US 20130185523A1

a9 United States
12 Patent Application Publication (o) Pub. No.: US 2013/0185523 A1
Wang et al. (43) Pub. Date: Jul. 18, 2013
(54) DECOUPLED METHOD FOR TRACKING (52) US.CL
INFORMATION FLOW AND COMPUTER [ORS) 5 GRS 711147, 712/225, 711/E12.001;
SYSTEM THEREOF 712/E09.016
(75) Inventors: Chi-Wei Wang, Hsinchu City (TW); &7 ABSTRACT
i{t:l:ll:llll-lpl{:lg I?Ilslzzlcll,nIfSCli}[;h(uTg\;;y (Tw); A computer system and a method for tracking information
’ flow are provided. The computer system divides an informa-
(73) Assignee: NATIONAL CHIAO TUNG tion flow tracking task into two decoupled tasks execu?ed by
UNIVERSITY, Hsinchu City (TW) two prqcedures. Thg first prqcedure .emulcfltes execution of
’ instructions and divides the instructions into code blocks
(21) Appl. No.: 13/459,258 according to an instruction executing sequence. The first pro-
cedure translates the instructions of the code blocks into
(22) TFiled: Apr. 30,2012 information flow codes and transmits them to the second
procedure. The first procedure further translates the instruc-
(30) Foreign Application Priority Data tions into dynamic emulation instructions and executes the
dynamic emulation instructions to generate addressing
Jan. 12,2012 (TW) oo 101101270 results of the dynamic addressing instructions. The second
procedure executes the information flow codes according to
Publication Classification the addressing results to emulate the instructions of the code
blocks. Moreover, the method also tries to reduce the amount
(51) Int.ClL of data transmission between the two procedures when the

GOGF 9/30 (2006.01) first procedure executes the emulation task. Therefore, the

GOG6F 12/00 (2006.01) efficiency of tracking information flow is enhanced.
120 10
14 0 146

. Processing Uni Processing Unit | Bit Mapping Chart
180 -
Ij Binary Converter

1% 14

Register

12800 0O O

Register

O 0O O-148

160

1

100

Patent Application Publication Jul. 18, 2013 Sheet 1 of 11 US 2013/0185523 A1

20 140
U L 146
Praessing Uit Processing Uit [Bit Mapping Chart
122
180
t} Binary Comverter
26 4
Regiter Regiter
B-raO00 0O 0O Oy-148
160 (162

100

FIG. 1

Patent Application Publication Jul. 18, 2013 Sheet 2 of 11 US 2013/0185523 A1

2777

FIG. 2

300

19— push ebp

189 ——> Mov ebp, esp

183 > MoV eax, [ebo+0x8]
184 > 0dd eax, [ebp+0xc]

FIG. 3

Patent Application Publication Jul. 18, 2013 Sheet 3 of 11 US 2013/0185523 A1
300
Category nformation fow lbeled symbo
40 | Ble-wise Owewitng | A[0] <—B[0)]
\s A[ﬂ H1]) <—1B
A[n] <—Bln]
e e A
00 Byte-vise Appending ig)]] (L gH)]]
s ; A<E=mB
Aln]<-B[n]
orementaly Wied | A[0] < B[0]
40 Al <o), 1)< 1]
\s o)< A1) A2 <) p<trp
A < A1))<=
gg | Mt | T< WO T <1 oee T <= A1)
g T<EB[0] T<1] +«- T<=0[1] ‘
O] <=T, 1] <=T,+++ An]«— A==18
BO] <—T, 1] «<—T, -+~ B[n]<—T

FIG. 4

Jul. 18, 2013 Sheet 4 of 11 US 2013/0185523 A1

Patent Application Publication

M _ 02 50 __ 50
d

FIG. 5A

o

Y

8

o}
©

EAX

3

Y7 vt/ 4/
EAX
306
Xor €ax, €0x

FIG. 5B

Patent Application Publication Jul. 18,2013 Sheet 5 of 11

G @ o
EAY @

080

= 0000

Y] f }

EAK 0 T 0 t 0 t o
58d 508c 508
add eox, ebx

FIG. 5C

US 2013/0185523 A1

Patent Application Publication Jul. 18, 2013 Sheet 6 of 11 US 2013/0185523 A1

S0 510¢ 5100 S10c S10b

g Y
mul ebx

FIG. 3D

Patent Application Publication Jul. 18, 2013 Sheet 7 of 11 US 2013/0185523 A1

B0 620 63 60 63 60 670
0y v Y v y ¥

W |DS| WH EFF | Torget Operand | Source (perand

612 620 630 650 660 B0 6 6%
0% 4% % N \ vy 8

D | S| E [ToetOperond | Source Gperond | D_OFF | S_OFF
N 4

FIG. 6B

632
\

/

682 -/

€ax

€cx

FIG. 6C

Patent Application Publication

0

Jul. 18,2013 Sheet 8 of 11 US 2013/0185523 A1

181 —{ push ebp

182 — mov ebp, esp

185 =1 mov eax, [ebp+0x8]
1B =1 add eax, [ebptOxc]

o 7\

10 —>
102 —
105 —>
04 —
105 —>
106 —>
107 —>
108 —;
M —
N —>
m —
n —>

3 —

enqueue(counter)
enqueuelblock _seq)
emulate("push ebp”)
odd(counter)
enqueue{lost_phyaddr_written)
emulate("mov ebp, esp’)
add(counter)

emulate(mov eax, [edp+0x8])
add(counter)
enqueue{last_phyaddr_read)

emulate("add eax, [ebp+0xc])
add(counter)
enqueue(lost_phyaddr_read)

18

m —
17—
13—
%4 —

MEN_EBP_DW_BW_OVRWRT
FBP_ESP_DW_BW_OVRWRT
EAX _MEM_DW_BW_O\RWRT
EAX _MEM_DW_NB_APPEND

FIG. 7

Patent Application Publication Jul. 18, 2013 Sheet 9 of 11 US 2013/0185523 A1

Loap Register
0x1000 0x2000 (x3000 Ox4000
< 1024 | +12 >
- 804 - 802 - 806
FIG. 8A
Loap Regster
01000 0x2000 0x3000 Ox4000
< 104 | 4512 >
N 804 - 802 N 806
FIG. 8B
Loop Register
(x1000 0x2000 (x3000 Ox4000
< -4 | +312 >
~ 804 - 802 N 806

FIG. 8C

Patent Application Publication Jul. 18, 2013 Sheet 10 of 11 US 2013/0185523 A1

Input:
offset: offset encoded in EBP-based accessing instruction
ebp: current valug of EBP register
paddr_base: physical address of base page.
paddr_siding: physical address of siding page

Qutput;
physical address accessed by this instruction

Algorithm:

PAGEMASK = OXFFFFFO00
001 —>1{ if ((ebo & PAGEMASK) I= (ebpoffset) & PAGEMASK)

%2 — return paddr_siding + ((ebp+offset) & ~PAGEMASK)
else
%3 — return paddr_base + ([ebp+offset) & ~PAGEMASK)

FIG. 9

Patent Application Publication Jul. 18, 2013 Sheet 11 of 11 US 2013/0185523 A1

Receive mltiple intructions — S1002

g
Divide the instructons into at least one code block accordng to on
executing sequence of the instructions

y
Trandlote the nstructions of the code blocks into information flow
¢0es

y

Transate the nstructions of the code blocks into dynamic emulotion
instructions
b

Transmit the information flow codes to the second core of the
computer sjstem
v

Set the frst core of the computer system to execute the dynamic
emulation instructions to generate addressing results of dynamic
Qddressing nstructions end {rensmil these addressing results fo the
seeond core

v

Set the second core to execute the mformalion flow codes according
to these addressing results to track the information fows of the [~ S1014
instrctions of the code blacks

— S1004

— S1006

— 51008

— 51010

- 1012

FIG. 10

US 2013/0185523 Al

DECOUPLED METHOD FOR TRACKING
INFORMATION FLOW AND COMPUTER
SYSTEM THEREOF

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application claims the priority benefit of Tai-
wan application serial no. 101101270, filed on Jan. 12, 2012.
The entirety of the above-mentioned patent application is
hereby incorporated by reference herein and made a part of
this specification.

BACKGROUND OF THE INVENTION

[0002] 1.Field of the Invention

[0003] The present invention relates to a technology for
tracking information flow, and more particularly, to a method
for tracking information flow in which a task of tracking
information flow is divided into two parts that are executed by
wo procedures and a computer system for executing the
method.

[0004] 2. Description of Related Art

[0005] Following the development of network technology,
data transmission between computers is becoming more and
more popular, such that most computers have been connected
to the Internet. This is also accompanied by the risk of net-
work attack. That is, a computer may receive untrust data and
execution of the untrust data may result in confidential data of
this computer system being stolen or the computer being used
for further network attack. There are two conventional meth-
ods for addressing this issue. In one method, the computer
system is installed with software for detection of malicious
program, which can effectively detect various statuses in the
computer system (e.g. execution of the instructions or usage
of the memory). However, the detection software is closely
coupled with the computer system, such that the malicious
program can easily bypass the detection software. The other
method is to execute the detection software outside the com-
puter system and block all network connecting operations in
this computer system. This method can prevent the malicious
program from bypassing the detection software but has a poor
idea of the statuses in the computer system. Each method has
its own advantages and shortcomings. However, a further
method has also been proposed, in which a virtual machine is
installed in the computer system and an operating system is
executed on the virtual machine. The detection software is
executed at the virtual machine monitor (VMM) level. As
such, the detection software is able to get a whole idea of the
status of any malicious program in the operating system with-
out being detected and bypassed by the malicious program.
[0006] However, the method of executing the detection
software in the VMM system has a performance issue. The
detection software must completely emulate the execution of
every instruction in the operating system to detect a register,
memory or hard disk that is tainted by the malicious program.
That is, one instruction may be executed twice, with one time
for normal execution, and the other time for emulating the
instruction and tracking the information flow of this instruc-
tion. Therefore, what is concerned by researchers in this area
1s how to effectively track the information flow.

SUMMARY OF THE INVENTION

[0007] Accordingly, the present invention is directed to a
decoupled method and computer system for tracking infor-
mation flow, which can track information flow with enhanced
efficiency.

Jul. 18, 2013

[0008] Oneembodiment of the present invention provides a
decoupled method for tracking information flow, adapted for
a computer system including a first procedure and a second
procedure. In this method, the first procedure receives mul-
tiple instructions. The first procedure divides the instructions
into at least one code block according to an executing
sequence of the instructions, and the instructions of the code
block include a plurality of dynamic addressing instructions
and a plurality of static addressing instructions. The first
procedure translates the instructions of the code block into a
plurality of information flow codes of the code block, and the
information flow codes correspond to the instructions of the
code block. The first procedure also translates the instructions
of the code block into a plurality of dynamic emulation
instructions of the code block. The first procedure transmits
the information flow codes to the second procedure. The first
procedure generates a plurality of addressing results of the
dynamic addressing instructions by executing the dynamic
emulation instructions and transmits the addressing results to
the second procedure. The second procedure executes the
information flow codes to track a plurality of information
flows of the instructions of the code block according to the
addressing results.

[0009] Inoneembodiment, the computer system includes a
shared memory, and the shared memory includes a data struc-
ture which is a first-in-first-out queue. In the step of transmit-
ting the addressing results to the second procedure by the first
procedure, the first procedure writes the addressing results
into the data structure, and the second procedure retrieves the
addressing results from the data structure.

[0010] Inoneembodiment, the dynamic emulation instruc-
tions of the code block include a plurality of emulation
executing instructions, and the emulation executing instruc-
tions correspond to the instructions of the code block. Execu-
tion of the emulation executing instructions by the first pro-
cedure is equivalent to execution of the corresponding
instructions and generates the addressing results of the
dynamic addressing instructions.

[0011] Inoneembodiment, the dynamic emulation instruc-
tions of the code block include a plurality of addressing result
transmitting instructions, and execution of the addressing
result transmitting instructions by the first procedure trans-
mits the addressing results to the second procedure.

[0012] Inoneembodiment, the dynamic emulation instruc-
tions of the code block include a plurality of counting instruc-
tions, execution of the counting instructions by the first pro-
cedure calculates a number of the instructions, and the
number of the instructions is the number of the emulation
executing instructions of the code block that have been suc-
cessfully executed.

[0013] Inoneembodiment, the dynamic emulation instruc-
tions of the code block include an instruction number trans-
mitting instruction, and execution of the instruction number
transmitting instruction by the first procedure transmits the
number of the instructions to the second procedure.

[0014] Inoneembodiment, the dynamic emulation instruc-
tions of the code block include a block serial number trans-
mitting instruction, and execution of the block serial number
transmitting instruction by the first procedure transmits a
block serial number of the code block to the shared memory.
[0015] In one embodiment, in the step of executing the
information flow codes according to the addressing results by
the second procedure, the second procedure determines a
sequence of tracking the information flows of the code block

US 2013/0185523 Al

according to the block serial number, and the second proce-
dure tracks the information flows of the code block according
to the number of the instructions.

[0016] In one embodiment, the information flow codes
comply with a multi-byte format. The multi-byte format
includes a source operand format field, a target operand for-
mat fleld, a width field, an effect field, a source operand field
and a target operand field. The source operand format field
records whether a source operand is a memory or a register.
The target operand format field records whether a target oper-
and is a memory or a register. The width field records an
operation width of an operator. The effect field records an
operation type of the operator. The source operand field
records the source operand. The target operand field records
the target operand.

[0017] In one embodiment, the information flow codes
comply with a single-byte format. The single-byte format
includes an effect field, a source operand format field, a
source operand field, a source operand offset field, a target
operand format field, a target operand field and a target oper-
and offset field. The effect field records an operation type of
an operator. The source operand format field records whether
a source operand is a memory or a register. The source oper-
and field records the source operand. The source operand
offset field records an offset amount of the source operand.
The target operand format field records whether the target
operand is a memory or a register. The target operand field
records the target operand. The target operand offset field
records an offset amount of the target operand.

[0018] Inoneembodiment, the computer system includes a
loop register, and a value of the loop register corresponds to a
base page. A plurality of virtual pages adjacent the base page
includes a siding page. In the tracking method, when the value
of the loop register changes, the first procedure further cal-
culates the corresponding base page and the siding page
according to the value of the loop register, and transmits the
value of the loop register, the physical address of the base
page, and the physical address of the siding page to the second
procedure.

[0019] Inone embodiment of the tracking method, the sec-
ond procedure further calculates the addressing results of the
dynamic addressing instructions including the loop register
according to the value of the loop register, the physical
address of the base page and the physical address of the siding
page.

[0020] In one embodiment, the computer system utilizes
TA-32 CPU architecture, and the loop register is an ebp reg-
ister.

[0021] Inoneembodiment, the computer system includes a
bit mapping chart, and in the tracking method, the second
procedure records the addresses of a tainted memory, tainted
register or tainted hard disk into the bit mapping chart during
tracking the information flows.

[0022] Viewed from another angle, one embodiment of the
present invention provides a computer system for tracking
information flow. The computer system includes a first core
and a second core coupled to the first core. The first core
receives multiple instructions and divides the instructions
into at least one code block according to an executing
sequence of the instructions. The instructions of the code
block include a plurality of dynamic addressing instructions
and a plurality of static addressing instructions. The first core
translates the instructions of the code block into a plurality of
information flow codes of the code block, the information

Jul. 18, 2013

flow codes corresponding to the instructions of the code
block. The first core further translates the instructions of the
code block into a plurality of dynamic emulation instructions
of'the code block, and transmits the information flow codes to
the second core of the computer system. The first core further
generates a plurality of addressing results of the dynamic
addressing instructions by executing the dynamic emulation
instructions and transmits the addressing results to the second
core. The second core executes the information flow codes to
track a plurality of information flows of the instructions of the
code block according to the addressing results.

[0023] In one embodiment, the computer system further
includes a shared memory coupled to the first core and the
second core. The shared memory includes a data structure
which is a first-in-first-out queue.

[0024] Inone embodiment, the first core further writes the
addressing results into the data structure, and the second core
retrieves the addressing results from the data structure.
[0025] Inoneembodiment, the dynamic emulation instruc-
tions of the code block include a plurality of emulation
executing instructions, the emulation executing instructions
correspond to the instructions of the code block, and execu-
tion of the emulation executing instructions by the first core is
equivalent to execution of the corresponding instructions and
generates the addressing results of the corresponding
dynamic addressing instructions.

[0026] Inoneembodiment, the dynamic emulation instruc-
tions of the code block include a plurality of addressing result
transmitting instructions, and execution of the addressing
result transmitting instructions by the first core transmits the
addressing results to the second core.

[0027] Inoneembodiment, the dynamic emulation instruc-
tions of the code block include a plurality of counting instruc-
tions, execution of the counting instructions by the first core
calculates a number of the instructions, and the number of the
instructions is the number of the emulation executing instruc-
tions of the at least one code block that have been successfully
executed.

[0028] Inoneembodiment, the dynamic emulation instruc-
tions of the code block include an instruction number trans-
mitting instruction, and execution of the instruction number
transmitting instruction by the first core transmits the number
of the instructions to the second core.

[0029] Inoneembodiment, the dynamic emulation instruc-
tions of the code block include a block serial number trans-
mitting instruction, and execution of the block serial number
transmitting instruction by the first core transmits a block
serial number of the at least one code block to the shared
memory.

[0030] In one embodiment, the second core further deter-
mines a sequence of tracking the information flows of the
code block according to the block serial number, and the
second core tracks the information flows of the code block
according to the number of the instructions.

[0031] In one embodiment, the information flow codes
comply with a multi-byte format. The multi-byte format
includes a source operand format field, a target operand for-
mat field, a width field, an effect field, a source operand field
and a target operand field. The source operand format field
records whether a source operand is a memory or a register.
The target operand format field records whether a target oper-
and is a memory or a register. The width field records an
operation width of an operator. The effect field records an

US 2013/0185523 Al

operation type of the operator. The source operand field
records the source operand. The target operand field records
the target operand.

[0032] In one embodiment, the information flow codes
comply with a single-byte format. The single-byte format
includes an effect field, a source operand format field, a
source operand field, a source operand offset field, a target
operand format field, a target operand field and a target oper-
and offset field. The effect field records an operation type of
an operator. The source operand format field records whether
a source operand is a memory or a register. The source oper-
and field records the source operand. The source operand
offset field records an offset amount of the source operand.
The target operand format field records whether the target
operand is a memory or a register. The target operand field
records the target operand. The target operand offset field
records an offset amount of the target operand.

[0033] Inoneembodiment, the computer system includes a
loop register, a value of the loop register corresponds to abase
page, and a plurality of virtual pages adjacent the base page
includes a siding page. When the value of the loop register
changes, the first core calculates the corresponding base page
and the siding page according to the value of the loop register,
and the first core further transmits the value of the loop
register, the physical address of the base page, and the physi-
cal address of the siding page to the second core.

[0034] In one embodiment, the second core further calcu-
lates the addressing results of the dynamic addressing instruc-
tions including the loop register according to the value of the
loop register, the physical address of the base page and the
physical address of the siding page.

[0035] In one embodiment, the computer system utilizes
IA-32 CPU architecture, and the loop register is an ebp reg-
ister.

[0036] In one embodiment, the second core includes a bit
mapping chart, and the second core records the address of a
tainted memory, tainted register or tainted hard disk into the
bit mapping chart during tracking the information flows.
[0037] In view of the foregoing, the computer system and
tracking method provided by the present invention may
divide the instructions into code blocks. The first core and the
second core perform respective operations with each code
block as a unit. As such, the amount of data transmission
between the first core and the second core is reduced. In
addition, the fire core transmits only the necessary informa-
tion, such as, the addressing results, the value of the loop
register, to the second core, thereby further reducing the
amount of data transmission between the first core and the
second core and hence enhancing the efficiency of tracking
the information flows.

[0038] Other objectives, features and advantages of the
present invention will be further understood from the further
technological features disclosed by the embodiments of the
present invention wherein there are shown and described
preferred embodiments of this invention, simply by way of
illustration of modes best suited to carry out the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0039] FIG. 1 is a block diagram of a computer system
according to one embodiment of the present invention.
[0040] FIG. 2 illustrates a code block according to one
embodiment of the present invention.

[0041] FIG. 3 illustrates a code block according to one
embodiment of the present invention.

Jul. 18, 2013

[0042] FIG. 4 illustrates categories of the instructions
according to one embodiment of the present invention.
[0043] FIG. 5A to FIG. 5D illustrate information flows of
the instructions according to one embodiment of the present
invention.

[0044] FIG. 6A illustrates a multi-byte format according to
one embodiment of the present invention.

[0045] FIG. 6B and FIG. 6C illustrate a single-byte format
according to one embodiment of the present invention.
[0046] FIG. 7 illustrates the instructions, dynamic emula-
tion instructions and information flow codes according to one
embodiment of the present invention.

[0047] FIG. 8A to FIG. 8C illustrate an offset value of the
loop register according to one embodiment of the present
invention.

[0048] FIG. 9 illustrates a code for calculating the address-
ing result according to the loop register according to one
embodiment of the present invention.

[0049] FIG. 10 is a flow chart of the tracking method
according to one embodiment of the present invention.

DESCRIPTION OF THE EMBODIMENTS

[0050] FIG. 1 is a block diagram of a computer system
according to one embodiment of the present invention.
[0051] Referring to FIG. 1, the computer system 100
includes a first core 120, a second core 140, and a shared
memory 160. The computer system 100 is used for executing
a plurality of instructions 180 and tracking information flows
ofthe instructions 180. In particular, the computer system 100
includes a first procedure and a second procedure (not
shown). In the present invention, a task of tracking informa-
tion flow is divided into parts that are executed by the first
procedure and the second procedure. For example, the first
procedure and the second procedure are two threads included
in the computer system 100. In the present embodiment, the
first procedure is executed by the first core 120, and the
second procedure is executed by the second core 140. That is,
the task of tracking information flow is performed by two
cores, thereby enhancing efficiency. Notably, in the present
embodiment, the description of tracking information flow is
made with reference to the operations of the first core 120 and
the second core 140, which is equivalent to describing how
the first procedure and the second procedure track the infor-
mation flow. That is, the first procedure includes steps per-
formed by the first core 120, and the second procedure
includes steps performed by the second core 140. On the other
hand, the computer system 100 may include more cores. For
load balance, the computer system 100 may execute the first
procedure in a core outside the first core 120, and may also
execute the second procedure in a core outside the second
core 140. The present invention is not intended to limit the
first procedure and the second procedure to be executed in a
particular core. One feature of the embodiment is that the
computer system 100 employs the first core 120 to execute the
instructions 180 (when describing operations of the first core
below, it equivalently describes the steps included in the first
core) and employs the second core 140 to perform the track-
ing steps (when describing operations of the second core
below, it equivalently describes the steps included in the
second core).

[0052] FIG. 2 illustrates the tracking of information flows
according to one embodiment of the present invention.
[0053] Referring to FIG. 2, when the computer system 100
acquires data from a network and stores the data to a first

US 2013/0185523 Al

portion 202 of a memory 200, the first portion 202 is marked
as tainted, which indicates that the data in the first portion 202
may be unsafe. If the computer system 100 then executes
some instructions such that the data in the first portion 202 is
duplicated to a second portion 204, then the second portion
204 is also marked as tainted. The computer system 100 may
also perform a calculation on the data in the first portion 202
and store the calculation result in the second portion 204. In
this case, the second portion 204 is also marked as tainted.
The present invention is not intended to limit how the second
portion 204 is tainted. On the other hand, the data of the first
portion 202 may also taint a register or a hard disk through
execution of input/output (I/0) instructions. It is noted, how-
ever, that the above exemplary devices marked as tainted are
intended to be illustrative rather than limiting. In the present
invention, the course that the first portion 202 affects the
second portion 204 is termed as information flow of the
executed instruction.

[0054] Referring again to FIG. 1, in particular, the first core
120 translates the instructions into information flow codes in
a specific format and transmits the information flow codes to
the second core 140. These information flow codes corre-
spond to the instructions 180, which include information
associated with the information flow. The second core 140 is
configured to execute these information flow codes to per-
form the steps of tracking the information flow. That is, in the
present invention, the first core 120 and the second core 140
operate in parallel, such that the first core 120 is configured to
execute the instructions 180, and the second core 140 is
configured to track the information flows to which the instruc-
tions 180 correspond, thereby enhancing the efficiency of
tracking the information flow.

[0055] The first core 120 includes a binary converter 122, a
processing unit 124 and a register 126. The binary converter
122 is used to receive the instructions 180 and divide the
instructions 180 into at least one code block according to an
executing sequence of the instructions 180. The computer
system 100 executes the instructions 180 and emulates the
information flows of the instructions 180 with each code
block as a unit. FIG. 3 illustrates a code block according to
one embodiment ofthe present invention. Referring to FIG. 3,
the code block 300 includes a plurality of instructions. It is
noted, however, that the present invention is not intended to
limit the number of the instructions in one code block as well
as the number of the code blocks divided from the instructions
180. The code block 300 includes a plurality of instructions
including dynamic addressing instructions and static address-
ing instructions. The dynamic addressing instruction refers to
such an instruction that its addressing can only be determined
during an execution period. For example, the instruction 181,
instruction 183 and instruction 184 are dynamic addressing
instructions, addressing of which can only be determined
during an execution period. On the other hand, the static
addressing instruction refers to such an instruction that its
addressing can be already determined during a compiling
period. For example, the instruction 182 is a static addressing
instruction.

[0056] The binary converter 122 further translates the
instruction 180, with each code block as a unit, into informa-
tion flow codes and transmits the information flow codes to
the second core 140. On the other hand, the binary converter
122 further converts the instructions 180, with each code
block as a unit, into dynamic emulation instructions 128 and
stores the dynamic emulation instructions 128 to the register

Jul. 18, 2013

126. The processing unit 124 is configured to execute the
dynamic emulation instructions 128 to generate information
associated with the code blocks and addressing results of the
dynamic addressing, in which the execution of the dynamic
emulation instructions 128 is equivalent to execution of the
instructions 180. For example, when the processing unit 124
executes the dynamic emulation instructions 128, it generates
the addressing results of the instructions 181, 183, 184. The
information associated with the code blocks may include a
serial number of each code block 300, which serial number is
used to determine a sequence of executing the code blocks.
The processing unit 124 further transmits the generated infor-
mation associated with the code blocks and the addressing
results to the second core 140.

[0057] The second core 140 includes a processing unit 142,
aregister 144 and a bit mapping chart 146. The second core
140 stores the received information flow codes 148 to the
register 144. According to the received addressing results, the
processing unit 142 executes the information flow codes to
track information flows of the instructions 180. On the other
hand, the processing unit 142 further stores the results of
tracking information flows of the instructions 180 to the bit
mapping chart 146. For example, the processing unit 142
stores the locations of the tainted memories, registers or hard
disks to the bit mapping chart 146. For instance, the locations
of each memory, each register or each hard disk of the com-
puter system is denoted by a bit. For example, if the bitis “1”,
it indicates the corresponding location or register is marked as
tainted. However, the present invention is not intended to
limit the results to be stored in the bit mapping chart 146 in a
particular manner. Rather, in other embodiments of the
present invention, the locations of the tainted memories, hard
disks or registers may be stored in the bit mapping chart 146
in another manner.

[0058] Inone embodiment, the first core 120 transmits the
addressing results of the dynamic addressing instructions to
the shared memory 160, and the second core 140 retrieves
these addressing results from the shared memory 160. For
example, the shared memory 160 includes a data structure
162 which is a first-in-first-out (FIFO) queue. The first core
120 transmits the addressing results to the data structure 162,
and the second core 140 retrieves the addressing results from
the data structure 162. The first core 120 writes the addressing
results to the data structure 162 in a sequence that accords
with the sequence of executing the instructions 180. In addi-
tion, because the data structure 162 is the FIFO queue, the
sequence of retrieving from the data structure 162 by the
second core 120 also accords with the sequence of executing
the instructions 180. However, in another embodiment, both
the first core 120 and the second core 140 are coupled to a bus
(not shown) through which the first core 120 transmits the
addressing results to the second core 140. Therefore, the
present invention is not intended to limit the method of trans-
mitting the addressing results from the first core 120 to the
second core 140.

[0059] 1In order to define the formats and contents of the
dynamic emulation instructions 128 in detail, the present
invention further classifies the instructions 180 into four cat-
egories and generates the information flow codes 148 accord-
ing to the categories of the instructions 180. In the present
embodiment, the computer system 100 utilizes IA-32 central
processing unit (CPU) architecture in which the instructions
180 are included in an instruction set of the IA-32 CPU.
However, the computer system 100 may also utilize another

US 2013/0185523 Al

CPU architecture in another embodiment and the present
invention has no limitations in this regard.

[0060] FIG. 4 illustrates the categories of the instructions
according to one embodiment of the present invention.
[0061] Referring to FIG. 4, the instructions 180 are classi-
fied into four categories, i.e. byte-wise overwriting 410, byte-
wise appending 420, incrementally mixed 430, and all mixed-
up 440. Each category represents a manner of information
flow. In the explanation below, A[i] denotes a byte of a target
operand, B[i] denotes a byte of a source operand, where 1
represents a location of the byte in the operand and the value
of ranges from O to n.

[0062] FIG.5A to FIG. 5D illustrate the information flows
of the instructions according to one embodiment of the
present invention.

[0063] Theinstructions classified as byte-wise overwriting
410 include instructions for merely moving register or
memory. That is, a byte of the source operand only affects a
byte of the target operand at the same location. For example,
B[O] only affects A[0], and B[n] only affects A[n]. If the
category of the instructions is byte-wise overwriting 410, it is
labeled as < ,,. Referring to FIG. 5A, the instruction “move
eax, ebx” is to duplicate the value of register ebx to the
register eax. For example, the register ebx is a 32-bit register
including bytes 502a, 50256, 502¢, and 5024. The register eax
is also a 32-Dit register including bytes 5044, 5045, 504¢, and
504d. After executing the instruction “move eax, ebx”, all
bytes in the register ebx are duplicated to the corresponding
bytes in the register eax. If the register ebx contains a tainted
byte, then the register eax also contains a tainted byte. For
example, assuming the byte 5024 is a tainted byte, then after
executing the instruction “move eax, ebx”, the byte 504a also
becomes a tainted byte. FIG. SA uses arrows to represent the
direction of information flows. For example, an arrow points
from the byte 5024 to the byte 504a, which indicates that the
byte 5024 affects the byte 504a.

[0064] The instructions classified as byte-wise appending
420 include those having a target operand and a source oper-
and that are the same. That is, A is a target operand as well as
a source operand; A[0] is affected by both of A[0] and B[0].
For an instruction classified as byte-wise appending 420, it is

labeled as & . Referring to FIG. 5B, the instruction “Xor eax,
ebx” is to perform an xor operation on the contents of the
register eax and the register ebx and store the operation results
to the register eax. Therefore, if the register ebx orthe register
eax contains a tainted byte, then the register eax also contains
a tainted byte. FIG. 5B uses arrows to represent the direction
of information flows. For example, assuming the byte 506« is
a tainted byte, then after executing the instruction “xor eax,
ebx”, the byte 5064 also becomes a tainted byte.

[0065] The instructions classified as incrementally mixed
430 include those in which a low byte affects a high byte. That
is, the high byte A[n] is not only affected by B[n], it is affected
by the low byte A[n-1] as well. For an instruction classified as
incrementally mixed 430, it is labeled as Z ,. If the register
eax and register ebx contains a tainted byte, then the register
eax also contains a tainted byte and the low byte taints the
high byte. FIG. 5C uses arrows to represent the direction of
information flows. For example, assuming the byte 5084 is a
tainted byte, then after executing the instruction “add eax,
ebx”, all the bytes 5085, 508¢, 5084 become tainted bytes.
[0066] The instructions classified as all mixed-up 440
include those instructions other than byte-wise overwriting
410, byte-wise appending 420 and incrementally mixed 430.

Jul. 18, 2013

For an instruction classified as all mixed-up 440, it is marked
as o ,. Referring to FIG. 5D, the instruction “mul ebx” is to
multiply the value of the register eax and the value of the
register ebx and store the multiplied results to the register eax
and the register edx. It is noted that, because the register eax
and the register ebx are each a 32-bit register, the multiplied
result is of 64-bit which requires two registers for storage.
FIG. 5D uses arrows to indicate the direction of information
flows. For example, if the byte 510a of the register ebx is a
tainted byte, then after executing the instruction “mul ebx”,
the bytes 5105, 510¢, 5104, 510e and 510/ all become tainted
bytes. It is noted that some arrows are omitted in FIG. 5D for
better readability.

[0067] It is noted that the above classification is exemplar-
ily described with reference to registers. However, the
instructions for accessing a memory may also be classified
into the categories described above. For example, the instruc-
tion “move eax, [ebp+0x8]” is to obtain an addressing result
by adding 0x8 to the value of the register ebp and retrieve data
from a memory to the register eax according to the addressing
result. The instruction “move ax, [ebp+0x8]” may be classi-
fied as byte-wise overwriting 410. If the memory correspond-
ing to this addressing result contains a tainted byte, then the
register eax also contains a tainted byte. On the other hand,
the value of the register ebp canonly be determined during the
execution period. Therefore, the addressing result can only be
determined during the execution period and the instruction
“move ax, [ebp+0x8]” is thus a dynamic addressing instruc-
tion. In other embodiments, the instructions 180 may also
include one for accessing any input/output (I/O) device (e.g.
hard disk) in the computer system. Therefore, the I/O devices
in the computer system are also possible to be tainted.
[0068] Having classified the instructions 180 into byte-
wise overwriting 410, byte-wise appending 420, incremen-
tally mixed 430 or all mixed-up 440, the binary converter 122
can then produce information flow codes in a specific format
according to the categories of the instruction. The informa-
tion flow codes include information associated with informa-
tion flows of the instructions 180 (e.g. which location in the
memory is to taint which register, or vice versa), and the
second core 140 tracks the information flows of the instruc-
tions 180 by executing the information flow codes.

[0069] Aninformation flow code may comply with a multi-
byte format when a corresponding instruction processes mul-
tiple bytes at the same time. For example, the instruction
“move eax, ebx” is to duplicate the four bytes in the register
ebx to the four bytes in the register eax and may comply with
a multi-byte format. FIG. 6A illustrates a multi-byte format
according to one embodiment of the present invention. Refer-
ring to FIG. 6 A, when an information flow code 602 complies
with a multi-byte format, the information flow code 602 has a
fixed length, e.g. 32 bits. The information flow code in the
multi-byte format includes a header field 610, a target oper-
and format field 620, a source operand format field 630, a
width field 640, an effect field 650, a target operand field 660,
and a source operand field 670.

[0070] The header field 610 records the format of the infor-
mation flow code 602. For example, when the header field 610
1s “007, 1t indicates that the information flow code 602 isina
multi-byte format.

[0071] The target operand format field 620 records whether
the target operand is a register or a memory. For example, the
target operand of the instruction “move ax, ebx” is the register
eax and, therefore, “0” is written into the target operand

US 2013/0185523 Al

format field 620 to indicate that the target operand is a regis-
ter. If the target operand is a memory, then “1” is written into
the target operand format field 620. The source operand for-
mat field 630 records whether the source operand is a register
or a memory. The recording manner of the source operand
format field 630 is similar to that of the target operand format
field 620 and therefore explanation thereof is not repeated
herein. However, the target operand format field 620 and the
source operand format field 630 may also use other values to
indicate whether a corresponding operand is a register or a
memory, and the present invention has no limitations in this
regard.

[0072] The width field 640 records the operation width of
an operator. For example, the operator of the instruction
“move ax, ebx”is “mov” which moves 32-bit data. Therefore,
“11” is written into the width field 640, which indicates that
the operation width of the operator is 32 bits. However, when
the operation width of the operator is another width, another
value may be written into the width field 640 to represent
another operation width, and the present invention has no
limitations in this regard. The effect field 650 records an
operation category of an operator. For example, the operation
category is byte-wise overwriting 410, byte-wise appending
420, incrementally mixed 430 or all mixed-up 440 (as shown
in FIG. 4). Other values may be written into the effect field
650 to indicate other operation categories.

[0073] The target operand field 660 records the target oper-
and. For example, the target operand of the instruction “move
ax, ebx” is the register eax and, therefore, “0x0001” may be
written into the target operand field 660 to represent the
register eax. However, the register eax may be represented by
other values, and the present invention has no limitation in
this regard. The source operand field 670 records the source
operand. The recording manner of the source operand field
670 is similar to that of the target operand field 660 and,
therefore, explanation thereof is not repeated herein. That is,
in a code block, both the source operand and the target oper-
and can be presented by respective fixed values (e.g.
“0x0001” represents the register eax). Therefore, in executing
the information flow code 602, the second core 140 can access
the source operand and the target operand according to the
source operand field 670 and the target operand field 660.

[0074] As such, in executing the information flow code
602, the second core 140 may obtain the information associ-
ated with the information flow from the width field 640 and
the effect field 650, without calculating the result of the
instruction corresponding to the information flow code 602.
For example, the information flow code 602 corresponds to
the instruction “move ax, ebx”, and in executing the informa-
tion flow code 602, the second core 140 can be aware that the
register eax may possibly be tainted by the register ebx,
without calculating the result of the instruction “move ax,
ebx”. Further, the second core 140 includes the bit mapping
chart 146 for tracking the locations of the tainted register,
memory or hard disk. Therefore, the second core 140 can
track the information flow of the instruction “move ax, ebx”
by means of the information flow code 602. Notably, the
instruction “move ax, ebx” is a static addressing instruction,
i.e. the addressing of which can be determined during a com-
piling period. Therefore, while the second core 140 is track-
ing the instruction “move ax, ebx”, the first core 120 and the
second core 140 do not need to transmit any information
therebetween. As such, the amount of information that needs
to be transmitted between the first core 120 and the second

Jul. 18, 2013

core 140 is reduced, which enables the computer system 100
to more efficiently track the information flows of the instruc-
tions 180.

[0075] However, the instructions 180 may include some
special instructions such as an instruction for duplicating a
lowest byte of the register eax to a highest byte of the register
ebx. Instructions similar to this cannot be represented by
information flow codes in the multi-byte format. Therefore, in
the present invention, the information flow codes may possi-
bly comply with a single-byte format, which can deal with
any type of information flows.

[0076] FIG. 6B and FIG. 6C illustrate a single-byte format
according to one embodiment of the present invention.
[0077] Referring to FIG. 6B, when an information flow
code 604 complies with a single-byte format, the information
flow code 604 has a fixed length, for example, 32 bits. The
information flow code 604 includes a header field 612, a
target operand format field 620, a source operand format field
630, an effect field 650, a target operand field 660, a source
operand field 670, a target operand offset field 680, and a
source operand offset field 690. The target operand format
field 620, source operand format field 630, effect field 650,
target operand field 650 and source operand field 670 have
been described above in detail and, therefore, explanation
thereof is not repeated herein.

[0078] The header field 612 records the format of the infor-
mation flow code 604. For example, when the header field 612
is “017, it indicates that the information flow code 604 is a
single-byte format.

[0079] The target operand offset field 680 records an offset
amount of the target operand. The source operand offset field
690 records an offset amount of the source operand. For
example, the information flow code 604 corresponds to the
instruction “mov ch, al” for duplicating a byte 692 of the
register eax to a byte 682 of the register 682 (as shown in FIG.
6C). That is, the offset amount of the byte 692 is not equal to
the offset amount of the byte 682. In this example, the offset
amount is calculated with respect 1o the least significant bit
(LSB). Therefore, “0x0001” is written into the target operand
offset field 680 to indicate that the offset amount of the byte
682 is one byte; “0x0000” is written into the source operand
offset field 690 to indicate that the offset amount of the byte
692 is zero byte. However, in other embodiments, the offset
amount may also be calculated with respect to the most sig-
nificant bit (MSB), the target operand offset field 680 and the
source operand offset field 690 may use other values to indi-
cate the offset amount, and the present invention has no limi-
tations in this regard.

[0080] By executing the information flow codes in the
single-byte format and multi-byte format, the second core
140 can therefore track the information flows of the corre-
sponding static addressing instructions. However, if the infor-
mation flow codes correspond to the dynamic addressing
instructions such as the instruction “mov eax, [ebp+0x8]”,
then the second core 140 further needs the addressing result of
this instruction (i.e. the calculating result of ebp+0x8) to track
the information flow of this instruction.

[0081] Referring again to FIG. 1, by executing the dynamic
emulation instructions 128, the first core 120 generates the
addressing results and the information associated with the
code blocks, which are needed by the second core 140.
[0082] FIG. 7 illustrates the instructions, dynamic emula-
tion instructions and information flow codes according to one
embodiment of the present invention.

US 2013/0185523 Al

[0083] Referring to FIG. 7, the binary converter 122 con-
verts the instructions 181 to 184, with each code block 300 as
aunit, into dynamic emulation instructions 128 and informa-
tion flow codes 148. The dynamic emulation codes 128 are
executed by the first core 120, and the information flow codes
148 are executed by the second core 140. The dynamic emu-
lation instructions 128 includes an instruction number trans-
mitting instruction, a block serial number transmitting
instruction, emulation executing instructions, counting
instructions, and addressing result transmitting instruction.

[0084] Theemulation executing instructions 703, 706, 708,
711 correspond to the instructions 181, 182, 183, 184, respec-
tively. When the first core 120 executes the emulation execut-
ing instructions, it is equivalent to execution of the corre-
sponding instructions. In addition, when the executed
emulating execution instruction is a dynamic addressing
instruction, the first core 120 generates a corresponding
addressing result. For example, when the first core 120
executes the emulation executing instruction 708, it is equiva-
lent to execution of the instruction 183 and the addressing
result (i.e. the calculating result of epb+0x8) of the instruction
183 is generated. Likewise, when the first core 120 executes
the emulation executing instruction 711, it is equivalent to
execution of the instruction 184 and the addressing result (i.e.
the calculating result of ebp+0xc) of the instruction 184 is
generated.

[0085] Theaddressing result transmitting instruction trans-
mits an addressing result to the second core 140 after an
emulation executing instruction to which a dynamic address-
ing instruction corresponds is executed. For example, the
instructions 181, 183, 184 are dynamic addressing instruc-
tions, and they correspond to the emulation executing instruc-
tions 703, 708, 711, respectively. The addressing result trans-
mitting instructions 705, 710, 713 transmit the addressing
results of the instructions 181, 183,184 to the second core 140
after the emulation executing instructions 703, 708, 711 are
executed, respectively.

[0086] The counting instructions 704, 707,709, 712 calcu-
late the number of the emulation executing instructions that
have been successfully executed by the first core 120 after the
emulation executing instructions 703, 706, 708, 711 are
executed, respectively. For example, the counting instruction
704 increases the number of instructions by one after the
emulation executing instruction 703 is executed. In this
example, the number of instructions is represented by a vari-
able “counter”. Likewise, the counting instruction 712
increases the number of instructions by one after the emula-
tion executing instruction 711 is executed. In other words, the
number of the instructions (e.g. the variable “counter”) refers
to the number of the emulation executing instructions that
have been successfully executed by the first core 120.

[0087] Theinstruction number transmitting instruction 701
is frontmost in the dynamic emulation instructions 128 to
transmit the number of the instructions (e.g. the variable
“counter”) to the second core 140. This number of the instruc-
tions refers to the number ofthe emulation executing instruc-
tions that have been successfully executed by the first core
120 till a previous emulation executing instruction (not
shown) is executed. Execution of any code may possibly
encounter an exception, such as, a page fault or interruption
by another I/0 device. Therefore, transmitting the number of
the instructions to the second core 140 enables the second
core 140 to be aware of the current executing status of the first

Jul. 18, 2013

core 120 (e.g., how many emulation executing instructions
have been successfully executed by the first core).

[0088] The block serial number transmitting instruction
702 transmits the block serial numbers of the code blocks to
which the dynamic emulation instructions 128 correspond.
That is, after dividing the instructions 180 into at least one
code block, the binary converter 122 associates each code
block with a bock serial number (e.g. the variable “block_
seq”), and the block serial number of each code block is
unique. When the first core 120 executes the block serial
number transmitting instruction 702, the first core 120 trans-
mits the corresponding block serial number (e.g. the variable
“block_seq”) to the second core 140. As such, according to
this block serial number, the second core 140 can obtain a
correct sequence of the code block and the correct informa-
tion flow codes 148 from the register 144.

[0089] Inthis embodiment, the first core 120 transmits the
addressing results, the number of the instructions and the
block serial numbers to the data structure 162 of the shared
memory 160. That is, the first core 120 writes data into the
data structure 162 using the enqueue instructions. The second
core 140 retrieves desired data from the data structure 162
using the dequeue instructions. However, in other embodi-
ments, the first core 120 can transmit data to the second core
140 through a bus (not shown) and the present invention has
no limitations in this regard.

[0090] On the other hand, the information flow codes 721,
722, 723, 724 correspond to the instructions 181, 182, 183,
184, respectively. When executing the information flow
codes, the second core 140 can therefore track the informa-
tion flows of the instructions. For example, when executing
the information flow 723, the second core 140 can track the
information flow of the instruction 183. Notably, because the
instruction 183 is a dynamic addressing instruction, the sec-
ond core 140 further needs the addressing result of the
instruction 183. However, as described above, when execut-
ing the dynamic emulation instruction 710, the first core 183
has already transmitted the addressing result of the instruc-
tion 183 to the second core 140 and, as such, the second core
140 can correctly track the information flow of the instruction
183. The contents and formats of the information flow codes
721 to 724 have been described above and therefore explana-
tion thereof is not repeated herein.

[0091] Notably, the present invention emulates the infor-
mation flows of the instructions with each code block as a
unit. Because each transmission transmits larger-sized data,
the transmission efficiency of the present invention is
enhanced in comparison with multi-transmissions with each
transmission transmitting smaller-sized data. Therefore, it is
after the first core 120 translates the instructions of one code
block into dynamic emulation instructions and information
flow codes that the first core 120 translates the information
flow codes of the code block to the second core 140. As such,
times of data transmission between the first core 120 and the
second core 140 are reduced.

[0092] Besides, the first core 120 further transmits a value
of aloop register to the second core 140. In one embodiment,
the computer system 100 utilizes the IA-32 CPU architecture
in which the ebp register is the loop register. In the IA-32
architecture, a compiler (not shown) often uses the register
ebp for addressing of a loop. For example, the instruction 183
(i.e. “mov eax, ebp+0x8”) is a common instruction. In such
architecture, the value of the ebp register does not frequently
change. The compiler adds an offset value (e.g. 0x8) to the

US 2013/0185523 Al

register ebp to achieve the addressing result. In addition, the
scope of the offset value does not exceed a predetermined
scope.

[0093] FIG. 8A to FIG. 8C illustrate an offset value of a
loop register according to one embodiment of the present
invention.

[0094] Statistical results show that the offset value of the
loop register mostly range between -1024 and +512 bytes.
This is because codes generally have a characteristic of local-
ity of reference, such that the memory used by the codes also
has the locality characteristic. Referring to FIG. 8A, if a
memory page pointed to by the value of the loop register (e.g.
the ebp register) is a virtual page 802, and the scope of the
offset value does not exceed the scope of the virtual page 802,
the addressing result can be calculated by adding the offset
value to the value of the ebp register. It is noted that the value
ofthe ebp register refers to a virtual address, while the desired
addressing result during the execution period is a physical
address. Because the sum of the value of the loop register and
the offset value does not exceed the scope of the virtual page
802, only a physical address of the virtual page 802 is needed
1o calculate the addressing result.

[0095] Referring to FIG. 8B, ifthe value of the loop register
points to an edge of the virtual page 802, the result of adding
the offset value to the value of the loop register may possibly
exceed the scope of the virtual page 802, which may, for
example, include a virtual page 806. Besides, although the
virtual address calculated by adding the offset value to the
value of the loop register is continuous, it may correspond to
different physical addresses. That is, the virtual page 802 and
virtual page 806 may correspond to different physical
addresses. [n this case, the calculation of the addressing result
would need the physical address of the virtual page 806 as
well as the physical address of the virtual page 802. Referring
to FIG. 8C, if the value of the loop register points to another
edge of the virtual page 802, the result of adding the offset
value to the value of the loop register may possibly exceed the
scope of the virtual page 802, which may, for example,
include a virtual page 804. In this case, the calculation of the
addressing result would need the physical address of the
virtual page 804 as well as the physical address of the virtual
page 802.

[0096] Ttis noted that although both the addressing results
of FIG. 8B and FIG. 8C include different virtual pages, the
number of the corresponding virtual pages does not exceed
wo because of the limited scope of the offset value. There-
fore, the present inventions sets the virtual page pointed to by
the loop register as a base page and determines an adjacent
virtual page to be a siding page according to the address of the
value of the loop register in the base page. For example, when
the loop register points to an address as shown in FIG. 8B, the
virtual page 802 is set as the base page and the virtual page
806 is set as the siding page. On the other hand, when the loop
register points to an address as shown in FIG. 8C, the virtual
page 802 is set as the base page and the virtual page 804 is set
as the siding page. That is, the siding page is surely one of the
two virtual pages adjacent the base page. The first core 120
transmits the value of the loop register, the physical address of
the base page and the physical address of the siding page to
the second core 140. The second core 140 can determine
whether the result of adding the offset value to the value of the
loop register exceeds the scope of the base page and calculate
the addressing result according to the physical addresses of
the base page and the siding page.

Jul. 18, 2013

[0097] FIG. 9 illustrates codes for calculating the address-
ing result according to the loop register in accordance with
one embodiment of the present invention.

[0098] Referring to FIG. 9, in this embodiment the ebp
register is taken as an example of the loop register. “offset” is
the offset value, “paddr_base” is the physical address of the
base page, and “paddr_siding” is the physical address of the
siding page. The code 901 determines whether the result of
adding the offset value to the ebp register exceeds the scope of
the virtual page pointed to by the ebp register. If it exceeds the
scope, the code 902 calculates a location of the virtual page
according to asum of the ebp register and the offset value, and
calculates an addressing result on the basis of a physical
address of a siding page. If it is determined that the result of
adding the offset value to the ebp register does not exceed the
scope of the virtual page pointed to by the ebp register, the
addressing result is calculated on the basis of the physical
address of the base page. More specifically, if the value of the
ebp register is Ox2{ff, then the first core 120 can determine the
virtual page 802 to be the base page and the virtual page 806
to be the siding page (as shown in FIG. 8B). If the offset value
is =3, the result of adding the offset value to the value of the
ebp register is address Ox2ffc, which does not exceed the
scope of the base page (e.g. 0x2000 to 0x2{fY). In this case, the
addressing result is calculated on the basis of the physical
address of the virtual page 802. For example, the mask for
translation between virtual and physical addresses is 0xf000,
the shift of the address Ox2ffc relative to the physical address
of the base page is 0x0Offc, and the correct addressing result
can be obtained by adding 0x0ffc to the physical address of
the base page. On the other hand, if the offset value is 3, the
result of adding the offset value to the value of the ebp register
is 0x3002, which exceeds the scope of the base page, and the
addressing result calculation is based on the siding page. For
example, the result of a mask operation on the address 0x3002
is 0x0002, and the addressing result can be obtained by add-
ing 0x0002 to the physical address of the siding page (e.g. the
virtual page 806).

[0099] As such, when an information flow code executed
by the second core 140 correspond to a dynamic addressing
instruction including the loop register, the second core 140
can calculate the addressing result according to the value of
the loop register, the physical address of the base page and the
physical address of the siding page. Therefore, the addressing
result of the dynamic addressing instruction including the
loop register does not need to be transmitted between the first
core 120 and the second core 140, thereby enhancing the
efficiency of tracking the information flow. Instead, the first
core 120 needs only to transmit the value of the loop register,
the physical address of a corresponding base page, and the
physical address of a corresponding siding page to the second
core 140. In addition, the value of the loop register does not
frequently change and, therefore, the above transmission
does not occur frequently.

[0100] On the other hand, the present invention further
provides a method for tracking information flow.

[0101] FIG. 10 is a flow chart of a tracking method accord-
ing to one embodiment of the present invention.

[0102] At step S1002, multiple instructions are received.
The instructions are divided into at least one code block
according to an executing sequence of the instructions (step
$1004). The instructions of the code blocks are then trans-
lated into information flow codes (step S1006) and the

US 2013/0185523 Al

instructions of the code blocks are translated into dynamic
emulation instructions (step S1008).

[0103] Further, at step S1010, the information flow codes
are transmitted to the second core of the computer system. At
step S1012, the first core of the computer system is then set to
execute the dynamic emulation instructions to generate
addressing results of dynamic addressing instructions and
transmit these addressing results to the second core. At step
S1014, the second core is set to execute the information flow
codes according to these addressing results to track the infor-
mation flows of the instructions of the code blocks.

[0104] The steps of this tracking method have been
described above in detail and therefore explanation thereof is
not repeated herein.

[0105] In summary, the computer system and method for
tracking information flow provided by embodiments of the
present invention enable the first core and the second core of
the computer system to operate in parallel. The instructions
are divided into code blocks, such that the times of transmis-
sion between the two cores are reduced. In addition, because
of the design of information flow codes and dynamic emula-
tion instructions, the two cores need only to transmit dynamic
addressing results therebetween. Besides, the value of the
loop register needs to be transmitted to the second core only
when it is changed, which further reduces the amount of data
transmission between the two cores. For these reasons, the
computer system can track the information flows of the
instructions with enhanced efficiency. Besides the advantage
of parallel operation, the present invention can also eliminate
the two main drawbacks of the conventional coupled task of
dynamic information flow, i.e. cache miss and poor code
translation quality, thereby increasing the performance by
over two times.

[0106] It will be apparent to those skilled in the art that
various modifications and variations can be made to the struc-
ture of the present invention without departing from the scope
or spirit of the invention. In view of the foregoing, it is
intended that the present invention cover modifications and
variations of this invention provided they fall within the scope
of the following claims and their equivalents.

What is claimed is:

1. A decoupled method for tracking information flow,
adapted for a computer system comprising a first procedure
and a second procedure, the method comprising:

receiving multiple instructions by the first procedure;

dividing the instructions into at least one code block

according to an executing sequence of the instructions
by the first procedure, the instructions of the at least one
code block comprising a plurality of dynamic address-
ing instructions and a plurality of static addressing
instructions;

translating the instructions of the at least one code block
into a plurality of information flow codes of the at least
one code block by the first procedure, the information
flow codes corresponding to the instructions of the at
least one code block;

translating the instructions of the at least one code block
into a plurality of dynamic emulation instructions of the
at least one code block by the first procedure;

transmitting the information flow codes to the second pro-
cedure of the computer system by the first procedure;

generating a plurality of addressing results of the dynamic
addressing instructions by executing the dynamic emu-

Jul. 18, 2013

lation instructions and transmitting the addressing
results to the second procedure by the first procedure;
and

setting the second procedure to execute the information
flow codes to track a plurality of information flows of the
instructions of the at least one code block according to
the addressing results.

2. The decoupled method for tracking information flow
according to claim 1, wherein the computer system comprises
a shared memory, the shared memory comprises a data struc-
ture which is a first-in-first-out queue, and the step of trans-
mitting the addressing results to the second procedure of the
computer system by the first procedure comprises:

writing the addressing results into the data structure by the
first procedure; and

retrieving the addressing results from the data structure by
the second procedure.

3. The decoupled method for tracking information flow
according to claim 1, wherein the dynamic emulation instruc-
tions of the at least one code block comprise a plurality of
emulation executing instructions, the emulation executing
instructions corresponding to the instructions of the at least
one code block, and execution of the emulation executing
instructions by the first procedure is equivalent to execution
of the corresponding instructions and generates the address-
ing results of the dynamic addressing instructions.

4. The decoupled method for tracking information flow
according to claim 3, wherein the dynamic emulation instruc-
tions of the at least one code block comprise a plurality of
addressing result transmitting instructions, and execution of
the addressing result transmitting instructions by the first
procedure transmits the addressing results to the second pro-
cedure.

5. The decoupled method for tracking information flow
according to claim 3, wherein the dynamic emulation instruc-
tions of the at least one code block comprise a plurality of
counting instructions, execution of the counting instructions
by the first procedure calculates a number of the instructions,
and the number of the instructions is the number of the emu-
lation executing instructions of the at least one code block that
have been successfully executed.

6. The decoupled method for tracking information flow
according to claim 5, wherein the dynamic emulation instruc-
tions of the at least one code block comprise an instruction
number transmitting instruction, and execution of the instruc-
tion number transmitting instruction by the first procedure
transmits the number of the instructions to the second proce-
dure.

7. The decoupled method for tracking information flow
according to claim 6, wherein the dynamic emulation instruc-
tions of the at least one code block comprise a block serial
number transmitting instruction, and execution of the block
serial number transmitting instruction by the first procedure
transmits a block serial number of the at least one code block
to the shared memory.

8. The decoupled method for tracking information flow
according to claim 7, wherein the step of executing the infor-
mation flow codes according to the addressing results by the
second procedure comprises:

determining a sequence of tracking the information flows

of the at least one code block according to the block
serial number by the second procedure; and

US 2013/0185523 Al

tracking the information flows of the at least one code
block according to the number of the instructions by the
second procedure.

9. The decoupled method for tracking information flow
according to claim 1, wherein the information flow codes
comply with a multi-byte format, the multi-byte format com-
prising:

a source operand format field for recording whether a

source operand is a memory or a register;

atarget operand format field for recording whether a target

operand is a memory or a register;

a width field for recording an operation width of an opera-

tor,

an effect field for recording an operation type of the opera-

tor;

a source operand field for recording the source operand,

and

a target operand field for recording the target operand.

10. The decoupled method for tracking information flow
according to claim 1, wherein the information flow codes
comply with a single-byte format, the single-byte format
comprising:

an effect field for recording an operation type of an opera-

tor;

a source operand format field for recording whether a

source operand is a memory or a register;

a source operand field for recording the source operand,

asource operand offset field for recording an offset amount

of the source operand,

a target operand format field for recording whether the

target operand is a memory or a register;

a target operand field for recording the target operand; and

a target operand offset field for recording an offset amount

of the target operand.
11. The decoupled method for tracking information flow
according to claim 1, wherein the computer system comprises
a loop register, a value of the loop register corresponds to a
base page, a plurality of virtual pages adjacent the base page
comprises a siding page, and the tracking method further
comprises:
when the value of the loop register changes, calculating the
corresponding base page and the siding page by the first
procedure according to the value of the loop register; and

transmitting the value of the loop register, the physical
address of the base page, and the physical address of the
siding page to the second procedure by the first proce-
dure.

12. The decoupled method for tracking information flow
according to claim 11, comprising;

calculating the addressing results of the dynamic address-

ing instructions comprising the loop register by the sec-
ond procedure according to the value of the loop register,
the physical address of the base page and the physical
address of the siding page.

13. The decoupled method for tracking information flow
according to claim 12, wherein the computer system utilizes
IA-32 CPU architecture, and the loop register is an ebp reg-
ister.

14. The decoupled method for tracking information flow
according to claim 1, wherein the computer system comprises
a bit mapping chart, and the tracking method further com-
prises:

Jul. 18, 2013

recording the addresses of a tainted memory, a tainted
register or a tainted hard disk into the bit mapping chart
by the second procedure during tracking the information
flows.

15. A computer system for tracking information flow, com-

prising:

a first core for receiving multiple instructions and dividing
the instructions into at least one code block according to
an executing sequence of the instructions, the instruc-
tions of the at least one code block comprising a plurality
of dynamic addressing instructions and a plurality of
static addressing instructions; and

a second core coupled to the first core;

wherein the first core translates the instructions of the at
least one code block into a plurality of information flow
codes ofthe at least one code block, the information flow
codes corresponding to the instructions of the at least
one code block;

wherein the first core translates the instructions of the at
least one code block into a plurality of dynamic emula-
tion instructions of the at least one code block;

wherein the first core transmits the information flow codes
to the second core;

wherein the first core generates a plurality of addressing
results of the dynamic addressing instructions by
executing the dynamic emulation instructions and trans-
mits the addressing results to the second core; and

wherein the second core executes the information flow
codes to track a plurality of information flows of the
instructions of the at least one code block according to
the addressing results.

16. The computer system according to claim 15, further

comprising:

a shared memory coupled to the first core and the second
core, the shared memory comprising a data structure
which is a first-in-first-out queue, wherein the first core
writes the addressing results into the data structure; and
the second core retrieves the addressing results from the
data structure.

17. The computer system according to claim 15, wherein
the dynamic emulation instructions of the at least one code
block comprise a plurality of emulation executing instruc-
tions, the emulation executing instructions correspond to the
instructions of the at least one code block, and execution of
the emulation executing instructions by the first core is
equivalent to execution of the corresponding instructions and
generates the addressing results of the dynamic addressing
instructions.

18. The computer system according to claim 17, wherein
the dynamic emulation instructions of the at least one code
block comprise a plurality of addressing result transmitting
instructions, and execution of the addressing result transmit-
ting instructions by the first core transmits the addressing
results to the second core.

19. The computer system according to claim 18, wherein
the dynamic emulation instructions of the at least one code
block comprise a plurality of counting instructions, execution
of the counting instructions by the first core calculates a
number of the instructions, and the number of the instructions
is the number of the emulation executing instructions of the at
least one code block that have been successfully executed.

20. The computer system according to claim 19, wherein
the dynamic emulation instructions of the at least one code
block comprise an instruction number transmitting instruc-

US 2013/0185523 Al

tion, and execution of the instruction number transmitting
instruction by the first core transmits the number of the
instructions to the second core.

21. The computer system according to claim 20, wherein
the dynamic emulation instructions of the at least one code
block comprise a block serial number transmitting instruc-
tion, and execution of the block serial number transmitting
instruction by the first core transmits a block serial number of
the at least one code block to the shared memory.

22. The computer system according to claim 21, wherein
the second core determines a sequence of tracking the infor-
mation flows of the at least one code block according to the
block serial number; and the second core tracks the informa-
tion flows of the at least one code block according to the
number of the instructions.

23. The computer system according to claim 15, wherein
the information flow codes comply with a multi-byte format,
and the multi-byte format comprises:

a source operand format field for recording whether a

source operand is a memory or a register;

atarget operand format field for recording whether a target

operand is a memory or a register;

awidth field for recording an operation width of an opera-

tor;

an effect field for recording an operation type of the opera-

tor;

a source operand field for recording the source operand,;

and

a target operand field for recording the target operand.

24. The computer system according to claim 15, wherein
the information flow codes comply with a single-byte format,
and the single-byte format comprises:

an effect field for recording an operation type of an opera-

tor,

Jul. 18, 2013

a source operand format field for recording whether a

source operand is a memory or a register;

a source operand field for recording the source operand,

asource operand offset field for recording an offset amount

of the source operand,

a target operand format field for recording whether the

target operand is a memory or a register;

a target operand field for recording the target operand; and

a target operand offset field for recording an offset amount

of the target operand.

25. The computer system according to claim 15, wherein
the computer system comprises a loop register, a value of the
loop register corresponds to a base page, a plurality of virtual
pages adjacent the base page comprises a siding page, when
the value of the loop register changes, the first core calculates
the corresponding base page and the siding page according to
the value of the loop register, and the first core transmits the
value of the loop register, the physical address of the base
page. and the physical address of the siding page to the second
core.

26. The computer system according to claim 25, wherein
the second core calculates the addressing results of the
dynamic addressing instructions comprising the loop register
according to the value of the loop register, the physical
address of the base page and the physical address of the siding
page.

27. The computer system according to claim 26, wherein
the computer system utilizes IA-32 CPU architecture, and the
loop register is an ebp register.

28. The computer system according to claim 15, wherein
the second core comprises a bit mapping chart, and the second
core records the addresses of a tainted memory, tainted reg-
ister or tainted hard disk into the bit mapping chart during
tracking the information flows.

* 0k %k k%

