US 20120124667A1

a9 United States

a2 Patent Application Publication (o) Pub. No.: US 2012/0124667 A1
Chiang et al. (43) Pub. Date: May 17, 2012

(54) MACHINE-IMPLEMENTED METHOD AND Publication Classification

SYSTEM FOR DETERMINING WHETHER A
TO-BE-ANALYZED SOFTWARE IS A KNOWN
MALWARE OR A VARIANT OF THE KNOWN

MALWARE

(75) Inventors: Yi-Ta Chiang, Hsinchu County
(TW); Ying-Dar Lin, Taipei City
(TW); Yu-Sung Wu, Hsinchu
(TW); Yuan-Cheng Lai, Hsinchu
(TW)

(73) Assignee: National Chiao Tung University,
Hsinchu (TW)

(21) Appl. No.: 13/112,249

(22) Filed: May 20, 2011

(30) Foreign Application Priority Data

Nov. 12,2010 (TW) .. 099139009
19

(51) Int.CL

GOGF 11/00 (2006.01)
(52) US.ClL oo 726/24
(57) ABSTRACT

A machine-implemented method for determining whether a
to-be-analyzed software is a known malware or a variant of
the known malware includes the steps of: (A) configuring a
processor to execute the to-be-analyzed software, and obtain
ato-be-analyzed system call sequence that corresponds to the
to-be-analyzed software with reference to a plurality of sys-
tem calls made in sequence as a result of executing the to-be-
analyzed software; (B) configuring the processor to deter-
mine a degree of similarity between the to-be-analyzed
system call sequence and a reference system call sequence
that corresponds to the known malware; and (C) configuring
the processor to determine that the to-be-analyzed software is
neither the known malware nor a variant of the known mal-
ware when the degree of similarity determined in step (B) is
not greater than a predefined similarity threshold value.

1

/

9 /’

)

to-be-analyzed

to-be-analyzed

; 12
sof tware recording| [System call /// same software or
module sequence analyzing different software
111]112 module
117

reference

system

system call

sequence

May 17, 2012 Sheet 1 of 6 US 2012/0124667 Al

Patent Application Publication

£ Sl

OJemM]}JOS JUDIDJIIP
JO OJBM}JOS OuBS

I

\\\\\\llxllllll// WO SAS
douonbas
|1 118D Wa1SAS
Q0UdJDJOu
T
SuIzETonE AL
UIZATBUR
- oouanbas 9 [npow
Nﬁ\\\ 1180 Wo}SAS SUIpI0DDI

pPozZAeuB-9(Qq-0)

/

oJeM]1]OS
pozAleue-oq-03

S

I

/
61

(

6

US 2012/0124667 Al

May 17,2012 Sheet 2 of 6

Patent Application Publication

48

|

6 Ild

&6

|

66

16

uorlaod Jo]puey
11xo weasoad

uorlJod [ouJdy

uorjagod JopeO]
sguryoedun

uorjiod Jd9]puey
Jopeo] weisoad

s

Patent Application Publication = May 17, 2012 Sheet 3 of 6 US 2012/0124667 Al

establishing in the database a Wi
reference system call sequence
corresponding to a known malware

l

configuring a processor to execute
the to-be-analyzed software, and
to obtain a to-be-analyzed system
call sequence that corresponds to W
the to-be-analyzed software with
reference to a plurality of system
calls made in sequence as a result
of executing the to-be-analyzed
software

configuring the processor to
determine a degree of similarity
(S) between the to-be-analyzed -
system call sequence and the
reference system call sequence
that corresponds to the known
malware

FIG. 3A

Patent Application Publication = May 17, 2012 Sheet 4 of 6 US 2012/0124667 Al

the degree of
similarity (S)
greater than a

obtaining , for each element of
the longest common subsequence

predefined ,an original position in each __l,/
similarity of the to-be-analyzed system
threshold call sequence and the reference

value (TS)? reference system call sequence

|
|
|
! |
|
|
|

determining , for each element
of the longest common
subsequence ,a difference __l//
between the original positions

inthe to-be-analyzed system
call sequence and the reference
system call sequence

V

determining a total number (N)
of unique values of the __L//
differences found for the
longest common subsequence

V

determining a shifting degree
(R) between the to-be-analyzed __l,/
system call sequence and the
reference system

configuring the
processor to
determine that the
to-be-analyzed
software is neither
the known malware
nor a variant of
the known malware

shifting degree (R)
greater than a predefined
shifting threshold
value (TR)?

configuring the processor to
determine that the |
to-be-analyzed software is the —-r//
known malware or a variant of
the known malware

FIG. 3B e — N

end

US 2012/0124667 Al

May 17, 2012 Sheet 5 of 6

Patent Application Publication

v OId

61

1T

01

|

ar rieo
Wol1SAS

14

g

é

|

20uanbas
Ul JIopJo

AoYpPROTAN

91 14930TOqIN

1149182 IDIN

9SO 0IN

[1e2
o) SAS

[

0T

[

01

61

Patent Application Publication = May 17, 2012 Sheet 6 of 6 US 2012/0124667 Al

configuring the processor to execute
the to-be-analyzed software ,and to 9291
record the plurality of system calls 2
made in sequence as a result of |
executing the to-be-analyzed software | |
|
|

configuring the processor to extract , r
from the plurality of system calls l
recorded in sub-step 221 ,a primary 999
portion that corresponds to the kernel f/T"
functionality of the to-be-analyzed }
software so as to obtain the |
to-be-analyzed system call sequence |

|

|
configuring the processor to determine | |
a longest common subsequence (LCS) |
between the to-be-analyzed system call
sequence and the reference system call | !
Sequence |
|
|
|
|
|
|
|

configuring the processor to compute
the degree of similarity (S) according
to S=L/min(|X], |Y|) , where "X" ’
represents the to-be-analyzed system |
call sequence ,"Y" represents the :
reference system call sequence ,"L" //k"232
represents a length of the longest |
common subsequence ,and "min(|X]|, |Y])" |
represents a length of a shorter one |
of the to-be-analyzed system call |
sequence and the reference system call | |
sequence |

|

US 2012/0124667 Al

MACHINE-IMPLEMENTED METHOD AND
SYSTEM FOR DETERMINING WHETHER A
TO-BE-ANALYZED SOFTWARE IS A KNOWN
MALWARE OR A VARIANT OF THE KNOWN
MALWARE

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application claims priority of Taiwanese Appli-
cation No. 099139009, filed on Nov. 12, 2010.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] The invention relates to a machine-implemented
method for determining whether a to-be-analyzed software is
a known malware, more particularly to a machine-imple-
mented method for determining whether a to-be-analyzed
software is a known malware or a variant of the known mal-
ware.

[0004] 2. Description of the Related Art

[0005] With the convenience of the Internet also come
safety threats posed by malicious software and programs
(collectively referred to as malware).

[0006] Abotnetisanautonomous network of compromised
zombie computers running software agents, commonly
referred to as robots or bots, under the control of an attacker.
Botnets are generally for nefarious purposes, such as sending
spam messages and conducting information theft. These
attacks might lead to crippling of the Internet or even financial
losses. Therefore, preventive measures such as botnet detec-
tion and removal are constantly under study and research in
the relevant field.

[0007] Conventionally, there are two approaches to detect-
ing botnets, namely a static analysis approach and a dynamic
analysis approach. In the static analysis approach, a to-be-
analyzed binary (or code) is analyzed to determine if there are
suspicious instruction sequences or if there are well-known
signatures of known botnets. The static analysis approach
does not consider what happens after the to-be-analyzed
binary is executed, and does not produce accurate results if
the to-be-analyzed binary is a botnet agent binary that has
undergone obfuscation (e.g., that has been encrypted or com-
pressed). On the other hand, the dynamic analysis approach
executes the to-be-analyzed binary and monitors the runtime
behavior (e.g., calling of application program interface (API),
modifying system registry) of the to-be-analyzed binary in
order to determine if it resembles a known botnet. However,
the conventional dynamic analysis approach is rough and
does not generate highly accurate results.

SUMMARY OF THE INVENTION

[0008] Therefore, the object of the present invention is to
provide a system and a machine-implemented method for
determining whether a to-be-analyzed software is a known
malware or a variant of the known malware with increased
accuracy.

[0009] According to one aspect of the present invention,
there is provided a machine-implemented method for deter-
mining whether a to-be-analyzed software is a known mal-
ware or a variant of the known malware. The machine-imple-
mented method includes the steps of: (A) configuring a
processor to execute the to-be-analyzed software, and obtain
ato-be-analyzed system call sequence that corresponds to the

May 17, 2012

to-be-analyzed software with reference to a plurality of sys-
tem calls made in sequence as a result of executing the to-be-
analyzed software; (B) configuring the processor to deter-
mine a degree of similarity between the to-be-analyzed
system call sequence and a reference system call sequence
that corresponds to the known malware; and (C) configuring
the processor to determine that the to-be-analyzed software is
neither the known malware nor a variant of the known mal-
ware when the degree of similarity determined in step (B) is
not greater than a predefined similarity threshold value.
[0010] According to another aspect of the present inven-
tion, there is provided a system for determining whether a
to-be-analyzed software is a known malware or a variant of
the known malware. The system includes a database, a
recording module, and an analyzing module. The database
has a reference system call sequence that corresponds to the
known malware established therein. The recording module is
for executing the to-be-analyzed software, and obtains a to-
be-analyzed system call sequence that corresponds to the
to-be-analyzed software with reference to a plurality of sys-
tem calls made in sequence as a result of executing the to-be-
analyzed software. The analyzing module is coupled to the
database and the recording module for determining a degree
of similarity between the to-be-analyzed system call
sequence and the reference system call sequence, and further
determines that the to-be-analyzed software is neither the
known malware nor a variant of the known malware when the
degree of similarity thus determined is not greater than a
predefined similarity threshold value.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] Other features and advantages of the present inven-
tion will become apparent in the following detailed descrip-
tion of the preferred embodiment with reference to the
accompanying drawings, of which:

[0012] FIG. 1is a block diagram illustrating a system for
determining whether a to-be-analyzed software is a known
malware or a variant of the known malware according to the
preferred embodiment of the present invention;

[0013] FIG. 2 is a schematic diagram illustrating four por-
tions of a sequence of system calls made by a program;
[0014] FIGS. 3A and 3B collectively illustrate a flow chart
illustrating a machine-implemented method for determining
whether a to-be-analyzed software is a known malware or a
variant of the known malware according to the preferred
embodiment of the present invention; and

[0015] FIG. 4 is a schematic diagram illustrating a table
with exemplary system calls in a to-be-analyzed system call
sequence corresponding to the known malware; and

[0016] FIG.5isaflow chart illustrating sub-steps of step 22
and step 23 of the machine-implemented method shown in
FIG. 2.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

[0017] With reference to FIG. 1, according to the preferred
embodiment of the present invention, a system 1 for deter-
mining whether a to-be-analyzed software 9 is a known mal-
ware (e.g., a bot) or a variant of the known malware includes
a database 13, a recording module 11 and an analyzing mod-
ule 12. The to-be-analyzed software 9 may originally be
resident in a storage space (not shown). According to the
present invention, the system 1 achieves the determination by

US 2012/0124667 Al

using three primary principles, namely segment identification
of system call sequence, a similarity matching algorithm
based on longest common subsequence (LCS), and shift
analysis. These will become clear in the following description
with reference to the preferred embodiment and the accom-
panying drawings. The system 1 is capable of determining not
only if the to-be-analyzed software 9 is a known malware, but
also whether the to-be-analyzed software 9 is a variant of a
known malware. The variant may come as a result of using an
obfuscation tool (e.g., a packer) to insert additional system
calls, or modifying the source code of an existing (ancestor)
bot.

[0018] The database 13 has established therein at least one
reference system call sequence 131 that corresponds to the
known malware.

[0019] Therecording module 11 is for executing the to-be-
analyzed software 9, and obtains a to-be-analyzed system call
sequence 19 that corresponds to the to-be-analyzed software
9 with reference to a plurality of system calls made in
sequence as a result of executing the to-be-analyzed software
9. Preferably, the recording module 11 records the plurality of
system calls made in sequence as a result of executing the
to-be-analyzed software 9, and extracts, from the plurality of
system calls thus recorded, a primary portion that corre-
sponds to the kernel functionality of the to-be-analyzed soft-
ware 9 50 as to obtain the to-be-analyzed system call sequence
19.

[0020] With reference to FIG. 2, generally speaking, the
system calls made by a program can be divided into four
portions. The first portion is a program loader portion 91,
where system calls are made by the operating system (e.g.,
Windows®) to load the necessary dynamic link libraries
(DLLs) and allocate the required memory space, etc. The
second portion is an unpacking loader portion 92, where
system calls are made to prepare a suitable environment for
execution of the source program, such as unpacking com-
pressed binary into a text segment. The third portion is the
kernel portion 93 referred to above, where system calls are
made to perform the underlying kernel functionality of the
program. The fourth portion is a program exit handler portion
94, where system calls are used to release the allocated
resource and to exit the program. If the program is obfuscated
by an obfuscation tool such that additional system calls are
introduced, in order to maintain the kernel functionality of the
program, the system calls made during the kernel portion 93
are always kept intact. The present invention utilizes this
particular characteristic to determine whether the to-be-ana-
lyzed software 9 is aknown malware or a variant of the known
malware. In this embodiment, the kernel portion 93 is the
primary portion that is extracted to serve as the to-be-ana-
lyzed system call sequence 19. The extraction of the to-be-
analyzed system call sequence 19 is referred to above as the
segment identification of system call sequence.

[0021] Since the unpacking loader portion 92 varies when
the same malware is obfuscated by different obfuscation
10ols, a profile needs to be built for each different obfuscation
tool for proper identification of the unpacking loader portion
92 and for effective extraction of the kernel portion 93. In
order to increase the accuracy in extracting the kernel portion
93 from the sequence of system calls made by the to-be-
analyzed software 9 to serveas the to-be-analyzed system call
sequence 19, a profile for each different obfuscation tool
needs to be established to effectively remove the non-relevant
segments 91, 92, 94.

May 17, 2012

[0022] The analyzing module 12 is coupled to the database
13 and the recording module 11 for determining a degree of
similarity (S) between the to-be-analyzed system call
sequence 19 and the reference system call sequence 131. The
analyzing module 12 further determines that the to-be-ana-
lyzed software 9 is neither the known malware nor a variant of
the known malware when the degree of similarity (S) thus
determined is not greater than a predefined similarity thresh-
old value (T).

[0023] Specifically, the analyzing module 12 determines
the degree of similarity (S) by determining a longest common
subsequence (LCS) between the to-be-analyzed system call
sequence 19 and the reference system call sequence 131, and
computes the degree of similarity (S) according to S=L/min
(X1, Y1), where “X” represents the to-be-analyzed system
call sequence 19, “Y” represents the reference system call
sequence 131, “L” represents a length of the longest common
subsequence, and “min (IXI, IY1)” represents a length of a
shorter one ofthe to-be-analyzed system call sequence 19 and
the reference system call sequence 131. This is the similarity
matching algorithm referred to above.

[0024] The analyzing module 12 further performs the fol-
lowing steps when the degree of similarity (S) determined
thereby is greater than the predefined similarity threshold
value (Ts): obtaining, for each element of the longest com-
mon subsequence, an original position in each of the to-be-
analyzed system call sequence 19 and the reference system
call sequence 131; determining, for each element of the long-
est common subsequence, a difference between the original
positions in the to-be-analyzed system call sequence 19 and
the reference system call sequence 131; determining a total
number of unique values of the differences found for the
longest common subsequence; determining a shifting degree
(R) between the to-be-analyzed system call sequence 19 and
the reference system call sequence 131 according to R=N/L,
where “N” represents the total number of unique values of the
differences and “L” represents the length of the longest com-
mon subsequence; determining that the to-be-analyzed soft-
ware 9 is neither the known malware nor a variant of the
known malware when the shifting degree (R) thus determined
is greater than a predefined shifting threshold value (T); and
determining that the to-be-analyzed software 9 is the known
malware or a variant of the known malware when the shifting
degree (R) thus determined is not greater than the predefined
shifting threshold value (Ty). This is the shifting analysis
referred to above.

[0025] The predefined similarity threshold value (Tg)
ranges between 0.58 and 0.63, and the predefined shifting
threshold value (Tj) ranges between 0.05 and 0.08. Prefer-
ably, the predefined similarity threshold value (T5)is 0.6, and
the predefined shifting threshold value (T) is 0.06.

[0026] Referring to FIGS. 3A and 3B, the present invention
will be more clearly understood with reference to the follow-
ing descriptions in connection with the machine-imple-
mented method according to the preferred embodiment of the
present invention. The machine-implemented method is for
determining whether the to-be-analyzed software 9 is a
known malware or a variant of the known malware, and
includes the following steps.

[0027] First, in step 21, a reference system call sequence
131 corresponding to a known malware is established in the
database 13. The machine-implemented method is then per-
formed to determine whether the to-be-analyzed software 9 is
the known malware or a variant of the known malware. One

US 2012/0124667 Al

should readily appreciate that there may be multiple reference
system call sequences 131 respectively corresponding to mul-
tiple different known malwares established in the database
13, and the machine-implemented method of the present
invention is for determining whether the to-be-analyzed soft-
ware 9 is one of the known malwares or a variant of one of the
known malwares.

[0028] Next, in step 22, a processor (not shown) (or the
recording module 11 of the system 1 shown in FIG. 1) is
configured to execute the to-be-analyzed software 9, and to
obtain a to-be-analyzed system call sequence 19 that corre-
sponds to the to-be-analyzed software 9 with reference to a
plurality of system calls made in sequence as a result of
executing the to-be-analyzed software 9.

[0029] With reference to FIG. 5, step 22 includes two sub-
steps in this embodiment. In sub-step 221, the processor (or
the recording module 11 of the system 1 shown in FIG. 1) is
configured to execute the to-be-analyzed software 9, and to
record the plurality of system calls made in sequence as a
result of executing the to-be-analyzed software 9. In sub-step
222, the processor (or the recording module 11 of the system
1 shown in FIG. 1) is configured to extract, from the plurality
of system calls recorded in sub-step 221, a primary portion
111 that corresponds to the kernel functionality of the to-be-
analyzed software 9 so as to obtain the to-be-analyzed system
call sequence 19. In this embodiment, the primary portion
111 corresponds to the kernel portion 93 shown in FIG. 2. The
remaining ofthe plurality of system calls recorded in sub-step
221 include the program loader portion 91, the unpacking
loader portion 92, and the program exit handler portion 94 of
FIG. 2, and are collectively referred to as a secondary portion
112.

[0030] Thereason behind taking only the kernel portion 93
as the primary portion 111 to serve as the to-be-analyzed
system call sequence 19 and neglecting the secondary portion
112 is that, as described previously with reference to FIG. 2,
the program loader portion 91 and the program exit handler
portion 94 ofthe secondary portion 112 of the system calls are
common to nearly all programs and executable files and are
irrelevant to the identification of the known malware, and that
while the unpacking loader portion 92 of the secondary por-
tion 112 may vary among programs obfuscated using differ-
ent obfuscation tools, the system calls made to perform the
underlying kernel functionality of the program (i.e., the ker-
nel portion 93) remain substantially unchanged for a known
malware and its variants. As such, the reference system call
sequence 131 established in the database 13 in step 21 also
only corresponds to the kernel portion 93 of the system calls
made by the known malware . Using only the primary portion
111 as the basis for the determination increases both the speed
and the success rate of the identification.

[0031] Inthe system 1 described above, after sub-step 222
is performed by the recording module 11, the to-be-analyzed
system call sequence 19 is transmitted to the analyzing mod-
ule 12. FIG. 4 shows a table with exemplary system calls 10
in the to-be-analyzed system call sequence 19 (e.g., NtClose,
NtCreateFile, NtDeleteFile, NtLoadKey, etc.). The actual to-
be-analyzed system call sequence 19 in this embodiment is a
sequence of the system call identifications (IDs) correspond-
ing to the system calls 10. Therefore, in this example, the
to-be-analyzed system call sequence 19 is (1, 10,11, 12, . ..
). In this embodiment, the processor (or the recording module
11 shown in FIG. 1) utilizes the “Pin” tool, a dynamic binary
instrumentation tool developed by Intel® for dynamic instru-

May 17, 2012

mentation of programs, to record the system calls and the
corresponding system call IDs made as a result of executing
the to-be-analyzed software 9.

[0032] Subsequently, in step 23, the processor (or specifi-
cally, the analyzing module 12 shown in FIG. 1) is configured
to determine a degree of similarity (S) between the to-be-
analyzed system call sequence 19 and the reference system
call sequence 131 that corresponds to the known malware.
With reference to FIG. 5, step 23 includes two sub-steps in
this embodiment. In sub-step 231, the processor (or the ana-
lyzing module 12 shown in FIG. 1) is configured to determine
a longest common subsequence (LCS) between the to-be-
analyzed system call sequence 19 and the reference system
call sequence 131. In sub-step 232, the processor (or the
analyzing module 12 shown in FIG. 1) is configured to com-
pute the degree of similarity (S) according to the following
equation: S=L/min (IXI, Y1), where “X” represents the to-be-
analyzed system call sequence 19, “Y” represents the refer-
ence system call sequence 131, “L” represents a length of the
longest common subsequence, and “min (IXI, I'Y1)” repre-
sents a length of a shorter one of the to-be-analyzed system
call sequence 19 and the reference system call sequence 131.
The value of the degree of similarity (S) ranges between 0 and
1, and S=1 indicates that X is a variant of Y or that Y is a
variant of X.

[0033] For instance, assuming that X (i.e., the to-be-ana-
lyzed system call sequence 19)is (1, 10, 11,12, 2,3, 18, 4, 20,
21, 5), while Y (i.e., the reference system call sequence 131)
is (1, 2, 3, 4, 5), the longest common subsequence (LCS)
between X and Y is (1, 2, 3, 4, 5) with a length “L” of 5, and
min (IXI, IY]) is 5. Therefore, S=1, and X is a variant of Y.
[0034] Next, in step 24, the processor (or the analyzing
module 12 shown in FIG. 1) is configured to determine
whether or not the degree of similarity (S) determined in step
23 is greater than a predefined similarity threshold value (Ty).
In this embodiment, the predefined similarity threshold value
(T) ranges between 0.58 and 0.63. Preferably, the predefined
similarity threshold value (T) is 0.6. In the negative, i.e., if it
is determined in step 24 that the degree of similarity (S) is
smaller than or equal to the predefined similarity threshold
value (Ty), the flow goes to step 25, where the processor is
configured to determine that the to-be-analyzed software 9 is
neither the known malware nor a variant of the known mal-
ware. If affirmative, .., if it is determined in step 24 that the
degree of similarity (S) is greater than the predefined similar-
ity threshold value (T), the flow goes to step 26, where the
processor (or the analyzing module 12 shown in FIG. 1) is
configured to perform the following sub-steps.

[0035] In sub-step 261, it is obtained, for each element of
thelongest common subsequence, an original position in each
of the to-be-analyzed system call sequence 19 and the refer-
ence system call sequence 131. In the following description,
let the sequence (a,, a,, a,, . . ., a;) represent the original
positions of the elements of the longest common subsequence
in the to-be-analyzed system call sequence 19, and let the
sequence (b, by, b, ..., b;) represent the original positions
of the elements of the longest common subsequence in the
reference system call sequence 131.

[0036] Insub-step 262, itis determined, for each element of
the longest common subsequence, a difference between the
original positions in the to-be-analyzed system call sequence
19 and the reference system call sequence 131. In other
words, the differences (a;-b,, a,’b,, a;b;, . . ., a;-b;) are
determined in sub-step 262.

US 2012/0124667 Al

[0037] Insub-step 263, a total number (N) of unique values
ofthe differences found for the longest common subsequence
is determined. The total number (N) is a positive integer.

[0038] 1In sub-step 264, a shifting degree (R) between the
to-be-analyzed system call sequence 19 and the reference
system call sequence 131 is determined according to R=N/L.

[0039] For the above-described example, where the to-be-
analyzed system call sequence 19 (X)is (1, 10, 11, 12,2, 3,
18, 4, 20, 21, 5), the reference system call sequence 131 (Y)
is (1,2, 3,4, 5), and the longest common subsequence (LCS)
between X and Y is (1, 2, 3, 4, 5), the original positions of the
elements of the longest common subsequence in the to-be-
analyzed system call sequence 19 (a;, a,, a5, ...,a;)is (1, 5,
0, 8, 11), and the original positions of the elements of the
longest common subsequence in the reference system call
sequence 131 (b, by, by, ..., b,)is (1, 2,3, 4, 5). Therefore,
the differences between the original positions in the to-be-
analyzed system call sequence 19 and the reference system
call sequence 131 (a;-b,, a,-b,. a;7b;, ..., a;7b;) are (0, 3,
3, 4, 6), and the total number (N) of unique values of the
differences found for the longest common subsequence is 4.
As such, the shifting degree (R) between the to-be-analyzed
system call sequence 19 and the reference system call
sequence 131 is determined by R=4/5=0.8.

[0040] Subsequently, in sub-step 265, it is determined
whether or not the shifting degree (R) determined in sub-step
264 is greater than a predefined shifting threshold value (Ty).
In this embodiment, the predefined shifting threshold value
(Tg) ranges between 0.05 and 0.08. Preferably, the predefined
shifting threshold value (T}) is 0.06.

[0041] If affirmative, i.e., the shifting degree (R) deter-
mined in sub-step (264) is greater than the predefined shifting
threshold value (Tj), the flow goes to step 25, where it is
determined that the to-be-analyzed software 9 is neither the
known malware nor a variant of the known malware. On the
other hand, in the negative, i.e, the shifting degree (R) deter-
mined in sub-step (264) is smaller than or equal to the pre-
defined shifting threshold value (T5), the flow goes to step 27,
where it is determined that the to-be-analyzed software 9 is
the known malware or a variant of the known malware.

[0042] Taking the previous example, where the degree of
similarity (S)is 1, and the shifting degree (R) is 0.8, although
there is a 100% similarity between the to-be-analyzed system
call sequence 19 and the reference system call sequence 131,
there is a shifting degree (R) that is far greater than the
predefined shifting threshold value (Tg), meaning that as
there are multiple additional system calls (to be exact, six
additional system calls in this example, namely system call
IDs 10, 11, 12, 18, 20 and 21) in the to-be-analyzed system
call sequence 19 as compared to the reference system call
sequence 131, the shiftings resulted in the system calls that
are made for both the to-be-analyzed software 9 and the
known malware (or a variant thereof) are too great so as to
render the to-be-analyzed software 9 be deemed as neither the
known malware nor a variant of the known malware. In other
words, even if the degree of similarity (S) between the to-be-
analyzed system call sequence 19 and the reference system
call sequence 131 is very high, or even indicating 100%
similarity, the processor (or the analyzing module 12 shown
in FIG. 1) will determine that the to-be-analyzed software 9 is
neither the known malware nor a variant of the known mal-
ware when the shifting degree (R) exceeds the predefined
shifting threshold value (T).

May 17, 2012

[0043] It should be noted herein that in practice, a virtual
machine, such as VirtualBox, may be used for execution of
the to-be-analyzed software 9 in order to obtain the to-be-
analyzed system call sequence 19 so that in case where the
to-be-analyzed software 9 is a malware, the system 1 is not
contaminated. In addition, the virtual machine may be con-
nected to the Internet through a firewall to allow connection
access to the to-be-analyzed software 9 while preventing
malicious traffic from interfering with the determination pro-
cess.

[0044] In summary, the present invention utilizes segment
identification of system call sequence, a similarity matching
algorithm based on longest common subsequence (LCS), and
a shift analysis to determine whether a to-be-analyzed soft-
ware 9 is aknown malware or a variant of the known malware.
In addition, by extracting, from a plurality of system calls
recorded as a result of executing the to-be-analyzed software
9, a primary portion 111 that corresponds to the kernel func-
tionality of the to-be-analyzed software 9 so as to obtain the
to-be-analyzed system call sequence 19, both the speed and
the success rate of the identification can be increased.
[0045] while the present invention has been described in
connection with what is considered the most practical and
preferred embodiment, it is understood that this invention is
not limited to the disclosed embodiment but is intended to
cover various arrangements included within the spirit and
scope of the broadest interpretation so as to encompass all
such modifications and equivalent arrangements.

What is claimed is:

1. A machine-implemented method for determining
whether a to-be-analyzed software is a known malware or a
variant of the known malware, the machine-implemented
method comprising the steps of:

(A) configuring a processor to execute the to-be-analyzed
software, and obtain a to-be-analyzed system call
sequence that corresponds to the to-be-analyzed soft-
ware with reference to a plurality of system calls madein
sequence as a result of executing the to-be-analyzed
software;

(B) configuring the processor to determine a degree of
similarity between the to-be-analyzed system call
sequence and a reference system call sequence that cor-
responds to the known malware; and

(C) configuring the processor to determine that the to-be-
analyzed software is neither the known malware nor a
variant of the known malware when the degree of simi-
larity determined in step (B) is not greater than a pre-
defined similarity threshold value.

2. The machine-implemented method as claimed in claim

1, wherein step (B) includes the sub-steps of:

(B-1) determining a longest common subsequence (LCS)
between the to-be-analyzed system call sequence and
the reference system call sequence; and

(B-2) computing the degree of similarity (S) according to
S=L/min (IXI, IYl) , where “X” represents the to-be-
analyzed system call sequence, “Y” represents the ref-
erence system call sequence, “L” represents a length of
the longest common subsequence, and “min (IXI, 1Y1)”
represents a length of a shorter one of the to-be-analyzed
system call sequence and the reference system call
sequence.

3. The machine-implemented method as claimed in claim

2, further comprising the step of:

US 2012/0124667 Al

(D) configuring the processor to perform the following
sub-steps when the degree of similarity determined in
step (B.) is greater that the predefined similarity thresh-
old value:

(D-1) obtaining, for each element of the longest common
subsequence, an original position in each of the to-be-
analyzed system call sequence and the reference system
call sequence,

(D-2) determining, for each element of the longest com-
mon subsequence, a difference between the original
positions in the to-be-analyzed system call sequence and
the reference system call sequence,

(D-3) determining a total number of unique values of the
differences found for the longest common subsequence,

(D-4) determining a shifting degree (R) between the to-be-
analyzed system call sequence and the reference system
call sequence according to R=N/L, where “N” repre-
sents the total number determined in sub-step (D-3) and
“L” represents the length of the longest common subse-
quence,

(D-5) determining that the to-be-analyzed software is nei-
ther the known malware nor a variant of the known
malware when the shifting degree (R) determined in
sub-step (D-4) is greater than a predefined shifting
threshold value, and

(D-6) determining that the to-be-analyzed software is the
known malware or a variant of the known malware when
the shifting degree determined in sub-step (D-4) is not
greater than the predefined shifting threshold value.

4. The machine-implemented method as claimed in claim

3, wherein the predefined similarity threshold value ranges
between 0.58 and 0.63, and the predefined shifting threshold
value ranges between 0.05 and 0.08.

5. The machine-implemented method as claimed in claim
4, wherein the predefined similarity threshold value is 0.6,
and the predefined shifting threshold value is 0.06.

6. The machine-implemented method as claimed in claim
1, wherein step (A) includes the sub-steps of:

(A-1) configuring the processor to execute the to-be-ana-
lyzed software, and record the plurality of system calls
made in sequence as a result of executing the to-be-
analyzed software; and

(A-2) configuring the processor to extract, from the plural-
ity of system calls recorded in sub-step (A-1), a primary
portion that corresponds to the kernel functionality of
the to-be-analyzed software so as to obtain the to-be-
analyzed system call sequence.

7. A system for determining whether a to-be-analyzed soft-
ware is a known malware or a variant of the known malware,
said system comprising;

a database having a reference system call sequence that

corresponds to the known malware established therein;

a recording module for executing the to-be-analyzed soft-
ware, and obtaining a to-be-analyzed system call
sequence that corresponds to the to-be-analyzed soft-
ware with reference to a plurality of system calls made in
sequence as a result of executing the to-be-analyzed
software; and

an analyzing module coupled to said database and said
recording module for determining a degree of similarity

May 17, 2012

between the to-be-analyzed system call sequence and
the reference system call sequence, and further deter-
mining that the to-be-analyzed software is neither the
known malware nor a variant of the known malware
when the degree of similarity thus determined is not
greater than a predefined similarity threshold value.

8. The system as claimed in claim 7, wherein said analyz-
ing module determines the degree of similarity by determin-
ing a longest common subsequence (LCS) between the to-be-
analyzed system call sequence and the reference system call
sequence, and computing the degree of similarity (S) accord-
ing to S=L/min (IXI, Y1), where “X” represents the to-be-
analyzed system call sequence, “Y” represents the reference
system call sequence, “L.” represents a length of the longest
common subsequence, and “min (IX|, I'Yl)” represents a
length of a shorter one of the to-be-analyzed system call
sequence and the reference system call sequence.

9. The system as claimed in claim 8, wherein said analyz-
ing module further performs the following steps when the
degree of similarity determined thereby is greater than the
predefined similarity threshold value:

obtaining, for each element of the longest common subse-

quence, an original position in each of the to-be-ana-
lyzed system call sequence and the reference system call
sequence;

determining, for each element of the longest common sub-

sequence, a difference between the original positions in
the to-be-analyzed system call sequence and the refer-
ence system call sequence;
determining a total number of unique values of the differ-
ences found for the longest common subsequence;

determining a shifting degree (R) between the to-be-ana-
lyzed system call sequence and the reference system call
sequence according to R-N/L, where “N” represents the
total number of unique values of the differences and “L”
represents the length of the longest common subse-
quence;
determining that the to-be-analyzed software is neither the
known malware nor a variant of the known malware
when the shifting degree (R) thus determined is greater
than a predefined shifting threshold value; and

determining that the to-be-analyzed software is the known
malware or a variant of the known malware when the
shifting degree thus determined is not greater than the
predefined shifting threshold value.

10. The system as claimed in claim 9, wherein the pre-
defined similarity threshold value ranges between 0.58 and
0.63, and the predefined shifting threshold value ranges
between 0.05 and 0.08.

11. The system as claimed in claim 10, wherein the pre-
defined similarity threshold value is 0.6, and the predefined
shifting threshold value is 0.06.

12. The system as claimed in claim 7, wherein said record-
ing module records the plurality of system calls made in
sequence as a result of executing the to-be-analyzed software,
and extracts, from the plurality of system calls thus recorded,
a primary portion that corresponds to the kernel functionality
of the to-be-analyzed software so as to obtain the to-be-
analyzed system call sequence.

* * #* ok %

