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Abstract

International air cargo is an operation-intensive industry, involving complex procedures and many players. As an
important player, airfreight forwarders need to consolidate the collected goods skillfully in order to satisfy the require-
ments of the shippers and, at the same time minimize the expense charged by the airlines. However, the air cargo rate struc-
ture is very complicated, making the consolidation a difficult mixed-integer programming problem for the airfreight
forwarder. In this paper, the consolidation problem is first transformed into a well-known set covering problem by treating
a feasible consolidated shipment as a set. Lagrangian Relaxation is used as the backbone to develop a recursive heuristic
algorithm. Based on the numerical experiment, the heuristic algorithm generates solutions very close to optimality. In par-
ticular, a sensitivity analysis is performed with respect to the degree of concavity. The results suggest that the solution algo-
rithm can be used as a core module of the decision support system for air cargo consolidation.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Due to world trade liberalization and global logistics operation, the air cargo industry has been booming
for the past decade, and recent forecasts project a very promising development for the next two decades. For
example, one aircraft manufacturer (Boeing, 2004) estimates that the average yearly growth rate is as high as
6.2%. In particular, a remarkable traffic volume increase is expected for the Asia-Pacific region, due to the
global logistics operation of high-tech manufacturing firms in the region. The growth rates for traffic related
to Asian markets will exceed the world average, and the share of world-wide air cargo traffic for the region will
increase from 47.6% to 59.4% by 2023. However, given these promising projections, it will be a challenge to
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raise the efficiency of the industry to meet this demand. International air cargo is an operation-intensive indus-
try, which involves complex procedures and many players. Airfreight forwarders play an important role in the
whole process. They are the air service providers to the shippers as well as the consumers to the air airlines.

Airfreight forwarders need to consolidate the collected shipments skillfully in order to satisfy the require-
ment of the shippers, and at the same time minimize the expense charged by the airlines. In general, local air-
freight forwarders make the consolidation arrangements manually based on their experience. However, the air
cargo rate structure is very complicated. It takes into account both the weight and the volume of the shipments.
In addition, the airlines usually provide a significant quantity discount. These characteristics make the air-
freight forwarder consolidation problem (AFCP) of this study a very difficult mathematical programming
problem. Past studies have applied mixed integer programming (MIP) to model this problem. However, owing
to the inherent computational load of MIP, it is hard to solve large-scale problems within a practical time.

The goal of this study is to develop a suitable algorithm as the core module of the decision support system
for air cargo consolidation. The AFCP is first transformed into a well-known set covering problem (SCP) by
treating a feasible consolidated shipment as a set. The Lagrangian Relaxation, a successful approach for SCP
reported in prior researches, is used as the backbone to develop a recursive heuristic algorithm. However, the
space of the potential sets in the SCP is huge, as there are numerous ways to consolidate the collected cargo
items. Thus, the solution space, consisting of a limited number of permissible consolidated shipments, is ini-
tially generated and adjusted through the iterative solution procedure. In addition, to raise the computational
efficiency and solution quality, technical issues (such as feasible solution realization, Lagrangian multiplier
update, and solution space adjustment) are examined carefully, and the solution algorithm is tuned accord-
ingly. Finally, a series of numerical experiments are performed to verify the solution algorithm.

This paper is organized as follows: the next section provides the background of the problem, and in par-
ticular elaborates upon the special features of the air cargo rating system. In addition, the MIP model of
the AFCP is presented, and related previous researches are reviewed. In Section 3, the development of the
solution algorithm is explained in detail, including the transformation of an AFCP into an SCP, the proce-
dures in the recursive algorithm, and the stopping criteria. The numerical experiment and the results of the
sensitivity analysis are described in Section 4. Finally, the findings of this study are concluded in Section 5.

2. Problem backgrounds and prior researches

2.1. Characteristics of the air freight forwarder consolidation problem

Due to the mode characteristics of air transportation, the air cargo rating system takes into account the
volume of the shipment, in addition to its gross weight. The so-called volume weight is derived by dividing
the volume in cm3 by a constant 6000 cm3/kg, currently adopted by the industry. The chargeable weight is
then the greater of the gross weight and the volume weight. Therefore, there is an incentive for airfreight for-
warders to combine the air cargo items, later referred to as items, from different shippers into a consolidated
shipment, as the overall chargeable weight of a consolidated shipment with low-density items and high-density
items is less than the sum of the chargeable weights of the individual items.

Airlines usually offer quantity discount to air freight forwarders based on the chargeable weight described
above. The cost curve in Fig. 1 is a numerical example, in which the rates are $30/kg, $20/kg, and $18/kg for
the shipments less than 45 kg, less than 100 kg, and greater than 100 kg, respectively. However, in order to
keep the cost curve remain monotonously non-decreasing, shipments between 30 kg and 45 kg are charged
as 45 kg for $20/kg, causing the marginal cost within the range to be zero. Similarly, shipments greater than
90 kg are charged as 100 kg for $18/kg. The weights such as 30 kg and 90 kg in this example are called the
weight breaks in the air cargo industry. Finally, for the purpose of mathematical modeling, the weight ranges
in terms of marginal cost are later referred to as rate segments. For example, there are five segments in this
example.

Quantity discount provides another incentive for air freight forwarders to consolidate the shipments. How-
ever, given multiple available flights with possibly different cost curves and multiple items with various gross
weights and volume weights, air freight forwarders must consolidate the items very carefully to minimize the
expenses charged by the airlines while satisfying the shippers’ requirement and preferences.
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Fig. 1. Numerical example for quantity discount of the air cargo rating system.
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2.2. Mathematical programming model

There have been some researches regarding the operation of air freight forwarders. For example, Jaeger
(1976) dealt with the airfreight consolidation problem in the United States with a cost curve similar to the
one in Fig. 1. In the formulation, routing decisions are incorporated, but the conversion of volume weights
is not considered. To cope with the operational decisions of air freight forwarders in Hong Kong, Xue and
Lai (1997) developed a container rental and cargo shipment problem by MIP formulation. Wu (2003) devel-
oped the following MIP model to incorporate the problem features described in the previous subsection.

• n: maximum number of items;
• i: indices of items (i = 1, . . . ,n, assuming I is the set of all items);
• m: maximum number of flights;
• j: indices of flights (j = 1, . . . ,m, assuming J is the set of all flights);
• Mi: set of all flights allowed to deliver items i (Mi � J, "i);
• l: maximum number of rate segments;
• k: indices of rate segments (k = 1, . . . , l, assuming K is the set of all rate segments);
• Rjk: rate of segment k for flight j;
• Gi: gross weight of item i;
• Vi: volume weight of item i;
• Xjk: ending point of segment k for flight j; where Xj0 = 0, "j;
• zij: binary decision variable representing item i is assigned to flight j;
• yjk: decision variable representing the chargeable weight of segment k for flight j;
• wjk: binary decision variable representing yjk reaches the maximum value
Min
Xm

j¼1

Xl

k¼1

Rjk � yjk ð1Þ

X
j2Mi

zij ¼ 1 8i 2 I ð2Þ

Xl

k¼1

yjk �
Xn

i¼1

zij � Gi P 0 8j 2 J ð3Þ

Xl

k¼1

yjk �
Xn

i¼1

zij � V i P 0 8j 2 J ð4Þ

yjk � wjðk�1Þ � ðX jk � X jðk�1ÞÞ 6 0 8j 2 J ; 8k ¼ K � f1g ð5Þ
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yj1 � ðX j1 � X j0Þ 6 0 8j 2 J ð6Þ
yjk � wjk � ðX jk � X jðk�1ÞÞP 0 8j 2 J ; 8k 2 K ð7Þ
zij;wjk binary ð8Þ
yjk P 0 ð9Þ
The objective function (1) is to minimize the total expense, which is derived by adding the charges for all seg-
ments of all flights (weight yjk multiplied by rate Rjk). In particular, some of the Rjk‘s are zero to reflect the flat
(zero marginal cost) region of the cost curve as shown in Fig. 1. Constraint (2), with the binary variable zij,
specifies that each item i must be assigned to one of the qualified flights represented by the set Mi. Constraint
(3) and Constraint (4) ensure that, for each flight, the chargeable weight is the greater of the gross weight and
the volume weight of the consolidated shipment. Constraint (5) regulates that the segment weight (yjk) must be
within the segment range (Xjk � Xj(k�1)) on the condition that the weight of the previous segment has reached
the maximum, i.e., wj(k�1) = 1, otherwise the segment weight has to be zero. Constraint (6) is a special case of
the first segment for Constraint (5). Constraint (7) is used to justify the meaning of the binary variable wjk. As
long as the segment weight has reached the maximum, i.e., yjk = Xjk � Xj(k�1), the binary decision variable wjk

is free to be 1. In general, the relation wjk(Xjk � Xj(k�1)) 5 yjk 5 wj(k�1)(Xjk � Xj(k�1)) should hold for each seg-
ment based on Constraint (5) and Constraint (7). These constraints ensures that the decision variables repre-
senting the segment weights (yjk’s) follow the cost curve, which includes the segments with generally decreasing
marginal cost and one flat (zero-marginal cost) segment between them. Finally, Constraint (8) describes that
the item-flight assignments zij’s and the maximum segment volume indicators wjk’s are binary decision vari-
ables, and Constraint (9) describes that the segment weights yjk’s are non-negative real decision variables.
2.3. Prior related researches

The above formulation is a difficult MIP problem. In general, there are two approaches to solve this kind of
problem, exact-solution algorithms and heuristics. For the former, branch-and-bound (such as Horst and
Thoai, 1998) and dynamic programming (such as Ward, 1999) are typical examples. This approach usually
involves a high computational load and is applicable to small-scale problems. For example, in Wu (2003), with
the optimization package LINGO, the AFCP as (1)–(9) can be solved within a reasonable operational time if
the problem size is smaller than the assignment of 5 flights and 60 items.

On the other hand, heuristics greatly alleviate the computational load and are more suitable for the prob-
lems with practical size, though the solution generated is not guaranteed to be optimal. There have been var-
ious kinds of methods that were heuristically developed to handle different kinds of problems. For example,
Jordan (1986) applied successive marginal cost approximation to model a concave cost curve. Both Larsson
et al. (1994) and Amiri and Pirkul (1997) made use of Lagrangian relaxation to design a solution algorithm. In
addition, some researches tried combinatorial optimization techniques, such as the tabu search in Yan and
Luo (1998). For a summary of solution algorithms, Horst et al. (2000) serve as an excellent reference.

Instead of solving the problem directly, many researches have tried to transform the problem into some
other well-known problem. For example, some scheduling problems (e.g., the airline crew scheduling problem)
and routing problems (e.g., the vehicle dispatching problem) have been transformed to the classical set cov-
ering problem (SCP). For example, Irnich (2000) described how a multiple-location pickup-delivery problem
is transformed into a SCP before the solution is derived. The key benefit of this transformation is to take
advantage of the solving techniques of the well-studied classical SCP such as the Lagrangian relaxation in
Caprara et al. (1999). The main theme of the research in the present paper follows this concept. The whole
solution algorithm is presented in the following section.
3. Development of the solution algorithm

To illustrate the development of the solution algorithm, several key design concepts are expanded upon,
including the transformation of the AFCP to an SCP-type problem, the Lagrangian-relaxed solution, and
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the adjustment of the solution space. At the end, the stopping criterion of the recursive algorithm is discussed,
and a summary of the solution algorithm is presented.
3.1. Transformation of the consolidation problem into the set covering problem

By treating a consolidated shipment, later referred to as a consolidation combination or simply a combina-

tion, for a specific flight as a set, the AFCP of (1)–(9) can be transformed into a problem very similar to a
classical SCP as follows:

• i: indices of items (i = 1, . . . ,n, assuming I is the set of all items);
• k: indices of consolidation combinations (assuming K is the set of all possible combinations);
• Nj: set of all permissible consolidation combinations for flight j;
• Ck: cost of combination k;
• aik: binary constant; aik = 1 if item i is in the combination k, and aik = 0 if otherwise;
• xk: binary decision variable representing that combination k is selected
Min
X
k2K

Ckxk ð10Þ
X
k2K

aikxk P 1 8i 2 I ð11Þ
X
k2Nj

xk 6 1 8j 2 J ð12Þ

xk; binary ð13Þ
The objective function (10) is to minimize the total expense by combining the costs of the selected combi-
nations. Constraint (11) ensures that each item is incorporated in at least one of the selected combinations.
Especially as the set covering problem (SCP) is generally easier to solve than the set partitioning problem
(SPP), the greater-or-equal-to sign is used in (11), instead of the equal sign. As it is thus possible that
one item can be included in multiple selected combinations, extra steps must be taken to eliminate redun-
dancy in the solution algorithm so as to correct this situation. Eq. (12) is not a typical constraint in a clas-
sical SCP. It requires that at most one consolidation combination can be selected for each flight. Technically,
multiple shipments from one forwarder can be carried by a single flight. However, given the typical cost
curve in Fig. 1, the overall cost is lower if they are combined as one big shipment. In addition, limiting
one combination for each flight can ensure the weight of the consolidation shipment does not exceed the
capacity allocated to a forwarder. Finally, in Constraint (13), the binary variable xk represents the choice
of the consolidation combinations.
3.2. Determination of the Lagrangian relaxed solution

The above SCP-type problem (10)–(13) can be re-formulated, similar to the approach in Caprara et al.
(1999), by relaxing Constraint (11) to derive the following Lagrangian relaxed problem. As Constraint (11)
can be written as 1�

P
aikxk 6 0, the associated Lagrangian multipliers needs to be greater than or equal

to zero, given the minimization objective function. As for the initial value of the Lagrangian multiplier
for each item, it is set as the cost if the item were shipped individually on the least expensive permissi-
ble flight. The values of the Lagrangian multipliers are updated, as described in Section 3.3, and become
smaller through iterations as good combinations are formed to take into account the benefit of
consolidation.

• ui: Lagrangian multiplier for item i, where ui P 0 "i; u is the column vector consisting of all Lagrangian
multipliers;

• Ik: set of items covered by combination k, i.e., Ik = {i 2 I: aik = 1}
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LðuÞ ¼Min
X
k2K

ckðuÞxk þ
X
i2I

ui ð14Þ
X
k2Nj

xk 6 1 8j 2 J ð15Þ

xk; binary ð16Þ
where ckðuÞ ¼ Ck �

X
i2Ik

ui 8k 2 K ð17Þ
This Lagrangian relaxed problem is very similar to a typical Lagrangian relaxed SCP as in Caprara et al. (1999),
except for Constraint (15). If only the objective function (14) and Constraint (16) are considered, then all the
combinations with negative ck(u) are selected, i.e., xk = 1 for ck(u) 6 0. However, to take Constraint (15) into
account, only the most negative one is selected if multiple combinations are with negative ck(u). In terms of com-
putational consideration, this decision rule can be implemented by sorting the values of ck(u)’s for all combina-
tions. Conceptually, the value of ck(u) can be viewed as how well combination k is made. The more negative the
value is, the better the combination is. Based on Eq. (17), the value of ck(u) is computed by subtracting the sum of
the associated Lagrangian multipliers from the expense charged for combination k. It is worth noting that the
Lagrangian multipliers are related to the dual variables. If they are interpreted as the fair prices for delivering the
items individually in the open market, the difference in (17) can be thought of as the cost saving for choosing a
specific combination. Therefore, the more negative the value is, the more desirable the combination is.

One alternative way to relax the problem (10)–(13) is to focus the special Constraint (12), which allows at
most one set to be chosen for each flight. The resulted problem turns out to be a typical SCP with modified set
costs. However, SCP is a relatively difficult integer programming problem when compared to above relaxed
problem, which can be solved by a simple sorting procedure. In addition, as the ranked list from the sorting
procedure represents how desirable the combinations are, it is in fact re-used in adjusting the solution space, as
described in Section 3.4, to fully take advantage of the computational effort in the sorting procedure.
3.3. Realization of the feasible solution and updating of the Lagrangian multipliers

As Constraint (11) is relaxed, the Lagrangian relaxed solution derived from the previous subsection is gen-
erally infeasible as some items may not be covered by the selected combinations. In general, the feasible solu-
tion in a Lagrangian relaxation based approach can be derived from the relaxed solution. In finding such a
feasible solution, the degradation in the objective function value is supposed to be minimized. However,
the procedure to obtain the feasible solution should not be too complicated so as not to result in a heavy com-
putational load. This study proposes a relatively simple procedure, which tries to replace one selected combi-
nation by another unselected combination. Given the ranked list of the combinations derived by sorting the
values of ck(u)’s, the unselected combination with the least increase for the objective function value across all
flights is examined first. The examined combination is introduced to replace the selected combination of the
same flight, if the covered items remained covered, and at least one more uncovered item becomes covered.
Otherwise, this combination is discarded, and the next combination causing the least increase of the objective
function value in the list is considered. The procedure is terminated if the modified solution becomes feasible,
or if there is no unselected combination left.

In the above procedure, a feasible solution is not guaranteed. However, to reduce computation complexity,
an unselected combination is discarded if it does not pass the examination. Thus, the examination for each
unselected combination can only possibly be performed once, and the number of possible examinations is
at most equal to the number of combinations. As described in the next subsection, the number of combina-
tions is limited, and thus the computational load is significantly reduced. To cope with the problem of failing
to generate a feasible solution, the incumbent best solution is recorded across iterations in the iterative solu-
tion algorithm.

The objective function value of the feasible solution and that of the Lagrangian relaxed problem are
denoted by B and L(u), respectively, and they are used in updating the Lagrangian multipliers according to
the following equations (Held and Karp, 1970).
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• t: index for iteration;
• Ki: set of combinations covering item i, i.e., Ki = {k 2 K: aik = 1};
• s(u): vector used to update Lagrangian multipliers, where si(u) is the ith element of the vector for item i
siðutÞ ¼ 1�
X
k2Ki

xkðutÞ 8i 2 I ð18Þ

utþ1
i ¼ max ut

i þ k
Bt � LðutÞ

sðutÞk k2
siðutÞ; 0

( )
8i 2 I ð19Þ
The direction for updating the Lagrangian multipliers is computed as in (18), where xk(ut) is the Lagrangian
relaxed solution of (14)–(17) for the current iteration. Given the direction, the step size is determined as in (19)
by taking into account the gap between the objective function values of the feasible solution and the relaxed
solution, the magnitude of the direction vector, and a pre-determined constant k, which can also be adjusted
dynamically based on problem characteristics. For the numerical experiment described later, it is chosen as
0.1. In addition, Lagrangian multipliers are forced to be greater or equal to zero in the process.

3.4. Adjustment of solution space

Although the AFCP can be transformed into an SCP-type problem, the number of possible combinations is
tremendous when the problem size is increased. For example, for the problem with 5 flights and 20 items, the
number of possible combinations is up to 5 · 220. Therefore, instead of generating all the possible combina-
tions, only a limited number of combinations are generated initially. This partial set of possible combinations,
later referred to as the solution space, is adjusted in the recursive solution algorithm based on the information
derived in each iteration. The adjustment procedure is designed to maintain a list of good combinations, which
serves as a basis to produce a solution with good quality. In the following sub-subsections, the generation of
the initial solution space is explained first. Then, the steps for removing the poor combinations from the list
are described. Finally, the ideas for finding the potentially well-arranged combinations are presented.

3.4.1. Introduction of the initial solution space

To generate a good feasible solution in the initial solution space, all the items are sorted according to their
densities. Each item in this sorted list is sequentially assigned to a flight, chosen in a manner from j = 1 (the
first flight) to j = m (the last flight) and then moving backward from j = m to j = 1. However, the limitation
and preference for item-flight assignment is taken into consideration. If there is a prohibited item-flight assign-
ment, the specific flight is skipped for one time. In addition, if a flight has reached its capacity, it is excluded
from further assignment. The goal of this procedure is to generate initial permissible consolidation combina-
tions with a relatively good mix of high- and low-density items. If a feasible solution is not generated from this
process, some post-processing is required to derive a feasible solution contained the initial solution space.
Finally, in order not to be confined by the initial solution, for each flight, the combinations consisting of each
one item and the combinations consisting of the maximum number of items are also included in the initial
solution space.

3.4.2. Removal of non-promising combinations

As explained earlier, conceptually the value of ck(u) can be viewed as an indicator or a score of how desir-
able the combination k is. Through iterations, the score may change as the Lagrangian multipliers are updated
constantly. To acquire a general estimation of the desirability of a combination, a concept similar to exponen-
tial smoothing for time series forecast is applied (Neter et al., 1993, p. 807). Given a pre-determined constant a,
the old smoothed score is multiplied by (1 � a) and then added to the newly derived ck(u) multiplied by a for
each iteration. (For the numerical experiment described later, it is chosen as 0.2.) This new smoothed score is
used as the yardstick to determine whether a combination should be kept in the solution space. After sorting
these scores, only a limited number of combinations (e.g., 20 per flight in the following numerical experiment)
with top-ranking scores survive for the next iteration, and the rest of the combinations are removed from the
solutions space to keep the computation tractable.
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3.4.3. Generation of promising combinations

The surviving combinations serve as the basis to generate new promising combinations by attempting to
add one more specific item to, or removing a specific item from the surviving combinations. Based on
Eq. (18), the item with the largest si(u) is chosen as the adding item. Similarly, the one with the smallest
si(u) is chosen as the subtracting item. As defined in Eq. (18), s(u) is not only interpreted as the deviation from
the equality in the relaxed Constraint (11), it is also the vector used in updating the Lagrangian multipliers in
Eq. (19). Therefore there is a better chance of generating a combination with more negative ck(u) by adding an
item with a high si(u) according to Eqs. (19) and (17). Likewise, if an item with a low si(u) is removed from the
existing combinations, the newly generated one is more likely to have a more negative ck(u). Particularly, while
determining the adding/subtracting items, ties are broken randomly to increase the chance of generating
potentially good combinations.

Since these combinations have been sorted based on the value of ck(u) while solving the Lagrangian relaxed
problem, an attempt to generate new combinations can easily be carried out from the top of the ranked list.
For each flight, this attempt stops if the number of total combinations exceeds a pre-determined limit. One
reason for limiting the number of new combinations generated is to reduce the computational load. An equally
important reason is that it is less likely to generate good combinations when based on the combinations at the
bottom of the list.

3.5. Stopping criteria and a summary of the solution algorithm

The whole solution algorithm is summarized as a flowchart in Fig. 2. The stopping criteria in particular
needs to be further addressed. Generally speaking, the solution algorithm of a Lagrangian relaxation problem
terminates if the upper bound from the feasible solution and the lower bound from the relaxed problem are
identical. When this does not happen, the algorithm usually stops if it is found that the gap between the upper
bound and the lower bound is within an acceptable value, which is usually relatively small.
Modify infeasible solution

1. Generate the initial solution space 
2. Generate the initial Lagrangian multipliers u

1. Compute and sort the ck(u )’s of combinations 
2. Solve the Lagrangian relaxed problem 
3. Compute the si(u)’s of items 

Solution feasible?

1. Derive SCP solution and upper bound 
2. Update Lagrangian multipliers u

No

Modify SCP solution for SPP solution 

Meet stopping criteria?

Stop

Adjust solution space 
1. Remove poor combinations 
2. Generate promising combinations 

Yes 

No

Yes 

Fig. 2. Flowchart of the solution algorithm.
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Based on the key ideas of the solution algorithm described in the previous sub-sections, the lower bound is
only valid for the SCP problem in each iteration, and it is not valid for the original consolidation problem. The
reason for this is that the solution space only contains a partial set of possible combinations. Thus, the stop-
ping criteria must be adjusted even though the upper bound remains valid.

This study chooses to stop the iterative solution algorithm based on the number of iterations performed,
similar to the criterion used in some tabu search algorithms, such as Taillard (1993). In the numerical exper-
iment presented as an example in the next section, the stopping criterion is set at 500–900 iterations. Generally
speaking, the number of iterations required is increased slightly for a larger size problem.
4. Numerical experiment

The test problems of the numerical experiment are designed based on randomly generated cargo item infor-
mation. They are solved by the heuristic algorithm described in the previous section, and the objective func-
tion value derived is compared with that of the optimal solution, which is obtained by using the LINGO
optimization package to solve the AFCPs (1)–(9).

To vary the problem size, the number of items is set to be 20, 30, 40, 50, and 60 with the corresponding
number of flights set to be 2, 3, 4, 5, and 6. For each problem size, the gross weights and volume weights
for 10 groups of items are created by the random number generator in the EXCEL package with the param-
eters specified in Table 1. The range for the densities of the items is between 0.3 to 3.0, and the overall density
of all items is close to 1. Assuming the rate structures are the same for all flights, there are two levels of quan-
tity discount. The rate differences are $2 and $5, respectively, as shown in Table 2. Finally, no limitation is
imposed on the item-flight assignment, and the capacities for all flights are 1500 kg.

The solution quality is presented in terms of percentage for the heuristic solution with respect to the optimal
solution. The average and the worst case of the 10 test problems for each problem size are summarized in
Fig. 3. When the rate difference is as small as $2, the average deviations from optimality for all the problem
sizes are within 0.5%, and, even for the worst case, the maximum gaps are all less than 1%. The average gap for
all 50 test problems is 0.29%, and it appears that the solution quality is not sensitive to problem size.

When the rate difference is increased to $5, the average gap for all the problem sizes are within 1.0%, and,
for the worst case, the maximum gap is about 2%. The average gap for all 50 test problems is increased to
0.50%, and it still appears that the solution quality is not sensitive to problem size. As the level of quantity
discount increases, the degree of concavity of the cost functions increases. As expected, the solution quality
is degraded, but appears to be acceptable. Especially, from the viewpoint of practical operation, a $5 rate dif-
ference is pretty high for most air cargo markets.

As for the analysis of the solution time, both the heuristic algorithm and the MIP models by LINGO were
executed by the same PC (Pentium III, 1.06 GHz). The execution time of the heuristic algorithm, coded by
MATLAB, is very consistent for all the test problems. It ranges from 6 s to 35 s, roughly increasing in a linear
fashion with respect to problem size. The computational time mainly depends on the number of iterations and
Table 1
Parameters of random number generator for item information

Distribution type Upper bound Lower bound Average Number of test groups

Uniform 56.25 168.75 112.5 10

Table 2
Quantity discount for each flight

Rate difference Weight (kg)

0–100 100–300 300–500 500–700 700–1000 1000–1500

$2 90 88 86 84 82 80
$5 90 85 80 75 70 65



Fig. 3. Solution quality of the solution algorithm.

244 K. Huang, W. Chi / Transportation Research Part C 15 (2007) 235–245
the size of the solution space, or equivalently the number of allowed combinations through iterations. For the
solution time of the MIP model by LINGO, it is insignificant (from fractional second to a few seconds) for all
test problems, except for the problem size of 60 items and 6 flights, in which there are 426 binary variables (499
variables in total) and 212 constraints. Although the branch-and-bound procedure of LINGO terminates
quickly for most instances of this scale, it takes more than 1 min for 5 out of the 20 test problems. The longest
computation time is 10.5 min, and the average computation time is about 54 s for these largest test problems.

The analysis of the solution time suggests that the standard optimization software package might serve the
purpose well for the problem scale similar to those tested in the numerical experiment. However, the solution
time can be highly variable. Besides, as the computation time for the branch-and-bound procedure can
increase in an exponential way, the heuristic algorithm should be more suitable for larger problems. In par-
ticular, given the dynamic business environment, shippers nowadays tend to make small but frequent ship-
ments. Together with the effect of the merges among the airfreight forwarders, the number of items
handled by a forwarder increases significantly. At the same time, the number of available flights increases
as well, given the steady growth of the air transportation market. It can be expected that the size of the AFCPs
is likely to become bigger and bigger, and there should be a need of a heuristic algorithm to deal with all
potential problems faced by the forwarders.
5. Conclusions

In order to develop a suitable algorithm as the core module of the decision support system for air cargo
operation, the airfreight forwarder consolidation problem (AFCP) was considered in this study. The AFCP
was first transformed to a well-known set covering problem (SCP) by treating a permissible consolidated ship-
ment as a set. The Lagrangian relaxation, a successful approach for SCP reported in prior researches, was used
as the backbone to develop a recursive heuristic algorithm. Since the space of the potential sets in the SCP is
huge given the numerous ways to consolidate the collected air cargo items, the solution space is initially gen-
erated to contain only a limited number of permissible consolidation combinations. A significant amount of
effort in this study has been devoted to the procedures for adjusting the solution space through the iterative
solution algorithm.

In the numerical experiment, problems with various problem sizes and degrees of concavity were tested.
The results show that the heuristic algorithm generates solutions that are very close to optimality for small-
and medium-scale problems, whose optimal solutions can be derived from the MIP model. For large-scale
problems, with no optimal solution for comparison, it was tested that the algorithm can terminate within a
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reasonable time. Although the solution algorithm developed in this study appears to be effective in solving the
AFCP and should be useful in terms of operational decision support, there remains considerable room to
improve the algorithm. For example, the following issues are the directions for research extension:

• A tight lower bound should be developed to ensure the strength of the solution algorithm for large-scale
problems.

• The procedure for solution space adjustment should be further improved as it is critical for generating a
good quality solution.

• The method to find the feasible solution from the infeasible solution of the relaxed problem needs to be
reconsidered given the simple procedure currently used.

• The whole solution procedure may be refined with regards to parameter setting. For example, the exponen-
tial smoothing constant and the number of allowed combinations through iterations can be tuned by more
computational tests.

• The efficiency of the heuristic algorithm can be improved by advanced coding techniques, so it can deal with
large problems within the acceptable time for real application.
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