is shown in Fig. 8(c). Repeat the similar
computations until reaching vertex “6 :=” in time frame t = 1.
Computation results along the traversal from “2 : if” to “6 :=”
are shown in Fig. 8(d), where each set of integers aside an edge
is the recorded MVS. Since vertex “6 :=” in time frame t = 1
has no fan-in vertex, the computation will traverse another
fan-in vertex “3 :=” of vertex “2 : if.” Repeatedly calling
subroutine MVS_Com_for_vertex can produce the results
shown in Fig. 8(e).

After completing the traversals and MVS computations start-
ing from PO1 in time frame t = 1, starting backward traversals
from PO1 in time frame t = 5 can produce the results shown in
Fig. 9(a) and (c). When the computation reaches vertex “5 : if”
in time frame t = 1, PreviousMVS {[0 ∼ 5], [8 ∼ 15]} will

Fig. 9. Observability computation results.

include MVS(5 : if@t = 1) = {[0 ∼ 1]}. The bounding tra-
versal condition is satisfied, and the traversal is bounded here.

After all the OPs at all the positive clock edges are applied
in MVS computation, calculating the observability of each
internal signal with (5) can produce the result, as shown in
Fig. 9(c). The observability of the signal counter at t = 5 is
not high enough to be considered as an observed tag, i.e., 0.625
is not close to 1. However, as we discussed in Section III-A,
tag propagation rules cannot represent intermediate values
between 1 and 0. The rules thus determine that tags injected
on counter can propagate to PO1 at t = 5. This induces some
inaccuracy and, even worse, overestimates the actual likelihood
that an erroneous effect propagates through “counter < PI2.”
Experimental results in Section VI also show the same situation
of overestimation as we have discussed previously.

F. Observability Analysis for Multiple Design Errors

Incorrect values caused by bugs may be masked and, thus,
escape detection. Thus, the simulation values recorded in the
dump file may not be completely correct. Therefore, in our ob-
servability computation, we do not assume the correctness of
the simulation values. We also do not assume the correctness of
the DUV. Observability is computed based only on the values
of involved signals recorded in the dump file regardless of
the correctness of these values. Even if the values used in
the computation are incorrect, we can still provide some
meaningful values for users’ reference based on these incorrect
values. When multiple errors occur, this method can reduce
the risk of misleading the verification results more than using
binary decisions only.

For example, let signals a and b be two 3-bit signals in the
DUV. As shown in Fig. 10(a), if the values of a and b are both
correct, the observability of a and b are both 0.625. However, as
shown in Fig. 10(b), if the value of b recorded in the dump file is
5 instead of the correct value 4, the observability of a can still be
determined to be 0.500. The observability of a becomes smaller
as the value of b becomes larger. The computed observability of
a reasonably corresponds to the value change.

The situation can become even worse. As shown in
Fig. 10(c), the values of a and b are 4 and 5, which are both
different from their correct values. However, our approach can

JIANG et al.: OBSERVABILITY ANALYSIS ON HDL DESCRIPTIONS FOR EFFECTIVE FUNCTIONAL VALIDATION 1519

Fig. 10. Observability analysis with correct and incorrect values.

still derive that the observabilities of a and b are 0.500 and
0.750 respectively. The computed observability still adequately
corresponds to the value changes of a and b. Therefore, our ob-
servability seems to have some degree of immunity to multiple
errors.

On the other hand, if we use tags in the example in Fig. 10(c),
tag ∆ on a and tag −∆ on b can propagate through the operation
“a < b.” Tag propagation rules determine that those tags are
observable, although, in fact, the real incorrect values of a and
b are masked. The resulting tags do not correspond to the value
change of a or b. Therefore, if multiple errors exist in the DUV,
tags may provide incorrect predications on error propagation.

Besides the cases shown in Fig. 10(a)–(c), there is still one
case where incorrect values are not masked and can cause dis-
crepancies in observable outputs. For example, if a is changed
to 4 and b is changed to 3, the output of the comparator will be-
come FALSE. In such a case, internal design errors are consid-
ered as detected during simulation. Although the observability
of a and b may be underestimated in this case due to multiple
errors, it will not mislead the verification results because users
know that an error occurs and causes output discrepancy.

V. EXPERIMENTAL RESULTS

We conducted experiments on a subset of the 1999 Interna-
tional Test Conference benchmark written in VHDL [1] and
four designs written in Verilog HDL. The information for these
design cases is presented in Table III, including the total number
of lines (#Line), the number of variables (#Var), the number
of test vectors (#Vec), and the simulation time (Sim. Time).
The test vectors applied in our experiments were randomly
generated with very little manual guidance (e.g., reset handling)
targeted on high statement coverage (∼90%). The number of
test vectors increased in increments of 1000 until statement
coverage reaches our target.

The coverage reports of the statement coverage metric
and our observability-enhanced statement coverage metric
(OSCOM) are recorded in the columns “Stmt” and “OSCOM,”
respectively. For each design case, OSCOM coverage is often
less than the statement coverage. This means that some state-
ments are exercised, but their observability is not high enough
to reach our threshold of 0.9.3 Without sufficient observability,

3The threshold of observability measures can be adjusted by tool users of
our coverage analysis. It represents the observability requirement that tool users
want every signal in the design to reach.

we are not confident about the accuracy of the simulation values
if we only observe from the OPs. Consequently, OSCOM filters
out these exercitations of statements, acting as a more stringent
code coverage metric than statement coverage metric.

We also conducted experiments to compare the propagation
probabilities [14]–[16], tag simulation calculus [3]–[5], and our
observability measures. We designed an experiment to compare
their capabilities in predicting the propagation of potential
design bugs. For each design case, we randomly selected one
expression and changed it into a different expression to inject a
design bug. The change we made was randomly selected from
typical bugs that designers usually induce according to research
in the arena of mutant analysis [28]. By simulating faulty HDL
design and comparing OP simulation values with the values of
the original HDL design, we can determine whether or not the
injected bugs are detected in this experiment. For each injected
bug, the bug injection and identification process is repeated
300 times. The overall results are reported in Table III.

We then calculate the three aforementioned observability
measures for the detected or undetected bug. PPs were cal-
culated according to the approach proposed in [14]. This re-
quired repeating the following steps for 5000 iterations. The
steps include infecting the data state of a variable using the
perturbation function, simulating the program under test, and
monitoring the results at the OPs and recording the number of
program failures.

Tag-based observability (Tag) is calculated according to the
tag simulation calculus proposed in [3]–[5]. If a tag injected on
our injected bug was observed, we considered the computed
observability to be 1. Otherwise, the observability was set
to 0. Our observability measures were calculated using the
proposed approach with frame_limit = 20 (OursFL=20) and
frame_limit = ∞ (OursFL=∞). For the 300 iterations we
ran, the average values of these observability measures for both
detected and undetected design bugs are listed in Table III.

Experimental results reveal that the detection of a design
error is strongly related to the values of all three observability
measures. Errors with low observability are indeed difficult to
detect at the OPs. In addition, the values of tag-based observ-
ability measures for undetected bugs tend to be higher than
the other measures. For undetected bugs, if the observability
is overestimated, the completeness of the validation and the
correctness of the DUV can be misjudged. For example, in the
test case div16, the average tag-based observability is 0.344.
This implies that 34.4% of undetected bugs will be judged as
observable, which may lead to wrong conclusions.

On the other hand, our observability measures exhibit quite
similar results as the PP for both detected and undetected
errors. These similar values mean that our approach should
have capabilities similar to the statistics-based approach. For a
hard-to-observe point that PPs can identify, our measures may
very well do the same. Even if some heuristics, such as the
LTF strategy, are used in our approach to reduce computational
complexity, we can see that observability results are still very
close to the results without any heuristics (FL = ∞).

Since the accuracy of our approach is very similar to the
statistics-based approach, we conducted another experiment to
compare the computation time of both approaches. For each

1520 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 8, AUGUST 2007

TABLE III
COMPARING OUR OBSERVABILITY WITH PROPAGATION PROBABILITIES, TAG-BASED OBSERVABILITY, AND STATEMENT COVERAGE METRIC

TABLE IV
PERFORMANCE COMPARISON WITH PP

design, the computation time required to obtain observability
measures for all signals is presented in the column “Avg. time
for all vars” under “Our approach” in Table IV. Since the
approach in [14] can only derive PPs for one signal at a time,
the computation time for one signal is shown in the column
“Avg. time for one var.” For a design case with n variables,
the total computation time of the statistics-based approach to
obtain PPs for all signals is “n ∗ the computation time in the
column PP for one var.” This is recorded in the column “Avg.
time for all vars.” It is obvious that our approach is much
faster than the statistics-based approach [14]. The speedup ratio
(recorded in the column “Spdup”) is defined as the ratio of
“PP for all vars” to “OM for all vars.” Normalized simulation
time, which is defined as the ratio of the computation time for
observability to the plain HDL simulation time, is also provided
in Table IV for both approaches to show the efficiency of ob-
servability calculation. The results show that our approach can

greatly reduce the required computation time to a reasonable
region.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we present a new probabilistic observability
measure for HDL descriptions along with its efficient computa-
tion algorithm. Unlike tag-based approaches, which can provide
only two levels of measurement, our fine-grained observability
measures have less risk of overestimating the extent of vali-
dation with reasonable computation time. Even when multiple
errors occur, we can still provide some meaningful values for
users’ reference to reduce the risk of misleading the verification
results. This is better than using binary decisions only.

Experimental results show that the observability measures
computed by our dump-file-based approach have almost the
same capability to identify hard-to-observe locations as the

JIANG et al.: OBSERVABILITY ANALYSIS ON HDL DESCRIPTIONS FOR EFFECTIVE FUNCTIONAL VALIDATION 1521

statistics-based approach [14]. However, our method is much
faster and is more suitable to be applied in the HDL codes of
commercial products.

Since hard-to-observe points can be identified using our
observability measure, designers can insert assertions in those
locations to find hidden bugs more easily. This observability-
driven assertion insertion is simple but should be very effective.
Of course, it is also possible to generate a test vector set that
creates some highly transparent sensitized paths to propagate
potential incorrect values of the exercised statements to OPs,
such as the extension works of OCCOM [8], [9]. We will try
to study this direction in the future based on our observability
measures to provide a comprehensive solution for the observ-
ability issue during simulation.

REFERENCES

[1] ITC99 Benchmark. [Online]. Available: http://www.cad.polito.it/tools/
itc99.html

[2] B. Beizer, Software Testing Techniques, 2nd ed. New York: Van
Nostrand, 1990.

[3] S. Devadas, A. Ghosh, and K. Keutzer, “An observability-based code
coverage metric for functional simulation,” in Proc. Int. Conf. Comput.-
Aided Des., Nov. 1996, pp. 418–425.

[4] F. Fallah, S. Devadas, and K. Keutzer, “OCCOM: Efficient computation
of observability-based code coverage metrics for functional simulation,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 20, no. 8,
pp. 1003–1015, Aug. 2001.

[5] F. Fallah, “Coverage directed validation of hardware models,” Ph.D.
dissertation, M.I.T., Cambridge, MA, 1999.

[6] J. C. Costa, S. Devadas, and J. C. Monteiro, “Observability analysis of
software for coverage-directed validation,” in Proc. Int. Conf. Comput.-
Aided Des., Nov. 2000, pp. 27–32.

[7] F. Fallah, I. Ghosh, and M. Fujita, “Event-driven observability enhanced
coverage analysis of C programs for functional validation,” in Proc. Asian
and South Pacific Des. Autom. Conf., Jan. 2003, pp. 123–128.

[8] F. Fallah, S. Devadas, and K. Keutzer, “Functional vector generation
for HDL models using linear programming and Boolean satisfiability,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 20, no. 8,
pp. 994–1002, Aug. 2001.

[9] F. Fallah, P. Ashar, and S. Devadas, “Functional vector generation
for sequential HDL models under observability-based code coverage
metric,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 10, no. 6,
pp. 919–923, Dec. 2002.

[10] S. Tasiran, F. Fallah, D. Chinnery, S. Weber, and K. Keutzer, “A functional
validation technique: Biased random simulation guided by observability-
based coverage,” in Proc. Int. Conf. Comput. Des., Sep. 2001, pp. 82–88.

[11] S. Tasiran and K. Keutzer, “Coverage metrics for functional validation of
hardware designs,” IEEE Des. Test. Comput., vol. 18, no. 4, pp. 36–45,
Jul./Aug. 2001.

[12] Q. Zhang and I. Harris, “A data flow fault coverage metric for validation
of behavior HDL descriptions,” in Proc. Int. Conf. Comput.-Aided Des.,
Nov. 2000, pp. 369–372.

[13] J. Fernandes, M. Santos, A. Oliveira, and J. Teixeira, “A probabilistic
method for the computation of testability of RTL constructs,” in Proc.
Des. Autom. and Test Eur. Conf., Feb. 2004, pp. 176–181.

[14] J. Voas, “PIE: A dynamic failure-based technique,” IEEE Trans. Softw.
Eng., vol. 18, no. 8, pp. 717–727, Aug. 1992.

[15] J. Voas and K. Miller, “Software testability: The new verification,” IEEE
Softw., vol. 12, no. 3, pp. 17–28, May 1995.

[16] J. Voas, G. McGraw, L. Kassab, and L. Voas, “A ‘crystal ball’ for software
reliability,” Computers, vol. 30, no. 6, pp. 29–36, Jun. 1997.

[17] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems
Testing and Testable Design. Piscataway, NJ: IEEE Press, 1990.

[18] L. H. Goldstein, “Controllability/observability analysis,” IEEE Trans.
Circuits Syst., vol. CAS-26, no. 9, pp. 685–693, Sep. 1979.

[19] F. Brglez, “On testability of combinational networks,” in Proc. Int. Symp.
Circuits and Syst., 1984, pp. 221–225.

[20] C. H. Chen and P. R. Menon, “An approach to functional level testability
analysis,” in Proc. Int. Test Conf., Oct. 1989, pp. 373–379.

[21] K. Thearling and J. Abraham, “An easily computed functional level testa-
bility measure,” in Proc. Int. Test Conf., 1989, pp. 381–390.

[22] C. H. Chen and D. G. Saab, “A novel behavioral testability measure,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 12, no. 12,
pp. 1960–1970, Dec. 1993.

[23] S. Bhattacharya, S. Dey, and F. Brglez, “RT-level transformations for gate-
level testability,” in Proc. Eur. Conf. Des. Autom., Feb. 1993, pp. 162–169.

[24] P. A. Thaker, V. D. Agrawal, and M. E. Zaghloul, “Validation vector grade
(VVG): A new coverage metric for validation and test,” in Proc. VLSI Test
Symp., Apr. 1999, pp. 182–188.

[25] S. Ravi, G. Lakshminarayana, and N. K. Jha, “TAO: Regular expression-
based register-transfer level testability analysis and optimization,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 9, no. 6, pp. 824–832,
Dec. 2001.

[26] I. Ghosh, A. Raghunathan, and N. K. Jha, “Hierarchical test generation
and design for testability methods for ASPP’s and ASIP’s,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 18, no. 3, pp. 357–370,
Mar. 1999.

[27] B. Murray and J. P. Hayes, “Hierarchical test generation using pre-
computed test for modules,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 9, no. 6, pp. 594–603, Jun. 1990.

[28] A. Offutt and G. Rothermel, “An experimental evaluation of selective
mutation,” in Proc. Int Conf. Softw. Eng., May 1993, pp. 100–107.

Tai-Ying Jiang received the B.S. degree in electrical
engineering from the National Tsing Hua University,
Hsinchu, Taiwan, R.O.C., in 1999, and the M.S.
degree in electronics engineering from the National
Chiao Tung University, Hsinchu, in 2001. He is
currently working toward the Ph.D. degree in elec-
tronics engineering at the Department of Electronics
Engineering, National Chiao Tung University.

His research interests include functional validation
and semiformal verification for HDL designs and
error diagnosis.

Chien-Nan Jimmy Liu received the B.S. and Ph.D.
degrees in electronics engineering from the National
Chiao Tung University, Hsinchu, Taiwan, R.O.C.

He is currently an Assistant Professor at the De-
partment of Electrical Engineering, National Central
University, Jhongli City, Taiwan. His research inter-
ests include functional verification for HDL designs,
high-level power modeling, and analog behavioral
models for system verification.

Prof. Liu is a member of Phi Tau Phi.

Jing-Yang Jou (S’82–M’83–SM’02–F’05) received
the B.S. degree in electrical engineering from the
National Taiwan University, Taipei, Taiwan, R.O.C.,
in 1979 and the M.S. and Ph.D. degrees in com-
puter science from the University of Illinois, Urbana-
Champaign, in 1983 and 1985, respectively.

He is currently the Director of the National Chip
Implementation Center, National Applied Research
Laboratories, Hsinchu, Taiwan, R.O.C. He is a Full
Professor and was the Chairman of the Department
of Electronics Engineering, National Chiao Tung

University, Hsinchu, from 2000 to 2003. Before joining the National Chiao
Tung University, he was with GTE Laboratories and AT&T Bell Laboratories.
He has published more than 100 technical papers. His research interests include
behavioral, logic, and physical synthesis, design verification, and CAD for
low power.

Dr. Jou is a member of Tau Beta Pi. He served as the Technical Program
Chair of the Asia–Pacific Conference on Hardware Description Languages
(APCHDL’97). He was the recipient of the Distinguished Paper Award of the
1990 IEEE International Conference on Computer-Aided Design.

