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Due to their effectiveness and simplicity of use, the process capability indices
Cp, Cpk , and Cpm have been popularly accepted in the manufacturing industry
as management tools for evaluating and improving process quality. Combining
the merits of those indices, a more advanced index, Cpmk , is proposed that
takes into account process variation, process centering, and the proximity to the
target value, and has been shown to be a very useful index for manufacturing
processes with two-sided specification limits. Most research works related to Cpmk

assume no gauge measurement errors. However, such an assumption inadequately
reflects real situations even when highly advanced measurement instruments are
employed. Conclusions drawn regarding process capability are therefore unreliable
and misleading. In this paper, we conduct a sensitivity investigation for the process
capability index Cpmk in the presence of gauge measurement errors. We consider
the use of capability testing of Cpmk as a method for obtaining lower confidence
bounds and critical values for true process capability when gauge measurement
errors are unavoidable. The results show that using the estimator with sample data
contaminated by measurement errors severely underestimates the true capability,
resulting in an imperceptibly smaller test power. To measure the true process
capability, three methods for the adjusted confidence bounds are presented and their
performances are compared using computer simulation. Copyright c© 2006 John
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1. INTRODUCTION

Process capability indices, including Cp, Cpk, and Cpm (Kane1, Chan et al.2, Zimmer et al.3, Vännman
and Hubele4, Perakis and Xekalaki5), have been proposed in the manufacturing industry to provide
numerical measures on whether a process is capable of reproducing items meeting the manufacturing

quality requirement preset in the factory. Combining the merits of those indices, Pearn et al.6 proposed a more
advanced capability index called Cpmk, which has been shown to be a useful capability index for processes with
two-sided specification limits. Those indices are defined as

Cp = USL − LSL

6σ
(1)
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where USL is the upper specification limit, LSL is the lower specification limit, μ is the process mean, σ is the
process standard deviation, and T is the target value predetermined by the product designer or the manufacturing
engineer.

Process variation (product quality consistency), process departure (targeting), process yield, and process
loss (relating to product reliability) are considered crucial benchmarks for measuring manufacturing quality.
The index Cp measures only the distribution spread (process consistency/precision), which only reflects the
consistency of the product quality characteristic. The yield-based index Cpk provides lower bounds on process
yield by taking the process location into consideration, which offsets some of the weaknesses in Cp but can
fail to distinguish between on-target and off-target processes (Hoffman7). The index Cpm takes the proximity
of process mean from the target value into account, which is more sensitive to process departure than Cpk.
Since the design of Cpm is based on the average process loss relative to the manufacturing tolerance, the index
Cpm provides an upper bound on the average process loss.

The index Cpmk is constructed by combining the modifications to Cp that produced Cpk and Cpm, and
therefore inherits the merits of both indices. We note that a manufacturing process satisfying the capability
requirement ‘Cpk ≥ c’ may not satisfy the capability condition ‘Cpm ≥ c’. On the other hand, a process
satisfying the capability requirement ‘Cpm ≥ c’ may not satisfy the capability requirement ‘Cpk ≥ c’. However,
a manufacturing process does satisfy both capability requirements ‘Cpk ≥ c’ and ‘Cpm ≥ c’ if the process
satisfies the capability requirement ‘Cpmk ≥ c’ since Cpmk ≤ Cpk and Cpmk ≤ Cpm. Thus, the index Cpmk
provides a greater level of quality assurance with respective to process yield and process loss to the customers
than the other two indices. This is a desired property according to today’s modern quality theory, as a
reduction of process loss (variation from the target) is just as important as increasing process yield (meeting
the specifications). While Cpk remains the more popular and widely used index, Cpmk is considered a very
useful index for processes with two-sided manufacturing specifications. For semiconductor or microelectronics
manufacturing in particular, Cpmk is an appropriate index for capability measurement due to the high standard
and stringent requirements on product quality and reliability.

2. THE INDEX Cpmk AND THE GAUGE MEASUREMENT ERROR

Most research works related to Cpmk have assumed no gauge measurement errors. For example, Chen and Hsu8

investigated the asymptotic sampling distribution of the estimated Cpmk. Wright9 derived an explicit but rather
complicated expression for the probability density function of the estimated Cpmk. Jessenberger and Weihs10

Copyright c© 2006 John Wiley & Sons, Ltd.
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Table I. Guidelines for gauge capabilities

Gauge capability Result

λ < 0.1 Gauge system OK
0.1 < λ < 0.3 May be acceptable based on importance of application, cost of gauge, cost of repair, and so on

0.3 < λ Gauge system needs improvement; make every effort to identify the problems and have them corrected

studied the behavior of Cpmk for processes with asymmetric tolerances. Pearn et al.11 obtained an alternative
but simpler form of the probability density function of the estimated Cpmk and considered the capability testing
based on Cpmk. Pearn and Lin12 and Pearn and Shu13 developed efficient Maple/Matlab computer programs to
calculate the critical values, the p-value, and the lower confidence bounds for estimating and testing process
capability based on Cpmk.

However, capability analysis with no gauge measurement errors cannot reflect real situations closely,
even with highly sophisticated and advanced measurement instruments (Bordignon and Scagliarini14,15).
Any measurement error has some impact on the determination of true measurement systems and process
capabilities. Montgomery and Runger16,17 and Burdick et al.18 noted that the quality of the collected data
relies heavily on the gauge accuracy. Clearly, conclusions drawn regarding process capability, based on the
empirical index values calculated from data contaminated with gauge measurement errors, are highly unreliable.
To analyze the effect of gauge measurement errors on the true capability measure, Mittag19,20 and Levinson21

quantified the percentage error on process capability evaluation in the presence of gauge measurement errors.
Bordignon and Scagliarini14 presented the statistical analysis on the estimation of confidence intervals for Cp

with data contaminated with measurement errors.

Suppose that the measurement errors can be described as a random variable M ∼ N(0, σ 2
M). Montgomery

and Runger16,17 expressed the gauge capability as

λ = 6σM

USL − LSL
(5)

For the measurement system to be deemed acceptable, the measurement variability due to the measurement
system must be less than a predetermined percentage of the engineering tolerance. Montgomery22 noted that
the automotive industry action group recommended the guidelines for gauge acceptance given in Table I. In this
paper, the gauge capability, λ, in Equation (5) provided by the gauge manufacturing factory is assumed to be
known.

The organization of this paper is as follows. In Section 3, we consider the sensitivity of the Cpmk index with
gauge measurement errors. In Sections 4 and 5, the sampling distribution and bias and mean squared error (MSE)
are studied when using ĈG

pmk as an estimator for Cpmk. In Sections 6 and 7, we show that a large measurement
error will cause underestimation of the true process capability. In Section 8 sampling distribution (standard
distribution (SD) and mean squared distribution (MSD)) approaches and generalized confidence intervals (GCIs)
approach are proposed to establish more reliable lower confidence bounds. In Section 9, a simulation study is
conducted for the performance comparison of these methods. Section 10 concludes the paper.

3. EMPIRICAL PROCESS CAPABILITY CG
pmk

Suppose that X ∼ N(μ, σ 2) represents the quality characteristic of the manufacturing process under
investigation. In practice, the observed variable G (with gauge measurement errors) is measured rather than the
true variable X. Assume that X and M are stochastically independent, then we have G ∼ N(μ, σ 2

G = σ 2 + σ 2
M)

and the empirical process capability index CG
pmk is obtained after substituting σG for σ . The relationship between

Copyright c© 2006 John Wiley & Sons, Ltd.



600

Qual. Reliab. Engng. Int. 2007; 23:597–614
DOI: 10.1002/qre

M. H. SHU, W. L. PEARN AND B. M. HSU

 
(a) (b) 

Figure 1. (a) Surface plot and (b) plots of R1 versus λ in [0,0.5] for Cp = 1.0(0.2)2.0 with ξ = 0.5

the true process capability, Cpmk, and the empirical process capability, CG
pmk, can be expressed as

CG
pmk

Cpmk
=

√
1 + ξ2√

1 + λ2C2
p + ξ2

(6)

where ξ = (μ − T )/σ . Since the variation of the observed data is larger than the variation of the original data,
the denominator of the index Cpmk becomes larger and the true capability of the process is understated if the
empirical data G are used.

Figure 1(a) displays the surface plot of the ratio R1 = CG
pmk/Cpmk for λ in [0,0.5] with Cp ∈ [1, 2]. Figure 1(b)

plots the ratio R1 versus λ for Cp = 1.0(0.2)2.0. These figures show that the measurement errors result in a
decrease in the estimated value. A small process variation has the same effect as the presence of a measurement
error. Since R1 is small if λ becomes large, the gauge becomes more important as the true capability improves.
For instance, if λ = 0.5, Cp = 2, and ξ = 0.5 (the ratio R1 = 0.7454), CG

pmk = 0.7454 with Cpmk = 1 and
CG

pmk = 1.8634 with Cpmk = 2.50. The empirical process capability diverges from the true process capability
as measurement errors increase.

4. SAMPLING DISTRIBUTION OF ĈG
pmk

In practice, sample data must be collected in order to estimate the empirical process capability CG
pmk. For a

stably normal process, the empirical data (observed data contaminated with errors) Gi , for i = 1, 2, . . . , n, is
collected. The maximum likelihood estimator (MLE) of CG

pmk is defined as

ĈG
pmk = min

⎧⎨
⎩ USL − Ḡ

3
√

S̃2
n + (Ḡ − T )2

,
Ḡ − LSL

3
√

S̃2
n + (Ḡ − T )2

⎫⎬
⎭ (7)

where Ḡ = ∑n
i=1 Gi/n and S̃2

n = ∑n
i=1 (Gi − Ḡ)

2
/n are the MLEs of μ and σ 2

G. We note that the

statistic S̃2
n + (Ḡ − T )2 = ∑n

i=1 (Gi − T )2/n in the denominator of ĈG
pmk is the uniformly minimum variance

unbiased estimator of σ 2
G + (μ − T )2 = E[(G − T )2]. For processes with a symmetric manufacturing tolerance

(T = m), the estimator ĈG
pmk can alternatively be expressed as follows

ĈG
pmk = d − |Ḡ − m|

3
√

S̃2
n + (G̃ − T )2

(8)

where d = (USL − LSL)/2.
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Obviously, if σM = 0, then the empirical process capability, CG
pmk, reduces to the basic index, Cpmk.

Pearn et al.6 considered the MLE of Cpmk, expressed as

Ĉpmk = min

⎧⎨
⎩ USL − X̄

3
√

S2
n + (X̄ − T )2

,
LSL − X̄

3
√

S2
n + (X̄ − T )2

⎫⎬
⎭ = d − |X̄ − T |

3
√

S2
n + (X̄ − T )2

(9)

where X̄ = ∑n
i=1 Xi/n and S2

n = ∑n
i=1 (Xi − X̄)2/n. Using the same technique as Vännman22 and Shu and

Chen23, the cumulative distribution function (CDF) of ĈG
pmk can be expressed in terms of a mixture of the

Chi-square distribution and the normal distribution

F
ĈG

pmk
(x) = 1 −

∫ bG

√
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0
FK
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9x2
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)
[φ(t + ξG

√
n) + φ(t − ξG

√
n)] dt, (10)

for x > 0, where bG = d/σG = 3CG
p , FK(·) is the CDF of the ordinary central Chi-square distribution χ2

n−1 and
φ(·) is the probability density function (PDF) of the standard normal distribution N(0, 1) where
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=
−CG

p
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The rth moment of the estimator ĈG
pmk can be obtained (Vännman23 and Shu and Chen24) as

E[(ĈG
pmk

)r ] = 3−r
r∑
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where D = √
nd/σG, β = n(μ − T )2/σ 2

G, a = r/2, b = (1 + i + j)/2, and c = (n + i + j)/2.
Obviously, if the σM = 0, then the CDF of Ĉpmk reduces to

F
Ĉpmk

(x) = 1 −
∫ b
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9x2
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)
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√
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√
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for x > 0, where b = d/σ = 3Cp and

ξ = μ − m

σ
=

−Cp/3 +
√

C2
p/9 + [C2

pmk − 1/9][C2
p − C2

pmk]
C2

pmk
− 1/9

5. BIAS AND THE MSE ANALYSIS

To investigate how measurement errors may affect the sampling distribution, we conduct bias and MSE analyses.
Noting that from the expression Cpmk = (Cp − |ξ |/3)/

√
1 + ξ2, Pearn and Shu13 and Pearn and Lin12 show

that the lower confidence bounds and critical values for Cpmk can be obtained by setting ξ = 0.5 (for test
reliability purposes). We then set Cpmk = (Cp − 1/6)/

√
1.25 and consider cases of (Cp, Cpmk) = (1.285, 1.00)

and (1.844, 1.50) as examples. Figures 2(a) and (b) plot the bias of ĈG
pmk versus n = 5(5)100 with λ = 0(0.1)0.5

for Cp = 1.285 and Cpmk = 1.00 and Cp = 1.844 and Cpmk = 1.5, respectively. Note that when λ = 0, the bias
of ĈG

pmk is equal to the bias of Ĉpmk, and the bias of ĈG
pmk increases as λ increases or n decreases. Figures 3(a)

and (b) are the surface plots of the ratio R2 = MSE(ĈG
pmk)/MSE(Ĉpmk) with n = 5(5)100 and λ in [0,0.5] for

Cp = 1.285 and Cpmk = 1.00 and Cp = 1.844 and Cpmk = 1.50, respectively. The maximum values of R2 in
Figures 3(a) and (b) occur at (n, λ) = (100, 0.5) and the minimum values of R2 occur at (n, λ) = (5, 0.5).
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(a) (b) 

Figure 2. Plots of the bias of ĈG
pmk for n = 5(5)100, λ = 0(0.1)0.5 (bottom to top): (a) Cp = 1.285 and Cpmk = 1.00;

(b) Cp = 1.844 and Cpmk = 1.5

 

(a) (b) 

Figure 3. Surface plot of R2 with n = 5(5)100 and λ in [0,0.5] for (a) Cp = 1.285 and Cpmk = 1.00; (b) Cp = 1.844 and
Cpmk = 1.50

6. LOWER CONFIDENCE BOUND BASED ON ĈG
pmk

The lower confidence bounds estimate the minimum process capability based on sample data. To find reliable
100γ % lower confidence bound L for Cpmk (where γ is the confidence level), Pearn and Shu13 solved the
following equation:

∫ b
√

n/(1+3Ĉpmk)

0
FK

(
(b

√
n − t)2

9Ĉ2
pmk

− t2
)

[φ(t + ξ
√

n) + φ(t − ξ
√

n)] dt = 1 − γ (13)

Note that the parameter b can be expressed as b = 3Cp = 3L
√

1 + ξ2 + |ξ |. Since the process parameters μ

and σ are unknown, then the distribution parameter ξ = (μ − m)/σ is also unknown. To eliminate the need for
further estimation of the distribution characteristic parameter ξ , Pearn and Shu13 investigated the behavior of
the lower confidence bound, L, against ξ . They performed extensive calculations to obtain the lower confidence
bound values for ξ = 0(0.05)3.00, Ĉpmk = 0.7(0.1)3.0, and n = 10(5)200, and found that the lower confidence
bound obtains its minimum at ξ = 0.5 in all cases. Thus, for practical purposes they recommended solving
Equation (13) with ξ = 0.5 to obtain the required lower confidence bounds, without having to further estimate ξ .
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In practice, the observed sample data are contaminated with errors. Thus, ĈG
pmk is substituted into

Equation (13) with ξG = 0.5 to obtain the confidence bounds, which can be written as

∫ bG

√
n/(1+3ĈG

pmk)

0
FK

(
(bG

√
n − t)2

9(ĈG
pmk)

2
− t2

)
[φ(t + 0.5

√
n) + φ(t − 0.5

√
n)] dt = 1 − γ (14)

We denote the bound originated from ĈG
pmk as LG where bG = 3CG

p = 3LG

√
1.25 + 0.5.

The confidence coefficient for the lower confidence bound LG (denoted as γG) is

γG = 1 −
∫ bG

√
n/(1+3ĈG

pmk
)

0
FK

(
(bG

√
n − t)2

9(ĈG
pmk)

2
− t2

)
[φ(t + ξ̂G

√
n) + φ(t − ξ̂G

√
n)] dt (15)

where bG = 3LG

√
1 + ξ̂2

G + |ξ̂G| and γG is no less than γ .

Figures 4(a)–(d) plot LG versus λ ∈ [0, 0.5] with n = 30, 50, 70, 100, 150 for Ĉpmk = 1.00, 1.50 and Ĉp =
Ĉpmk + R3, R3 = 0.285 and 0.50 with 95% confidence level. It should be noted that for sufficiently large sample
size, we have

ĈG
pmk = Ĉpmk

√
1.25√

1.25 + λ2Ĉ2
p

(16)

Therefore, we set ĈG
pmk = Ĉpmk

√
1.25

/√
1.25 + λ2Ĉ2

p to obtain ĈG
pmk. We see that in Figures 4(a)–(d), LG

decreases in λ, especially for large Ĉp values, and the reduction of LG is more significant for large Ĉpmk.
A large measurement error results in significant underestimation of true process capability.

In current practice, a process is called ‘inadequate’ if Cpmk < 1.00, ‘marginally capable’ if 1.00 ≤ Cpmk <

1.33, ‘satisfactory’ if 1.33 ≤ Cpmk < 1.50, ‘excellent’ if 1.50 ≤ Cpmk < 2.00, and ‘super’ if 2.00 ≤ Cpmk.
If capability measures do not include the measurement errors, a significant underestimation of the true process
capability may result in high production costs, reducing competitiveness. For instance, suppose that a process
has a 95% lower confidence bound, 1.211 (Ĉpmk = 1.50) with n = 50, which meets the threshold of an
‘excellent’ process. However, the bound may be calculated as 0.997 with measurement errors λ = 0.42 and
the process is determined as ‘inadequate’.

7. TESTING PROCESS CAPABILITY BASED ON ĈG
pmk

To determine whether a given process meets the preset capability requirement, we could consider statistical
testing with the null hypothesis H0 : Cpmk ≤ c (the process is not capable) versus the alternative H1 : Cpmk > c

(the process is capable), where c is the required process capability. If the calculated process capability is
greater than the corresponding critical value, we reject the null hypothesis and conclude that the process is
capable. The test rejects the null hypothesis H0 : Cpmk ≤ c if Ĉpmk ≥ c0 with type I error α (α-risk), which
is the chance of incorrectly concluding an incapable process (with Cpmk ≤ c) as capable (with Cpmk > c).
That is, P(Ĉpmk ≥ c0 | Cpmk = c) = α. Given values of the capability requirement c, sample size n, and risk α,
the critical value c0 can be obtained by solving Equation (17) using available numerical methods:

∫ b
√

n/(1+3c0)

0
FK

(
(b

√
n − t)2

9c2
0

− t2
)

[φ(t + ξ
√

n) + φ(t − ξ
√

n)] dt = α (17)
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(a) (b)

(c ) (d)

Figure 4. Plot of LG versus λ with n = 30, 50, 70, 100, 150 with 95% confidence level: (a) Ĉp = 1.285, Ĉpmk = 1.00;

(b) Ĉp = 1.50, Ĉpmk = 1.00; (c) Ĉp = 1.785, Ĉpmk = 1.50; (d) Ĉp = 2.00; Ĉpmk = 1.50

where b = 3c
√

1 + ξ2 + |ξ |. The test power (where b = 3Cpmk

√
1 + ξ2 + |ξ |) is

π(Cpmk) = P(Ĉpmk ≥ c0 | Cpmk > c)

=
∫ b

√
n/(1+3c0)

0
FK

(
(b

√
n − t)2

9c2
0

− t2
)

[φ(t + ξ
√

n) + φ(t − ξ
√

n)] dt (18)

To eliminate the need for estimating the characteristic parameter ξ , we apply the technique used by Pearn
and Lin12 to examine the behavior of the critical values, c0, against the parameter ξ . We perform extensive
calculations to obtain the critical values for ξ = 0(0.01)3, c = 1.00, 1.33, 1.50, 1.67, 2.00, 2.5, and 3.0, n =
10(50)300, and α = 0.05. The results show that the critical value obtains its maximum, uniformly, at ξ = 0.5 in
all cases. For practical purposes, we could greatly simplify the solution procedure by solving Equation (17) with
ξ = 0.5 to obtain the required critical values, without having to further estimate ξ . In practice, sample data are
collected, contaminated with measurement errors, to estimate the empirical process capability. Thus, the α-risk
corresponding to the test using the sample estimate ĈG

pmk (denoted by αG) becomes

P(ĈG
pmk ≥ c0 | Cpmk ≤ c) = αG∫ bG

√
n/(1+3c0)

0
FK

(
(bG

√
n − t)2

9c2
0

− t2
)

[φ(t + 0.5
√

n) + φ(t − 0.5
√

n)] dt = αG

(19)

where bG = 3.75c
/√

1.25 + λ2C2
p + 0.5 and Cp = √

1.25c + 1
6 .
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(a) (b) 

Figure 5. Plots of αG with n = 30, 50, 70, 100, 150 and λ ∈ [0, 0.5] for α = 0.05: (a) c = 1.00; (b) c = 1.50

The test power (denoted by πG) is

πG(Cpmk) = P(ĈG
pmk ≥ c0 | Cpmk > c)

πG(Cpmk) =
∫ bG

√
n/(1+3c0)

0
FK

(
(bG

√
n − t)2

9c2
0

− t2
)

[φ(t + 0.5
√

n) + φ(t − 0.5
√

n)] dt
(20)

where bG = 3.75Cpmk

/√
1.25 + λ2C2

p + 0.5 and Cp = √
1.25Cpmk + 1

6 .

Earlier discussions indicate that the true process capability would be severely underestimated if ĈG
pmk is used.

The probability that ĈG
pmk is greater than c0 would be less than that of using Ĉpmk. Thus, the α-risk using ĈG

pmk is

less than the α-risk using Ĉpmk (α) for Cpmk. The test power using ĈG
pmk is also smaller than the test power using

Ĉpmk. That is, πG < π . Figures 5(a) and (b) are the plots of αG with n = 30, 50, 70, 100, 150, λ ∈ [0, 0.5], and
α = 0.05 for c = 1.00 and 1.50, respectively. Figures 6(a) and (b) plot πG versus λ with n = 100, α = 0.05,
and Cpmk = c1(0.02)c2 (where c1 = c + 0.2 and c2 = c + 1) for c = 1.00 and 1.50, respectively. Note that if
λ = 0, then αG = α and πG = π . In Figures 5(a) and (b), αG decreases as λ or n increases, and the decreasing
rate is more significant with large c. In fact, for large λ, αG is smaller than 10−2. In Figures 6(a) and (b), πG

decreases as λ increases, but increases as n increases. The reduction of πG in λ is more significant for large c.
In the presence of measurement errors, the test power πG decreases. For instance, in Figure 6(b) the πG value
(c = 1.50, n = 100) for Cpmk = 2.30 is πG = 0.9957 if there is no measurement error (λ = 0). However, when
λ = 0.5, πG significantly decreases to 0.0834, a reduction of 0.912.

In previous sections we pointed out the problems associated with using CG
pmk as an estimator for Cpmk.

In this situation the lower confidence bound is underestimated, and the α-risk and the test power decrease with
measurement errors. The probability of passing non-conforming product units decreases, but the probability of
correctly judging a capable process as capable also decreases. Since the lower confidence bound is severely
underestimated and the test power becomes low, the producers cannot firmly state that their processes meet the
capability requirement even if their processes are sufficiently capable. Good product units would be incorrectly
rejected in this case. These incorrect decisions may lead to unnecessary costs for the producers. Improving the
gauge capability and providing sufficient training for the operators are both essential to reduce measurement
error. Nevertheless, measurement errors are inevitable in most industry applications. In order to provide a better
capability assessment, three methods for adjusted confidence bounds are proposed. A simulation study is also
conducted for the performance comparison of three methods.
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(a) (b) 

Figure 6. Plots of πG versus λ with n = 100, α = 0.05: (a) c = 1.00, Cpmk = 1.2(0.20)2.00; (b) c = 1.50,
Cpmk = 1.70(0.20)2.50

8. METHODS FOR ADJUSTED CONFIDENCE BOUNDS

8.1. Sampling distribution approaches

From Equation (10), suppose that the desired confidence coefficient is γ and the adjusted confidence interval of
ĈG

pmk with the adjusted lower confidence bound LA can be established as

P(ĈG
pmk > LA) = γ

then

1 −
∫ bG

√
n/(1+3ĈG

pmk)

0
FK

(
(bG

√
n − t)2

9(ĈG
pmk)

2

)
[φ(t + ξG

√
n) + φ(t − ξG

√
n)] dx = γ (21)

where bG = 3LA(1 + ξ2)
/√

1 + ξ2 + λ2C2
p + |ξG|

Equation (21) involves the unknown parameter ξ and Cp. As recommended by Bolyes25 we directly replaced
these variables by their MLEs. Thus, an adjusted lower confidence bound based on sampling distribution of ĈG

pmk

(denoted as LSD
A ) can be obtained by solving Equation (21) with ∗bG = 3LSD

A (1 + ξ̂2
G)(1 + ξ̂2)/√

1 + ξ̂2 + λ2Ĉ2
p + |ξ̂G| for given sample data, LSL, USL, γ , and λ:

∫ ∗bG

√
n/(1+3ĈG

pmk)

0
FK

(
(∗bG

√
n − t)2

9(ĈG
pmk)

2

)
[φ(t + ξ̂G

√
n) + φ(t − ξ̂G

√
n)] dx = 1 − γ (22)

In finding the lower confidence bounds, Pearn and Shu13 recommended placing ξ̂ = 0.5 for reasons
of quality assurance purposes to eliminate additional sampling errors from estimating ξ . Therefore, we
may solve Equation (23) to obtain the adjusted lower confidence bounds (denoted as LMSD

A ) with ∗∗bG =
3.75LMSD

A

/√
1.25 + λ2Ĉ2

p + 0.5 for given sample data, LSL, USL, γ , and λ:

∫ ∗∗bG

√
n/(1+3ĈG

pmk)

0
FK

(
(∗∗bG

√
n − t)2

9(ĈG
pmk)

2

)
[φ(t + 0.5

√
n) + φ(t − 0.5

√
n)] dx = 1 − γ (23)
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8.2. GCI approach

Tsui and Weerahandi26 introduced the concept of generalized inference for testing hypotheses and constructing
GCIs in situations such as the SD approach (see Equations (22) and (23)) where the exact confidence intervals
are not exact. GCIs have been used in recent articles for a variety of problems including the construction of
tolerance intervals by Liao et al.27 and the development of tests for variance components by Mathew and
Webb28. Hamada and Weerahandi29 and Adamec and Burdick30 used GCIs to handle measurement error
problems. Burdick et al.31,32 presented GCIs for misclassification rates in a gauge R&R study. Daniels et al.33

proposed using GCIs for comparing capability measures when there is no measurement error. To compute a GCI
for monitoring process capability based on Cpmk with gauge measurement errors, one must define generalized
pivotal quantities (GPQs) for μ and σ 2. Using the previous notation of G ∼ N(μ, σ 2

G = σ 2 + σ 2
M), using the

method of Iyer and Patterson34 as described in Appendix B2 of Burdick et al.32, the following GPQs can be
defined for μ and σ 2

G

μ(GPQ) = Ḡ − Z

√
σ 2

G(GPQ)

n
(24)

σ 2
G(GPQ) = nS̃2

n

W
(25)

where Z is a standard normal variable and W is a χ2 random variable with n − 1 degrees of freedom.
Since σ 2

M = [(USL − LSL)λ/6]2 is known, then the GPQ for σ 2 is

σ 2(GPQ) = max(ε, σ 2
G(GPQ) − σ 2

M) (26)

where ε is a small positive quantity to maintain non-negative variance components, for example 0.0001.
The following procedure can be used to construct a 100(1 − α)% lower confidence bound on Cpmk:

(1) compute Ḡ and S̃2
n for the collected data and denote the realized value as ḡ and s̃2

n;
(2) simulate N = 2000 values of μ(GPQ) and σ 2(GPQ) using Equations (24)–(26) by simulating N

independent values of Z and W ;
(3) for each simulated pair of μ(GPQ) and σ 2(GPQ), compute Cpmk(GPQ) where

Cpmk(GPQ) = min

{
USL − μ(GPQ)

3
√

σ 2(GPQ) + (μ(GPQ) − T )2
,

μ(GPQ) − LSL

3
√

σ 2(GPQ) + (μ(GPQ) − T )2

}
(27)

(4) order the N = 2000 values of Cpmk(GPQ) from the least to greatest;
(5) the 100γ % lower bounds on ĈG

pmk, denoted as LGCI
A , is the value in position N × α of the ordered step

in (4).

9. ADJUSTED LOWER CONFIDENCE BOUND COMPARISONS:
A SIMULATION STUDY

The important consideration in choosing methods for determining the adjusted lower confidence bound is the
performance of each method. In order to ascertain the performance of the adjusted lower confidence bound
methods (Equation (22) for LSD

A , Equation (23) for LMSD
A , and Equations (24)–(27) for LGCI

A ) a simulation
study is conducted (the Matlab program for performing this calculation is available upon request). Random
samples of n = 20(10)150 different sample sizes are drawn 2000 times from processes with different gauge
capabilities λ = 0, 0.1, 0.2, 0.25 and alternative values of μ and σ 2 for which ξ = 0(0.05)1, so as to detect any
dependence on the coverage rate for the three methods. Tables II–VI present the mean value (ME) of ĈG

pmk,
the percentage coverage rate (CR) observed in the simulation for a nominal confidence level of 95%, and mean
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Table II. The simulated results for 95% lower confidence bounds of SD, MSD, and GCI methods with Cpmk = 1
(LSL = −3, USL = 3, μ = 0, and σ = 1) at N = 2000

λ = 0.0 λ = 0.1

LSD
A LMSD

A LGCI
A LSD

A LMSD
A LGCI

AĈG
pmk ĈG

pmk
n ME CR MLCB CR MLCB CR MLCB ME CR MLCB CR MLCB CR MLCB

20 0.9799 0.9650 0.7099 0.9795 0.6566 0.9900 0.6193 0.9748 0.9635 0.7100 0.9790 0.6560 0.9900 0.6175
50 0.9782 0.9690 0.8117 0.9895 0.7718 0.9935 0.7599 0.9732 0.9675 0.8117 0.9890 0.7709 0.9935 0.7585
70 0.9812 0.9595 0.8417 0.9835 0.8063 0.9890 0.7992 0.9762 0.9590 0.8416 0.9835 0.80530 0.9885 0.7979

100 0.9761 0.9755 0.8605 0.9910 0.8302 0.9930 0.8268 0.9767 0.9590 0.8655 0.9845 0.8342 0.9870 0.8307
150 0.9821 0.9635 0.8881 0.9875 0.8622 0.9875 0.8635 0.9781 0.9665 0.8888 0.9890 0.8623 0.9900 0.8618

λ = 0.2 λ = 0.25

LSD
A LMSD

A LGCI
A LSD

A LMSD
A LGCI

AĈG
pmk ĈG

pmk
n ME CR MLCB CR MLCB CR MLCB ME CR MLCB CR MLCB CR MLCB

20 0.9598 0.9575 0.7105 0.9780 0.6546 0.9900 0.6121 0.9578 0.9615 0.7091 0.9840 0.6528 0.9945 0.6106
50 0.9585 0.9625 0.8116 0.9885 0.7683 0.9930 0.7542 0.9576 0.9635 0.8117 0.9890 0.7675 0.9950 0.7530
70 0.9616 0.9560 0.8153 0.9830 0.8026 0.9888 0.7942 0.9572 0.9635 0.8370 0.9845 0.7986 0.9905 0.7904

100 0.9566 0.9690 0.8600 0.9910 0.8262 0.9930 0.8223 0.9625 0.9600 0.8655 0.9850 0.8317 0.9885 0.8280
150 0.9644 0.9610 0.8893 0.9890 0.8601 0.9905 0.8599 0.9645 0.9660 0.8897 0.9885 0.8601 0.9890 0.8598

Table III. The simulated results for 95% lower confidence bounds of SD, MSD, and GCI methods with Cpmk = 1.6007
(LSL = −5.2, USL = 5.2, μ = 0.25, σ = 1.0) at N = 2000

λ = 0.0 λ = 0.1

LSD
A LMSD

A LGCI
A LSD

A LMSD
A LGCI

AĈG
pmk ĈG

pmk
n ME CR MLCB CR MLCB CR MLCB ME CR MLCB CR MLCB CR MLCB

20 1.6632 0.9400 1.2014 0.9530 1.1667 0.9745 1.1101 1.6275 0.9380 1. 1927 0.9575 1.1571 0.9780 1.0949
50 1.6288 0.9380 1.3359 0.9545 1.3188 0.9690 1.2991 1.5962 0.9380 1.3272 0.9575 1.3083 0.9730 1.2852
70 1.6194 0.9435 1.3705 0.9550 1.3587 0.9655 1.3457 1.5944 0.9375 1.3693 0.9515 1.3541 0.9665 1.3386

100 1.6043 0.9555 1.3961 0.9665 1.3880 0.9705 1.3799 1.5927 0.9370 1.4061 0.9515 1.3949 0.9590 1.3852
150 1.6108 0.9400 1.4390 0.9480 1.4335 0.9515 1.4291 1.5876 0.9405 1.4383 0.9575 1.4299 0.9625 1.4248

λ = 0.2 λ = 0.25

LSD
A LMSD

A LGCI
A LSD

A LMSD
A LGCI

AĈG
pmk ĈG

pmk
n ME CR MLCB CR MLCB CR MLCB ME CR MLCB CR MLCB CR MLCB

20 1.5785 0.9170 1.2155 0.9360 1.1720 0.9725 1.0833 1.5238 0.9045 1.2136 0.9315 1.1659 0.9750 1.0593
50 1.5346 0.9270 1.3306 0.9465 1.3035 0.9665 1.2683 1.4956 0.9020 1.3370 0.9415 1.3037 0.9675 1.2589
70 1.5273 0.9265 1.3654 0.9525 1.3430 0.9710 1.3188 1.4931 0.9095 1.3760 0.9425 1.3465 0.9665 1.3154

100 1.5277 0.9280 1.4042 0.9490 1.3851 0.9580 1.3694 1.4766 0.9190 1.3951 0.9515 1.3705 0.9710 1.3502
150 1.5255 0.9250 1.4386 0.9535 1.4218 0.9600 1.4136 1.4860 0.9060 1.4418 0.9520 1.4191 0.9630 1.4080

value of the lower confidence bounds (MLCB) for true process capability Cpmk. The CR and MLCB entries are
used as a basis for evaluating the performance of various methods. Bold numbers denote acceptable performance
measures.

Obviously, the ratio of CR and MLCB is negative. The lower the value of CR, the closer it is to the actual
value of the MLCB. This is true, because the lower CR means that the much lower confidence bounds do not
cover the actual value, and the MLCB is much closer to the actual value of Cpmk.

An advantage of obtaining the adjusted lower confidence intervals of the SD approach of Equation (22) and
MSE approach of Equation (23), LSD

A and LMSD
A , respectively, are that both can be written in closed form and,

unlike the GCI method, do not require Monte Carlo simulation.
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Table IV. The simulated results for 95% lower confidence bounds of SD, MSD, and GCI methods with Cpmk = 1.3416
(LSL = −5, USL = 5, μ = 0.5, σ = 1) at N = 2000

λ = 0.0 λ = 0.1

LSD
A LMSD

A LGCI
A LSD

A LMSD
A LGCI

AĈG
pmk ĈG

pmk
n ME CR MLCB CR MLCB CR MLCB ME CR MLCB CR MLCB CR MLCB

20 1.4043 0.9435 0.9887 0.9560 0.9737 0.9660 0.9497 1.3817 0.9350 0.9856 0.9465 0.9701 0.9665 0.9389
50 1.3595 0.9480 1.0959 0.9525 1.0926 0.9595 1.0836 1.3487 0.9430 1.0999 0.9470 1.0965 0.9600 1.0832
70 1.3502 0.9585 1.1276 0.9620 1.1259 0.9645 1.1195 1.3455 0.9385 1.1368 0.9410 1.1351 0.9530 1.1248

100 1.3507 0.9515 1.1640 0.9525 1.1630 0.9570 1.1583 1.3395 0.9485 1.1672 0.9500 1.1663 0.9550 1.1582
150 1.3495 0.9505 1.1968 0.9525 1.1963 0.9555 1.1931 1.3336 0.9510 1.1957 0.9525 1.1953 0.9610 1.1894

λ = 0.2 λ = 0.25

LSD
A LMSD

A LGCI
A LSD

A LMSD
A LGCI

AĈG
pmk ĈG

pmk
n ME CR MLCB CR MLCB CR MLCB ME CR MLCB CR MLCB CR MLCB

20 1.3325 0.9195 0.9864 0.9305 0.9714 0.9655 0.9190 1.3028 0.9085 0.9917 0.9195 0.9772 0.9660 0.9077
50 1.3051 0.9275 1.0999 0.9345 1.0967 0.9450 1.0706 1.2761 0.9205 1.1012 0.9255 1.0983 0.9550 1.0622
70 1.3004 0.9335 1.1345 0.9370 1.1332 0.9580 1.1117 1.2716 0.9245 1.1353 0.9290 1.1344 0.9575 1.1044

100 1.2976 0.9415 1.1673 0.9445 1.1666 0.9610 1.1492 1.2688 0.9285 1.1676 0.9350 1.1671 0.9610 1.1428
150 1.2932 0.9375 1.2010 0.9398 1.2001 0.9585 1.1818 1.2622 0.9245 1.2014 0.9342 1.2011 0.9585 1.1763

Table V. The simulated results for 95% lower confidence bounds of SD, MSD, and GCI methods with Cpmk = 1.800
(LSL = −7.5, USL = 7.5, μ = 0.75, σ = 1) at N = 2000

λ = 0.0 λ = 0.1

LSD
A LMSD

A LGCI
A LSD

A LMSD
A LGCI

AĈG
pmk ĈG

pmk
n ME CR MLCB CR MLCB CR MLCB ME CR MLCB CR MLCB CR MLCB

20 1.8636 0.9475 1.3445 0.9520 1.3158 0.9615 1.3196 1.8281 0.9420 1.3497 0.9440 1.3289 0.9630 1.3056
50 1.8263 0.9455 1.4996 0.9490 1.4846 0.9520 1.4921 1.7912 0.9370 1.5014 0.9375 1.4946 0.9520 1.4120
70 1.8235 0.9535 1.5460 0.9555 1.5352 0.9570 1.5412 1.7884 0.9420 1.5473 0.9415 1.5443 0.9565 1.5322

100 1.8160 0.9500 1.5842 0.9545 1.5756 0.9520 1.5810 1.7833 0.9480 1.5871 0.9460 1.5867 0.9580 1.5757
150 1.8076 0.9595 1.6187 0.9630 1.6122 0.9620 1.6168 1.7782 0.9395 1.6244 0.9380 1.6260 0.9470 1.6157

λ = 0.2 λ = 0.25

LSD
A LMSD

A LGCI
A LSD

A LMSD
A LGCI

AĈG
pmk ĈG

pmk
n ME CR MLCB CR MLCB CR MLCB ME CR MLCB CR MLCB CR MLCB

20 1.7295 0.9035 1.3674 0.8955 1.3714 0.9595 1.2652 1.6669 0.8820 1.3834 0.8625 1.4107 0.9615 1.2384
50 1.6905 0.9170 1.5044 0.9020 1.5198 0.9525 1.4507 1.6332 0.9000 1.5096 0.8715 1.5403 0.9530 1.4305
70 1.6885 0.9200 1.5461 0.9040 1.5649 0.9575 1.5019 1.6269 0.9035 1.5497 0.8685 1.5832 0.9580 1.4840

100 1.6857 0.9230 1.5860 0.8960 1.6069 0.9610 1.5499 1.6241 0.8985 1.5881 0.8580 1.6226 0.9600 1.5341
150 1.6791 0.9300 1.6204 0.8975 1.6432 0.9560 1.5914 1.6176 0.9130 1.6213 0.8640 1.6578 0.9575 1.5778

It can be noted that the lower bound of the SD method, LSD
A , is a better performance measure in the

absence of gauge measurement errors, i.e. λ = 0.0. When measurement errors are unavoidable, for small ξ

(say 0 ≤ ξ < 0.15), the SD method performs well providing the most accurate CRs of the methods studied
here. The MSD and GCI methods, LMSD

A and LGCI
A , keep type I error (α-risk) from exceeding a predetermined

value (such as 0.05 or 0.01) to provide necessary protection to the customers. However, the conservative
lower confidence bounds for the true value of the same index can lead to a higher level of type II error.
For 0.15 ≤ ξ < 0.40, the MSD and GCI methods have the same acceptable performance measures with accurate
CRs for all of the cases studied. However, the SD method ensures that type I error (α-risk) is greater than a
predetermined value (such as 0.05 or 0.01) providing an overoptimistic process capability. For large values of ξ,
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Table VI. The simulated results for 95% lower confidence bounds of SD, MSD, and GCI methods with Cpmk = 2.1213
(LSL = −10, USL = 10, μ = 1, σ = 1) at N = 2000

λ = 0.0 λ = 0.1

LSD
A LMSD

A LGCI
A LSD

A LMSD
A LGCI

AĈG
pmk ĈG

pmk
n ME CR MLCB CR MLCB CR MLCB ME CR MLCB CR MLCB CR MLCB

20 2.1852 0.9475 1.6284 0.9595 1.5548 0.9565 1.6094 2.1292 0.9355 1.6382 0.9405 1.5951 0.9575 1.5837
50 2.1466 0.9445 1.8011 0.9615 1.7532 0.9500 1.7923 2.0904 0.9280 1.8046 0.9325 1.7878 0.9525 1.7739
70 2.1451 0.9500 1.8529 0.9660 1.8130 0.9555 1.8451 2.0887 0.9360 1.8552 0.9370 1.8460 0.9550 1.8290

100 2.1341 0.9490 1.8912 0.9640 1.8576 0.9525 1.8846 2.0776 0.9355 1.8925 0.9310 1.8895 0.9525 1.8704
150 2.1315 0.9475 1.9341 0.9640 1.9061 0.9470 1.9318 2.0750 0.9295 1.9350 0.9215 1.9380 0.9495 1.9166

λ = 0.2 λ = 0.25

LSD
A LMSD

A LGCI
A LSD

A LMSD
A LGCI

AĈG
pmk ĈG

pmk
n ME CR MLCB CR MLCB CR MLCB ME CR MLCB CR MLCB CR MLCB

20 1.9804 0.8780 1.6658 0.8430 1.7228 0.9560 1.5139 1.8799 0.8580 1.7208 0.7640 1.8373 0.9580 1.5805
50 1.9441 0.8950 1.8132 0.8290 1.8775 0.9495 1.7216 1.8525 0.8675 1.8234 0.7575 1.9418 0.9515 1.6878
70 1.9366 0.8905 1.8568 0.8150 1.9277 0.9575 1.7789 1.8453 0.8640 1.8639 0.7215 1.9870 0.9580 1.7488

100 1.9341 0.8885 1.8992 0.7940 1.9736 0.9610 1.8337 1.8427 0.8590 1.9037 0.6875 2.0260 0.9615 1.8071
150 1.9270 0.8995 1.9354 0.7630 2.0147 0.9560 1.8885 1.8351 0.8740 1.9378 0.6460 2.0635 0.9505 1.8584

Table VII. Summary of the most effective methods for adjusted lower
confidence bounds

λ = 0.0 λ = 0.1 λ = 0.2 λ = 0.25

0.0 ≤ ξ < 0.15 SD SD SD SD
0.15 ≤ ξ < 0.4 SD, MSD, GCI SD, MSD, GCI MSD, GCI MSD, GCI

ξ ≥ 0.4 SD, MSD, GCI GCI GCI GCI

0.40 ≤ ξ , the GCI method performs very well and the CRs achieved by the lower confidence bounds are quite
robust and close to the nominal values for all of the methods studied. On the other hand, the CRs of the SD and
MSD methods are significantly lower than the state level for all of the methods studied. Table VII shows the
most effective methods for adjusted lower confidence bounds with λ = 0.0, 0.1, 0.20, 0.25 and 0.0 ≤ ξ < 0.15,
0.15 ≤ ξ < 0.4, and ξ ≥ 0.4.

As a result of this discussion we present the following generalizations for practitioners of real-world factory
applications:

(a) if no measurement errors exist, the adjusted lower confidence bound is in support of the use of the SD
approach, LSD

A ;
(b) when 0 ≤ ξ < 0.15, the adjusted lower confidence bound is in support of the use of the SD approach,

LSD
A ;

(c) when 0.15 ≤ ξ < 0.40, the adjusted lower confidence bound is in support of the use of the MSD and GCI
approaches, LMSD

A and LGCI
A ;

(d) when 0.4 ≤ ξ , the adjusted lower confidence bound is in support of the use of the GCI approach LGCI
A .

10. APPLICATION EXAMPLE: PRECISION VOLTAGE REFERENCE

When a data conversion system is designed, the system accuracy greatly depends on the accuracy of the voltage
established by the internal or external DC voltage reference. The voltage reference is used to produce a precise
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 (a) (b) 

Figure 7. The eight-pin SOIC-30 and eight-pin TO-99 packages for PVR

value of the output voltage for setting the full-scale input of the data conversion system. In an analog-to-
digital converter (ADC), the DC voltage reference together with the analog input signal are used to generate
the digitized output signal. In a digital-to-analog converter (DAC), the DAC selects and produces an analog
output from the DC reference voltage according to the digital input signal presented at the input of the DAC.
Any errors in the reference voltage over the operating temperature range will adversely affect the linearity and
spurious free dynamic range (SFDR) of the ADC/DAC. With the emergence of the portable battery-operated
environment, low voltage and low power are key goals of the industry. The voltage reference can also be used in
constructing a precision regulated supply that could have better characteristics than some regulator chips, which
can occasionally dissipate too much power. In addition, voltage references are needed in the design of products
which must be accurate, such as voltmeters, ohmmeters, and ammeters.

Consider the following case taken from a manufacturing factory in Taiwan making one type of low-
power, fast-warm-up, and highly stable 15 V precision voltage reference (PVR). The output voltage is
extremely insensitive to both line and load variations and can be externally adjusted with minimal effect
on drift and stability. This PVR is offered in eight-pin SOIC-30 and eight-pin TO-99 packages, as depicted
in Figure 7. They are ideal for communications equipment, data acquisition systems, instrumentation and
process control, high-precision power supplies, and battery powered equipment. They may also be used in
portable battery powered equipment (such as notebook computers, PDAs, DVMs, GPS, etc.). Initial accuracy
is one critical quality characteristic of this PVR which has a significant impact on the PVR quality/reliability.
This characteristic is usually only valid at room temperature, and it provides a starting point for most of the other
specifications. The output voltage tolerance of a reference measured without a load applied after the device is
turned on and warmed up. Manufacturers specify a reference with a small initial error so they do not have to
perform room-temperature system calibration after assembly.

For this particular model of PVR product, the specification limits are T = 15 V, USL = 15.025, and
LSL = 14.975. A total of 70 observations are collected and displayed in Table VIII. A histogram and a normal
probability plot show that the collected data follow the normal distribution. A Shapiro–Wilk test is applied to
further justify the assumption. To determine whether the process is ‘excellent’ (Cpmk > 1.33) with unavoidable
measurement errors λ = 0.24, we first determine that c = 1.33 and α = 0.05. Then, based on the sample data of
70 observations, we obtain the sample mean ḡ = 15.0014, the sample standard deviation s̃n = 0.0049 (ḡ and s̃n
are the realized sample values for Ḡ and S̃n), and the point estimator ĈG

pmk = 1.5526. Since 0.15 ≤ ξ̂ < 0.4, the
GCI method is suggested for this PVR process capability assessment. The Matlab computer program (available
upon request) reads T = 15 V, USL = 15.025, LSL = 14.975, 70 observations, and λ = 0.24 (provided by the
gauge manufacturing factory), and the desired confidence coefficient γ = 0.95, so the 95% lower confidence
bound of the true process capability can be obtained as LGCI

A = 1.3812. We thus can assure that the production
yield is 99.99658%, and the number of the non-conformities is less than 34.21 ppm (parts per million).
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Table VIII. 70 observations for output voltage (in volts)

15.0023 15.0056 15.0062 15.0030 15.0046 15.0098 14.9952 14.9968 15.0026 14.9959
14.9977 15.0021 15.0053 15.0069 15.0066 15.0001 14.9987 15.0014 15.0013 15.0048
14.9994 15.0003 15.0046 15.0080 14.9989 15.0059 14.9942 14.9895 14.9884 15.0030
14.9946 15.0022 15.0069 14.9990 14.9942 14.9978 15.0046 14.9983 15.0019 15.0000
14.9999 15.0057 15.0082 15.0065 15.0015 14.9954 15.0004 14.9947 14.9973 15.0063
14.9994 15.0132 15.0020 15.0009 15.0046 15.0052 14.9952 15.0035 15.0004 15.0098
15.0107 15.0035 15.0002 15.0001 15.0022 14.9947 14.9973 15.0049 15.0001 14.9961

Moreover, similar to the adjusted lower confidence bound, we obtain the adjusted critical value 1.498 for the
MSD method based on α = 0.05, λ = 0.24, and n = 70. Since ĈG

pmk > 1.498, we therefore conclude that the
process is ‘excellent’. However, we also see that if we ignore the measurement errors and evaluate the critical
value without any correction, the critical value may be calculated as c0 = 1.585. In this case we would say that
the process is not ‘excellent’ since ĈG

pmk is no greater than the uncorrected critical value 1.585.

11. CONCLUSIONS

Measurement errors are unavoidable in most industry applications. In this paper, we conducted a sensitivity
study for process capability, Cpmk, in the presence of gauge measurement errors. The statistical properties
and capability testing of estimating Cpmk were investigated to obtain lower confidence bounds and critical
values for true process capability testing. In estimating and testing the capability, the estimator ĈG

pmk, using
the sample data contaminated with the measurement error, severely underestimates the true capability and
decreases testing power. The lower confidence bounds must be adjusted to improve the accuracy of capability
assessment. The SD approaches and the GCI approach were presented to obtain the adjusted lower confidence
bounds. An intensive simulation study was used to compare performance of the attained confidence levels and
the average interval lengths of both approaches. The result recommends the appropriate method to practitioners
for the real-world factory applications.
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