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Run-by-Run Process Control of Metal Sputter
Deposition: Combining Time Series and
Extended Kalman Filter

Juhn-Horng Chen, Tzu-Wei Kuo, and An-Chen Lee, Member, IEEE

Abstract—By the time series model, this paper constructed the
disturbance model for the aluminum sputter deposition process
and derived the extending Kalman filter (EKF) controller based
on this new disturbance model. Experimental results reveal that
ARI(3,1) model appropriately characterizes the dynamic behavior
of the disturbance for the processes. The EKF controller which
includes information of process noise and measurement noise is
able to regulate the model coefficients automatically as the target
is replaced or degrades. In this paper, the d-EWMA controller,
time-varying d-EWMA controller, age-based d-EWMA controller,
and EKF controller have been applied to aluminum sputter deposi-
tion processes for predicting deposition rates and comparing their
performances. The application of the EKF controller here is proven
to improve the estimating accuracy of the aluminum sputter de-
position process significantly, regardless of whether the deposition
rates are measured at each run or not.

Index Terms—d-EWMA controller, deposition rate, ex-
tended Kalman filter, time series model, time-varying d-EWMA
controller.

I. INTRODUCTION

OMPUTER INTEGRATED MANUFACTURING (CIM),

which enhances the management and production process
efficiency of a factory, is an important development trend for
manufacturing upgrade. Advanced process control (APC) has
been recognized as a proper tool for maximizing profitability of
semiconductor manufacturing facilities by improving efficiency
and product quality. Currently, run-by-run model-based process
control (RbR MBPC) methods with good quality and reliability
performance for APC application are most applicable.

Spanos et al. [1] describes a statistical process control (SPC)
scheme that takes advantage of such real-time information for
generating malfunction alarms but not for prescribing control
action. Sachs et al. [2] proposes a modular framework for
implementing process control to the LPCVD of polysilicon
in very large-scale integration (VLSI) fabrication. The system
which takes both the preceding and following processes into
consideration integrates existing approaches with new method-
ologies in order to achieve online optimization and control
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of unit process. Sachs et al. [3] provides a framework which
combines SPC and feedback control for controlling processes
affected by disturbances such as shifts and drifts. Additionally,
the run-by-run controller is implemented and tested by applica-
tions to a silicon epitaxy process in a barrel reactor. In the work
of Sachs et al. [3], the process is assumed to have no dynamics
and a linear controller based on the exponentially weighted
moving average (EWMA) is in use. The performance of this
approach is highly dependent on the choice of the EWMA
controller parameters (EWMA weights) and the ability to
dynamically update the EWMA weight. Several authors [4]-[6]
address this problem in their studies and propose the self-tuning
EWMA controller which dynamically updates its controller
parameters. An EWMA controller is effective for slowly
drifting processes but is insufficient for processes with large
drifts. Many extensions of the EWMA controller, such as the
predictor—corrector controller (PCC) [7], [8], double-EWMA
(d-EWMA) controller [9], age-based double-EWMA controller
[10], and time-varying d-EWMA controller [11] are developed
for large drifting processes.

Metal sputter deposition for semiconductor manufacturing
benefits greatly by RbR MBPC [12]. In particular, sputter
deposition experiences a characteristic drift in the deposition
rate which occurs in all processes. In this paper, we will first
review the d-EWMA, time-varying d-EWMA, and age-based
d-EWMA controllers. By using the time series model, we will
then construct the disturbance model of the aluminum sputter
deposition process and derive the extending Kalman filter
(EKF) controller based on the disturbance model. The proposed
EKF controller which is capable of simultaneously estimating
the deposition rate and updating model parameters is applied
to aluminum sputter deposition processes for predicting the
deposition rates and comparing its performance with other
methods. Experimental results reveal that applying the EKF
controller here significantly improves the performance of the
estimator of the aluminum sputter deposition process, no matter
the deposition rates are measured at each run or not.

II. RBR CONTROLLERS OF METAL SPUTTER
DEPOSITION PROCESS

A basic diagram of metal sputter deposition is shown in Fig. 1.
Ions are discharged from plasma which dislodges particles from
the metal sputter target for keeping a desired deposition thick-
ness of wafers. Maintaining a desired thickness is difficult be-
cause metal sputter deposition processes are characterized by

0894-6507/$25.00 © 2007 IEEE



CHEN et al.: RUN-BY-RUN PROCESS CONTROL OF METAL SPUTTER DEPOSITION: COMBINING TIME SERIES AND EXTENDED KALMAN FILTER 279

DC Power

Target

To Pump Ar Flow

Substrate

Fig. 1. Metal sputter process diagram.

decreasing deposition rate as the sputter target degrades. Varia-
tion in the gas flows, vacuum pressure, process temperature, dc
power, and molecular uniformity of the sputter target contribute
various amounts of variation in the measured deposition rate in
addition to the characteristic drift which occurs from wafer to
wafer. The drifting nature of metal sputter deposition makes it
necessary to change the process recipe continually for compen-
sating the drift. An appropriate model for metal sputter deposi-
tion is of the form [12]

Rate[k] = Rate[0] + ¢[k] )

where R[0] is the deposition rate at the beginning of the target
life and €[k] is the error in the deposition rate (from Rate[0])
on run k, which may be due to the degradation of the sputter
target and the uncertain factors, such as changes in the gas flows,
vacuum pressure, etc. Here, one would like to obtain the updated
deposition rate and then make changes to the deposition time
(process recipe) on every run. In this paper, one considers two
particular implementations of this strategy, referred to as RbR
MBPC (run-by-run model-based process control).

The first implementation of an RbR MBPC strategy is re-
ferred to here as the double-exponential weight moving average
(d-EWMA) controllers including time-varying weights. Guo et
al. [9] shows that, for the semiconductor manufacturing pro-
cesses with random shifts and drifts, the d-EWMA method is
better than the EWMA and the PCC methods. The d-EWMA
controller defines the process drift from run (k — 1) to run k as

plk — 1] = elk] — e[k — 1]. @)

The d-EWMA controller is summarized as the following
equations:

elk | K]

= w; (Rate,, [k] — Rate[0])
+ (L —w)(é[k =1k = 1]+pk -1k —1]) (3)

plk [ k]
= wy(Rate,,[k] — Rate[0] — &[k — 1|k — 1])
+ (1 —we)plk — 1|k —1] “4)
Elk + 1| K]
= e[k k] + plk| k] Q)

where Rate,, [k] denotes the measurement of the deposition rate
onrun k.

Su and Hsu [11] proposed a time-varying weights tuning
method of d-EWMA controller. The tuning method is summa-
rized in the following equations:

wi [k] = max{w;,ws} (6)
wa[k] = min{wy, ws} + (f)* @)

where f (0 < f < 1) expresses the discount factor.
The estimated rate on run (k + 1) is

Rate[k + 1| k] = Rate[0] + £[k + 1| k]. (8)
The process time on run (k + 1) is then computed as follows:
Desired Thickness
P Timelk + 1] =
rocess Timek + 1] Estimated Rate

Desired Thickness
Réte[k + 1]k
The second implementation of an RbR MBPC strategy is the
aged-based d-EWMA controller. In many applications, the de-
position rate is not measured at each run. This leads to an in-
valid result in the d-EWMA formula. However, the data col-
lected often comes with an indication of the run number. Chen
and Guo [10] propounded an age-based d-EWMA controller
and utilized the process time to modify the drifting term to deal
with unequally spacing measurements. If the kth and (k + d)th
deposition rates are measured but the rates from the (k + 1)th
to the (k 4 d)th runs are unmeasured, the correction equations
on run k are the same as (3) and (4), but the prediction equation
becomes

lk+n|k) = ek k] +n pk|k], n=12...d (10)

The estimated rates and the process time from (k+1) to (k+d)
runs are

©)

Rate[k + n | k] = Rate[0] + é[k + n | k],
n=12...,d (11)
Desired Thickness

Estimated Rate
__ Desired Thickness

Rate[k + 1 | k]
n=12,...,d.

Process Time[k + n] =

12)

Once the rate on run (k + d) is measured, the correction equa-
tions then becomes

é[k + d |k + d] = w;(Ratep, [k + d] — Rate[0])
+ (1 —wy)(Ek k] +d-plkIE])  (13)
Rate, [k + d] — Rate[0] — &[k | k])

ﬁ[k+d|k+d]:wz< y

+ (1 —w2)plk | K]. (14)

In this paper, we contemplate the aluminum sputter processes
on an Applied Materials Endura in Powerchip Semiconductor
Corporation. The sputter tool has two chambers (chamber 2 and
chamber 3) for the aluminum process with desired deposition
thicknesses spanning a range of 4000 A. The sputter target
will be replaced when the dc energy accumulation reaches
1600 KWH. Consider the historical data for process deposi-
tion rate with a constant dc power shown in Fig. 2. Here, the
characteristic of drift in the deposition rate is caused by the
degradation of target over the long term (in kilowatt-hours). As
illustrated in Fig. 2, it appears that the rate at which the process
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Fig. 2. Historical data of aluminum deposition rate.

drifts varies from target to target. Box and Jenkins [13] show
that a controller based on the EWMA statistic is a minimum
mean square error (MMSE) controller when the underlying
process disturbance follows the IMA(1,1) (first-order integrated
moving average) process. However, from Fig. 2, one is not
sure whether the error £[k] or the process drift p[k] follows
an IMA(1,1) process. To ascertain the dynamic behavior of
the deposition rate further, one will model the error £[k] by an
autoregressive integrated moving average (ARIMA) (p,d, q)
process [13]

$(B)Ve[k] = 0o + 0(B)alk] (15)

where
$(B) =1—¢1B = $B%-- — ¢, B
O(B)=1-6,B—6,B* .- —0,B1
V=1-B
where B is the backshift operator and a[k]: is the white noise.

By using historical data to fit the time series model [13], one
obtains the disturbance model in the following form:

(1= 1B — ¢2B% — 3 B*)(1 = B)elk] = o + alk]
(16)
or

(1—¢1B— ¢2B> — ¢p3B)plk — 1] = 6p + alk]  (17)

or
elk] = (1 + ¢1)e[k — 1] + (¢2 — ¢1)e[k — 2]
+ (¢3 — ¢2)elk — 3] — dpaclk — 4] + 0o + a[k]. (18)

The disturbance [k] is an ARI(3,1) process and the process drift
p [k] is an AR(3) process. The estimate of the process drift is

Elp[k — 1]]

Ele[k] — ek —1]]
fo
E[(1 — B)elk]] = .
[( el = 1= =%, "%
Since the rate of the process drifts varies from target to target,
forecasting the disturbance and updating the coefficients of the
disturbance model (¢1, ¢2, ¢3, 0o ) for different target are essen-
tial. Define the process state X[k] as

X[k] = {x1[k], z2[k], . . ., vs[k]}T
= {e[k], e[k — 1], e[k — 2], e[k — 3],
$1[k], polk], pa[k], Bolk]}T.

Thus, (18) can be written as in (19), shown at the bottom of the
page, with the corresponding measurement model

Rate,, [k + 1] — Rate[0]
=[1,0,0,0,0,0,0,0] X[k + 1] + v[k + 1]

= HX[k+ 1] + o[k +1] (20)

X[k+1] =
r(14zs[k])z1[k]+ (z6[k] — z5[k])z2[k]+

=F(X[H]) +alk+1]

(19)
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Fig. 3. Block diagram of EKF controller.

where v[k] is the measurement noise. Also, the process noise,
measurement noise, and process state have the properties

EfaHa’[j]] = Qb Q >0, Vk,j>0
Blu[kJo"[j]] = Réyg, R >0, Vk,j>0
Ep[k]X[k]] =0 VEk>0.
Thus, the (k + 1)th state and state covariance (X[k+ 1] k] and
P[k + 1| k]) can be predicted by the discrete extended Kalman
filter (EKF) [14] algorithm
X[k + 1| k] = F(X[k|k]) (21)
Plk+ 1|kl = Alk + 1| k]P[k | K](A[k+ 1] k)T + Q.
(22)

The correction equations are

X[k + 1]k +1]
= X[k + 1|k
+ K[k + 1](Rate,, [k + 1] — Rate[0]
—HX[k + 1| k)
Plk+1|k+1]
= (- K[k + 1JHX[k + 1 |K])P[k + 1] k]
and the Kalman gain is

Klk+1] = Plk + 1| KHT(HP[k + 1| kJHT + R)~! (25)

(23)

(24)

where the matrix A is the Jacobian matrix and is defined as
shown at the bottom of the next page. When the (k + 1)th state
€[k + 1| k] is estimated, the estimated rate and the process time
onrun (k+ 1) is then computed by (8) and (9). A block diagram
of the EKF controller is shown in Fig. 3.

If the deposition rate is not measured at each run, the EKF
controller is able to be extended easily. Suppose the deposition
rate from the (k + 1)th to the (k + d)th measurements are un-
measured, the prediction (21)—(22) are modified as

X[k +n+1]k]
=F(X[k+ n|k])
Plk+n+ 1]k
=Alk+n+1|kP(k+n|k)(Ak+n+1]k)T +Q,
n=0,1,2,...,d—1. (27)

n=0,1,2,....,d—1 (26)

?

The estimated rates and the process time from (k+1) to (k+d)
runs are then obtained from (11)—(12). Once the deposition rate
onrun (k + d) is measured, the correction equations are

X[k +d|k + d]
= X[k + d| k]
+ K[k + d](Rate, [k + d] — Rate[0]

—HX[k + d|k]) (28)
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Plk+d|k + d]
(I — K[k + dHX[E + d| k)P[k + d | k]

(29)
and the Kalman gain is

Kk + d] = P[k+ d|kJHT (HP[k + d| k|H” + R)~'. (30)

III. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the d-EWMA, the time-varying d-EWMA, the
age-based d-EWMA, and the EKF controllers were applied to
the aluminum sputter process to estimate the deposition rates
and compare their performances. In all cases the power setting
is fixed. The historical data of the eight targets with equally
spacing measurement are used for verifying the performance of
the controllers. All targets are not at the beginning of target life.
The first four history data is for comparing the abilities of the
d-EWMA, the time-varying d-EWMA, and the EKF controllers,
and the other is for comparing the abilities of the age-based
d-EWMA and the EKF controllers. The choice of weights, w;
and wo, for the d-EWMA, time-varying d-EWMA, and the age-
based d-EWMA controllers, is critical for achieving optimal
performance. Different weights are carried out from the first
target for d-EWMA and time-varying d-EWMA controllers, and
the fifth target for age-based d-EWMA controller; the values
which bring the smallest mean square error (MSE) w; = wy =
0.6 for the d-EWMA controller, w; = wo = 0.6, f = 0.032 for
the time-varying d-EWMA controller, and w; 0.69,we =
0.98 for the age-based d-EWMA controller are adopted. MSE
is defined as

> i [Rate[k] — Réte[k]]Z.

MSE =

€2y

As for the EKF, the initial conditions, such as the disturbance
and the coefficients of the disturbance model (X[0]), the co-
variance matrices of the state, and the process noise ([0 | 0]
and ()), are acquired from the first target. The initial deposition
rate (Rate[0]) is obtained from the mean of the initial values
of eight targets. The covariance of the measurement noise (R)
is obtained from the instrument manual. The initial conditions
and the covariance of the measurement noise are listed in the
Appendix.

For all controllers, the initial estimates are reset to the ini-
tial conditions when the target is changed. The deposition rates
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TABLE I
MSE OF ESTIMATED DEPOSITION RATES FOR EKF, D-EWMA, AND
TIME-VARYING D-EWMA CONTROLLERS WITH EQUAL SPACING DATA

MSE(A/s)* Target #1 Target #2 ~ Target#3  Target #4

d-EWMA 1.13725 1.12579 1.39385 1.76262

time-varying d-EWMA 1.13292 1.14302 1.41064 1.6944

EKF 0.93298 0.7048 1.19417 1.03466

Improvement (%) over 12% 37% 14% 41%

d-EWMA

Improvement (%) over

time-varying d-EWMA 12% 39% 15% 39%
TABLE II

MSE OF ESTIMATED DEPOSITION RATES FOR EKF AND D-EWMA
CONTROLLERS BASED ON TARGET 2 WITH EQUAL SPACING DATA

MSE(A/s)? Target #1 Target #2  Target#3  Target #4
d-EWMA 2.1409 0.71783 2.1472 1.5714
EKF 0.93298 0.7048 1.19417 1.03466
Improvement (%) N o N o
over d-EWMA 56% 2% 44% 34%

estimated by the d-EWMA and the EKF controllers with the
measured deposition rates for each run are shown in Fig. 4. For
target 3, the initial estimate of the deposition rate is lower than
the actual one since it is the youngest target of all. It appears that
the deposition rates estimated by both controllers still track the
actual one instantaneously. Table I illustrates the MSE values
of deposition rates by various controllers and the percentages of
improvement by the EKF controller. It is evident that the EKF
controller reduces the MSE significantly. Additionally, when
the optimal weights of d-EWMA controller based on target 2
are employed (w; = we = 0.1) and the initial conditions of the
EKEF controller remain the same as before, the estimation results
are shown in Table II where the EKF controller still demon-
strates superior estimation performance. This phenomenon val-
idates that the ARI (3,1) model for exhibiting the dynamic be-
havior of the disturbance is more appropriate than two IMA(1,1)
models used in d-EWMA. In addition, in contrast to d-EWMA
which requires us to specify its model coefficients (weights), the
EKEF controller involves the information of the process noise and
the measurement noise and regulates the model coefficients au-
tomatically, which is essential for improving the performance of
the estimator.

'1+.’175[k‘] JZG[k]—JZ5[k] 1177[k]—£176[k] —$7[k‘] 0 0 0 17

1 0 0 0 0 0 0 0

. 0 1 0 0 00 0O
A[k]:(aF(X[k])> _ 0 0 1 0 00 0 0
OX[k] 0 0 0 0 1000

0 0 0 0 01 00

0 0 0 0 001 0

L 0 0 0 0 0 0 0 1.
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Fig. 5. Estimated deposition rates with unequal spacing data.

In Fig. 5, the deposition rates generated by omitting some
measurements of the last four historical data by the EKF con-
troller and age-based d-EWMA controllers are illustrated with
the unequal spacing measurements. The MSE values of depo-
sition rates of both controllers and the percentages of the MSE
improved by the EKF controller are presented in Table III. It is
evident that the EKF controller reduces the MSE significantly.
Consider (10), the age-based d-EWMA controller based on the
assumption of the constant drift (p[k | k]) utilizes the number
of the unmeasured run to modify the drifting term. However,
the process drift follows an AR(3) process [see (16)]. The as-
sumption that drift follows an IMA(1,1) process in age-based
d-EWMA will result in a large error. In order to investigate
the dynamic behavior of the drift thoroughly, assume that the
deposition rates of first 25 runs of target 3 are measured and
perform deposition rate estimation by d-EWMA and EKF con-
trollers. Then, assume the deposition rates from runs 26 to 35
are unmeasured and perform deposition rate estimation by age-
based d-EWMA and EKF controllers. The estimates together

~ 170
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§ 165}
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Fig. 6. Estimated deposition rates when measurements, run 26 to 35 of target
3, are not measured.

with measurements from run 26 to 35 are shown in Fig. 6. Fig. 6
demonstrates that the EKF controller is more appropriate than
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TABLE III
MSE OF ESTIMATED DEPOSITION RATES FOR AGE-BASED D-EWMA AND EKF CONTROLLERS WITH UNEQUAL SPACING DATA

MSE(A/s)>? Target #5 Target #6 Target #7 Target #8
age-based d-EWMA 3.17630 5.03984 5.71981 2.63959
EKF 2.52976 1.04607 3.17804 0.69125
Improvement (%) over 26% 79% 44% 74%

age-based EWMA

r 3.3581 x 104 1.1793 x 1072 1.2943 x 1072

1.1793 x 105 2.3031 0.059512

1.2943 x 1075 0.059512 1.8623

1.2734 x 10~2 0.13506 0.038299

Plo|0] =
—3.33713 x 104

—6.6768 x 108 —0.013049

—7.3242 x 108 —3.33713 x 104 —0.010551

—7.2085 X 1078  —7.6523 x 10~% —2.1696 x 104

L 1.3011 x 1075
r0.8281 0 0 0

0.029059
0 0 0 O0f

0.031876

0O 0 0 0 O0O0 0O
0O 0 0 0 0 0 00

o 0 0 0 00 00

0O 0 0 0 00 0O

0O 0 0 0 O0O0 0O

L o 00000 0 0l
ref0] 7 [ 176.4597 q

—1] 56.6671
64.7412
—3] 19.343

—0.32472
—0.27825

—0.11767

Leglo] ] L—o.10732]
R = 0.003359362

Rate[0] = 176.4597 (A /sec)

1.2734 x 1075
0.13506
0.038299
1.8845

—7.6523 x 104

—2.1695 x 1074

—0.010677

0.031372

—6.6768 X 1078  —7.3242 x 1078 —7.2085 x 1078  1.3011 x 1075 1

—0.013049 —3.33713 x 10~% —7.6523 x 10~% 0.029059
—3.33713 x 10—4 —0.010551 —2.1696 x 1074 0.031876
—7.6523 x 10—4 —2.1695 x 10—4 —0.010677 0.031372

7.3934 x 1075 1.9101 x 10—6 4.3357 x 1076 —1.6446 x 10—%

1.9101 x 10~6 5.9783 x 1077 1.2292 x 1076 —1.806 x 10~%

4.3357 x 1070 1.2292 x 106 6.0497 x 1075  —1.7775 x 10~%

—1.6446 X 1074 —1.806 x 107* —1.7775 x 104 0.032084 |

the age-based d-EWMA controller when the deposition rates are
unmeasured.

IV. CONCLUSION

In this paper, the EKF controller from the time series model is
obtained, which is formed by the history data of the aluminum
sputter deposition process. Experimental results reveal that, for
the aluminum sputter processes, the ARI(3,1) model character-
izes the dynamic behavior of the disturbance appropriately. The
EKEF controller possesses the ability to regulate the model coef-
ficients automatically as the target is replaced or degrades. Fur-
thermore, its weight (Kalman gain) is self-tuning and includes
the information of the process noise and measurement noise.
For predicting the deposition rates and comparing their perfor-
mances, the &-EWMA, time-varying d-EWMA, and EKF con-
trollers have been applied to aluminum sputter deposition pro-
cesses. If the deposition rate can be measured on each run, these
methods have the function to track for process drifts but EKF
provides a more accurate rate estimator (25% improvement in

average over d-EWMA and 26% improvement in average over
time-varying d-EWMA). We have outlined how the EKF con-
troller can be modified to estimate the deposition rate when the
rate cannot be measured on each run. The application of the
EKF controller result here significantly improves 55% over the
aged-based d-EWMA controller, while the deposition rates are
not measured on each run.

APPENDIX

Initial Conditions and covariance of the measurement noise
is shown in the equations found at the top of the page.
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