
ARTICLE IN PRESS
0925-2312/$ - se

doi:10.1016/j.ne

�Correspond
E-mail addr
Neurocomputing 70 (2007) 2502–2516

www.elsevier.com/locate/neucom
An entropy-based quantum neuro-fuzzy inference system for
classification applications

Cheng-Jian Lina,�, I-Fang Chungb, Cheng-Hung Chenc

aDepartment of Computer Science and Information Engineering, Chaoyang University of Technology, Taiching country, Taiwan
bInstitute of Bioinformatics, National Yang-Ming University, Taiwan

cDepartment of Electrical and Control Engineering, National Chiao-Tung University, Taiwan

Received 13 May 2005; received in revised form 3 August 2006; accepted 7 August 2006

Available online 26 October 2006
Abstract

In this paper, an entropy-based quantum neuro-fuzzy inference system (EQNFIS) for classification applications is proposed. The

EQNFIS model is a five-layer structure, which combines the traditional Takagi-Sugeno-Kang (TSK). Layer 2 of the EQNFIS model

contains quantum membership functions, which are multilevel activation functions. Each quantum membership function is composed of

the sum of sigmoid functions shifted by quantum intervals. A self-constructing learning algorithm, which consists of the self-clustering

algorithm (SCA), quantum fuzzy entropy, and the backpropagation algorithm, is also proposed. The proposed SCA method is a fast,

one-pass algorithm that dynamically estimates the number of clusters in an input data space. Quantum fuzzy entropy is employed to

evaluate the information on pattern distribution in the pattern space. With this information, we can determine the number of quantum

levels. The backpropagation algorithm is used to tune the adjustable parameters. Simulations were conducted to show the performance

and applicability of the proposed model.

r 2006 Elsevier B.V. All rights reserved.

Keywords: Classification; Entropy-based fuzzy model; Quantum function; Self-clustering method; Neural fuzzy network
1. Introduction

Classification is one of the most frequent decision-
making tasks performed by humans. A classification
problem occurs when an object needs to be assigned to a
predefined group or class based on the number of observed
attributes related to that object. Many problems in
business, science, industry, and medicine can be treated
as classification problems. Traditional statistical classifica-
tion procedures, such as discrimination analysis, are built
on the Bayesian decision theory [1]. In these procedures, an
underlying probability model must be assumed in order to
calculate the a posteriori probability upon which a
classification decision is made. One major limitation of
statistical models is that they work well only when the
underlying assumptions are correct. The effectiveness of
these methods depends to a large extent on the various
e front matter r 2006 Elsevier B.V. All rights reserved.

ucom.2006.08.008

ing author.

ess: cjlin@mail.cyut.edu.tw (C.-J. Lin).
assumptions or conditions under which the models are
developed. Users must have a good knowledge of both data
properties and model capabilities before the models can be
successfully applied.
Neural networks [17] have emerged as an important tool

for classification tasks. The recent and vast research
activities in neural classification have established that
neural networks are promising alternatives to various
conventional classification methods. However, it is difficult
to understand the meaning associated with each neuron
and each weight in the neural networks. A fuzzy entropy
measure [9] is employed to partition the input feature space
into decision regions and to select relevant features with
good separability for the classification task. However, as
compared with the neural networks, learning ability is lock
of fuzzy logical. When the views above are summarized, it
can be said that, in contrast to pure neural or fuzzy
methods, the neural fuzzy method [3,6,13,14,16,20] pos-
sesses the advantages of both neural networks and fuzzy
systems. Neuro-fuzzy systems (NFS) bring the low-level

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2006.08.008
mailto:cjlin@mail.cyut.edu.tw

ARTICLE IN PRESS
C.-J. Lin et al. / Neurocomputing 70 (2007) 2502–2516 2503
learning and computational power of neural networks into
fuzzy systems and give the high-level human-like thinking
and reasoning of fuzzy systems to neural networks.

Two typical types of neuro-fuzzy systems are the
Mamdani-type and Takagi–Sugeno–Kang (TSK)-type
neuro-fuzzy systems. For Mamdani-type neuro-fuzzy
systems [11,21], the minimum fuzzy implication is used in
fuzzy reasoning. For TSK-type neuro-fuzzy systems
[4,5,19], the antecedent is defined in the same way as the
Mamdani-type, while the consequent is a linear function of
the input variables. Many researchers [4,5] have shown that
using a TSK-type neuro-fuzzy system achieves superior
performance in network size and learning accuracy than
using Mamdani-type neuro-fuzzy systems.

Recently, quantum neural networks (QNNs) used to
limit conventional neural networks (NNs) were developed
[2,7,15]. Conventional NNs and QNNs satisfy the require-
ments outlined in [10] for a universal function approx-
imator. More specifically, QNNs can identify overlaps
between data due to their ability to approximate any
arbitrary membership profile up to any degree of accuracy.
However, QNNs and NNs are generally disadvantaged by
their ‘‘black box’’ format, lack a systematic way to
determine the appropriate model structure, have no
localizability, and converge slowly.

In this paper, an entropy-based quantum neuro-fuzzy
inference system (EQNFIS) is proposed. The EQNFIS
model is a five-layer structure, which combines the
traditional TSK. Layer 2 of the EQNFIS model contains
quantum membership functions, which are multilevel
activation functions. Each quantum membership function
is composed of the sum of sigmoid functions shifted by
quantum intervals. The quantum intervals add an addi-
tional degree of freedom that can be exploited during the
learning process to capture and quantify the structure of
the input space.

A self-constructing learning algorithm for the EQNFIS
is also proposed, as follows. First, a structure learning
scheme is used to determine proper input space partitioning
and to find the center of each cluster. Furthermore, we use
quantum fuzzy entropy to determine the number of
quantum levels, which reflect the actual distribution of
classification patterns. Second, a supervised learning
scheme is used to adjust the parameters to obtain the
desired outputs. The proposed learning algorithm uses the
self-clustering algorithm (SCA), quantum fuzzy entropy to
perform structure learning, and the backpropagation
algorithm to perform parameter learning. Finally, we
evaluate the performance of the proposed EQNFIS model
using two classification problems.

This paper is organized as follows. Section 2 describes
the quantum membership function and the structure of the
EQNFIS model. Section 3 describes the learning algorithm
of the EQNFIS model. The self-clustering algorithm,
quantum fuzzy entropy, and backpropagation algorithm
are presented in this section. In Section 4, the EQNFIS
model is used to classify the Iris data and the Wisconsin
breast cancer data to demonstrate its learning capability.
We also compare our approach with other methods in the
literature. Finally, conclusions are given in the last section.

2. The structure of the EQNFIS

The fuzzy if-then rule shown below is used by the
EQNFIS:

Rj : IF x1 is Q1j and and xn is Qnj

THEN y is a0j þ
Xn

i¼1

aijxi, ð1Þ

where xi and y are the input and output variables,
respectively; Qij is the linguistic term of the precondition
part with quantum membership function mQij

; a0j and aij

are the parameters of consequent part; n is the number of
input dimensions; Rj is jth fuzzy rule.
The membership function of the precondition part

discussed in this paper is different from the typical
Gaussian membership function. We adopt the quantum
membership function to approximate desired results.
Therefore, the response of the jth quantum membership
function for the ith feature vector can be written as

Qij ¼
1

nsij

Xnsij

r¼1

1

1þ expð�bðxi �mij þ jy
r
ijjÞÞ

 !
Uðxi;�1;mijÞ

"

þ
expð�bðxi �mij � jy

r
ijjÞÞ

1þ expð�bðxi �mij � jy
r
ijjÞÞ

 !
Uðxi;mij ;1Þ

#
, ð2Þ

where Uðxi; a; bÞ ¼
1 if apxiob

0 otherwise

�
, b is the slope factor,

yr
ij is the quantum interval, mij is the center of the quantum

membership function, and nsij is the number of levels in the
quantum membership function for the jth rule of the ith
input. Therefore, we can describe the fuzzy if-then rule as
follows:

Rj : IF x1 is mðm1j; y
r1j

1j Þ and . . . and xi is mðmij ; y
rij

ij Þ and . . .

and xn is mðmnj ; y
rnj

nj Þ

THEN y is a0j þ a1jx1 þ . . .þ aijxi þ . . .þ anjxn. ð3Þ

Fig. 1 shows the response of a three-level quantum
membership function.
The structure of the EQNFIS, which is systematized into

n input variables, p-term nodes for each input variable, one
output node, and n� p membership function nodes, is
shown in Fig. 2. We shall introduce the operation functions
of the nodes in each layer of the EQNFIS model. In the
following description, u(l) denotes an output of a node in
the lth layer.

Layer 1 (Input Node): No computation is done in this
layer. Each node in this layer is an input node, which
corresponds to one input variable and which only transmits
input values to the next layer directly.

u
ð1Þ
i ¼ xi. (4)

ARTICLE IN PRESS

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

-30 -20 -10 0 10 20 30

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

30
20

10
0

-10

-20

-30 -30
-20

-10
0

10
20

30

a

b

Fig. 1. Quantum membership function shown in (a) one-dimension (b) two-dimensions.

C.-J. Lin et al. / Neurocomputing 70 (2007) 2502–25162504
Layer 2 (Membership Function Node): Nodes in this
layer correspond to one linguistic label of the input
variables in layer 1 and a unit of memory. That is, the
membership value specifying the degree to which an input
value and a unit of memory belong to a fuzzy set is
calculated in layer 2. The quantum membership function,
the operation performed in layer 2 is

u
ð2Þ
ij ¼

1

nsij

Xnsij

r¼1

1

1þ expð�bðuð1Þi �mij þ jy
r
ijjÞÞ

 !"

Uðu
ð1Þ
i ;�1;mijÞ

þ
expð�bðuð1Þi �mij � jy

r
ijjÞÞ

1þ expð�bðuð1Þi �mij � jy
r
ijjÞÞ

 !
Uðu

ð1Þ
i ;mij ;1Þ

#
,

ð5Þ
where Uðxi; a; bÞ ¼
1 if apxiob

0 otherwise

�
, b is the slope factor,

yr
ij is the quantum interval, mij is the center of the quantum

membership function, and nsij is the number of levels in the
quantum membership function for the jth rule of the ith
input.

Layer 3 (Rule Node): Nodes in this layer represent the
preconditioned part of one fuzzy logic rule. They receive
one-dimensional membership degrees of the associated rule
from the nodes of a set in layer 2. Here, we use the product
operator mentioned above to perform IF-condition match-
ing of fuzzy rules. As a result, the output function of each
inference node is

u
ð3Þ
j ¼

Y
i

u
ð2Þ
ij

 !
, (6)

ARTICLE IN PRESS

y

∑
n

i=1

a01 +

… …

…

…

Layer 5

(Output nodes)

Layer 4

(Consequent

nodes)

Layer 3

(Rule nodes)

Layer 2

(Membership

function nodes)

Layer 1 (Input

nodes)

x1

ai1xi ∑
n

i=1

a02 + ai2xi ∑
n

i=1

a03 + ai3xi

Q Q Q Q Q Q

x2

Fig. 2. Structure of the proposed EQNFIS.

C.-J. Lin et al. / Neurocomputing 70 (2007) 2502–2516 2505
where the
Q

iu
ð2Þ
ij of a rule node represents the firing

strength of its corresponding rule.
Layer 4 (Consequent Node): Nodes in this layer are

called consequent nodes. The input to a node in layer 4 is
the output delivered from layer 3, and the other inputs are
the input variables from layer 1, as depicted in Fig. 2. For
this kind of node, we have

u
ð4Þ
j ¼ u

ð3Þ
j a0j þ

Xn

i¼1

aijxi

 !
, (7)

where the summation is over all the inputs and where aij are
the corresponding parameters of the consequent part.

Layer 5 (Output Node): Each node in this layer
corresponds to one output variable. The node integrates
all the actions recommended by layers 3 and 4 and acts as a
defuzzifier with

y ¼ uð5Þ ¼

Pp
j¼1u

ð4Þ
jPp

j¼1u
ð3Þ
j

¼

Pp
j¼1u

ð3Þ
j a0j þ

Pn
i¼1aijxi

� �
Pp

j¼1u
ð3Þ
j

, (8)

where p is the number of the fuzzy rule.
3. A learning algorithm for the EQNFIS model

In this section, we present a learning algorithm for the
proposed EQNFIS model. The following two schemes are
part of this learning algorithm. First, a structure learning
scheme is used to determine proper input space partitioning
and to find the center of each cluster. Furthermore, we use
quantum fuzzy entropy to decide the number of quantum
levels that reflect the actual distribution of classification
patterns. Second, a supervised learning scheme is used to
adjust the parameters for the desired outputs. The
proposed learning algorithm uses the self-clustering algo-
rithm (SCA), quantum fuzzy entropy to perform structure
learning, and the backpropagation algorithm to perform
parameter learning.

3.1. Structure learning

The first step in structure learning is to determine the
number of rules using the SCA from the training data, as
well as to determine the number of fuzzy sets in the
universal of discourse for each input variable, since one

ARTICLE IN PRESS
C.-J. Lin et al. / Neurocomputing 70 (2007) 2502–25162506
cluster in the input space corresponds to one potential
fuzzy logic rule, with mij and yr

ij representing the center and
the quantum interval, respectively. Simultaneously, we
employ quantum fuzzy entropy to determine the appro-
priate number of quantum levels. After the SCA, the
quantum intervals and the number of quantum levels are
determined. It is then easy to decide on the quantum
membership function.

3.1.1. The self-clustering algorithm

Layer 2 of the EQNFIS model can be viewed as a
function that maps input patterns. Hence, the discrimina-
tive ability of these new features is determined by the
centers of the quantum membership function. To achieve
good classification, centers are best selected based on their
ability to provide large class separation.

A clustering method, called the SCA, is proposed to
implement scatter partitioning of the input space. Without
any optimization, the online SCA is a fast, one-pass
algorithm for a dynamic estimation of the number of
clusters in a set of data and for finding the current centers
of clusters in the input data space. It is a distance-based
connectionist-clustering algorithm. In any cluster, the
maximum distance between a sample point and the cluster
center is less than a threshold value which has been set as a
clustering parameter and which would affect the number of
clusters to be estimated. The notations in the SCA are
described as follows:
Fig. 3. A b

P2: update

create a ne
Pi
 the ith input sample

C
 the cluster center

Cj
 the jth cluster center

R
 the number of cluster

Cm
 the current sample Pi belongs to the cluster with

the minimum distance
.

.

Dc1=0 P1

C1

Wc21=0

Wc11=0

P8
C3

Dc3=0

Wc13=0

Wc23=0
Wc21

P5

Wc11
P6

C1

Dc2

Wc22
Wc12

C2
P7

Dc1

a b

c d

rief clustering process using the SCA with samples P1 to P9 in 2-D sp

cluster center C1, P3: create a new cluster center C2, P4: do nothing.

w cluster C3. (d) P9: update cluster C1.
Dc
C3

P9

Wc11

ace. (a) The

(c) P5: upd
the diagonal distance of cluster C
Wc
 the boundary width of cluster C
Dthr
 the threshold value of the distance

Distij
 the distance between the current sample Pi and the

jth cluster center

Distim
 the distance between the current sample Pi and the

cluster center Cm with the minimum distance

x, y
 x- and y-dimension in the diagram
In the clustering process, the data samples come from a
data stream. The process starts with an empty set of
clusters. When a new cluster is created, the cluster center,
C, is defined, and its cluster distance and cluster width, Dc

and Wc, is initially set to zero. When more samples are
presented one after another, some created clusters will be
updated by changing the positions of their centers and
increasing the cluster distances and cluster width. Which
cluster will be updated and how much it will be changed
depends on the position of the current sample in the input
space. A cluster will not be updated any more when its
cluster distance, Dc, reaches the value that is equal to the
threshold value Dthr. In the clustering process, the thresh-
old parameter Dthr is an important parameter. A low
threshold value leads to the learning of coarse clusters
(i.e., less rules are generated), whereas a high threshold
value leads to the learning of fine clusters (i.e., more
rules are generated). Therefore, the selection of the
threshold value Dthr will critically affect the simulation
results, and the value will be based on practical experi-
mentation or on trial-and-error tests. Generally, Dthr is set
from 0.5 to 1 time the summation of the samples variance
in this study.
In this paper, we use two-dimensional feature spaces as

an example to explain the proposed clustering algorithm.
.

.C1

.

Wc21Dc1

C2

P1 C1 Wc11
P2

Dc1Wc21P4

Wc22=0

Wc12=0

Dc2=0

C2

P3

sample P1 causes the SCA to create a new cluster center C1. (b)

ate cluster C1, P6: do nothing, P7: update cluster center C2, P8:

ARTICLE IN PRESS
C.-J. Lin et al. / Neurocomputing 70 (2007) 2502–2516 2507
Fig. 3 briefly shows the SCA clustering process in two-
input space. The SCA is described as follows.

Step 1: We have to disarrange the order of the original
data samples by randomization. Create the first cluster by
simply taking the position of the first sample from the input
stream as the first cluster center C1, and setting its cluster
distance Dc1 and cluster width Wc11 and Wc21 to zero, as
shown in Fig. 3(a).

Step 2: If all samples of the data stream have been
processed, the algorithm is finished. Otherwise, the current
input sample, Pi, is taken and the distances between this
sample and all R already created cluster centers Cj,
Distij ¼ jjPi � Cjjj, j ¼ 1,2,y,R, are calculated.

Step 3: If there is any distance value Distij equal to, or
less than, at least one of the distance Dcj, j ¼ 1,2,y,R, it
means that the current sample Pi belongs to a cluster Cm

with the minimum distance

Distim ¼ jjPi � Cmjj ¼ minðjjPi � CjjjÞ; j ¼ 1; 2; . . . ;R.

(9)

In this case, neither a new cluster is created, nor any
existing cluster is updated, as in the cases of P4 and P6

shown in Fig. 3, for example. The algorithm then returns to
Step2. Otherwise, the algorithm goes to the next step.

Step 4: Find a cluster with center Cm and cluster distance
Dcm from all R existing cluster centers by calculating the
values Sij ¼Wcij þDcj, j ¼ 1,2,y,R, and then choosing
the cluster center Cm with the minimum value Sim:

Sim ¼Wcim þDcm ¼ minðSijÞ; j ¼ 1; 2; . . . ;R. (10)

In Eq. (9), the maximum distance from any cluster center
to the samples that belong to this cluster is not greater than
the threshold, Dthr, though the algorithm does not keep
any information of passed samples. However, we find that
the formulation only considers the distance between the
input data and cluster center in Eq. (10). But the special
situation shows that the distances between a given point
P10 and both cluster centers Dist10,1 and Dist10,2 are the
same as shown in Fig. 4. In the aforementioned technique,
the cluster C2, which has small dimension distances Dc2,
will be selected to expand according to Eq. (10). However,
this causes a problem in that the cluster numbers increase
..

Dc1

Dist10,1

C1

P10
C2

Dc2

Dist10,2

Fig. 4. The special case of SCA.
quickly. To avoid this problem, we make a judgment, as
follows:

If (the distance and Dist10,1 is equal to the distance and
Dist10,2)
and (Dc14Dc2)
Then Dcm ¼ Dc1.

From the above rule, we find that when the distances
between the input data and both clusters are the same, the
formulation will choose the cluster that has large dimen-
sion distances Dc1.

Step 5: If Sim is greater than Dthr, the sample Pi does not
belong to any existing clusters. A new cluster is created
in the same way as described in Step 1, as in the cases
of P3 and P8 shown in Fig. 3, and the algorithm returns to
Step 2.

Step 6: If Sim is not greater than Dthr, the cluster Cm is
updated by moving its center, Cm, and increasing the value
of its cluster distance, Dcm, and cluster width Wc1m, Wc2m.
The parameters are updated by the following equation:

Wcnew1m ¼
ðjjCm_x � Pi_xjj þWc1mÞ

2
, (11)

Wcnew2m ¼
ðjjCm_y � Pi_yjj þWc2mÞ

2
, (12)

Cnew
m_x ¼ jjPi_x �Dnew

1m jj, (13)

Cnew
m_y ¼ jjPi_y �Dnew

2m jj, (14)

Dcnewm ¼ Sim=2, (15)

where Cm_x is the value of the x dimension for Cm, Cm_y is
the value of the y dimension for Cm, Pi_x is the value of the
x dimension for Pi, and Pi_y is the value of the y dimension
for Pi, as in the cases of P2, P5, P7, and P9 shown in Fig. 3.
The algorithm returns to Step 2.
In this way, the maximum distance from any cluster

center to the samples that belong to this cluster is not
greater than the threshold value Dthr, though the algorithm
does not keep any information of passed samples. After
that, the number of rules, the center and the quantum
interval of the quantum membership function are defined
by the following equation:

mij ¼ Cj ; j ¼ 1; 2; . . . ;R, (16)

yr
ij ¼

1

ððnsij þ 1Þ=2Þ
rDj ;

r ¼ 1; 2; . . . ; nsij ; j ¼ 1; 2; . . . ;R ð17Þ

R ¼ the number of clusters (18)

3.1.2. Quantum fuzzy fntropy

After that, the center and the quantum interval of the
quantum membership function are determined. The
number of quantum levels in each dimension has

ARTICLE IN PRESS

8

7.5

7

6.5

x
2 6

5.5

5

4.5

4

8

8.5

7.5

7

6.5x
2

6

5.5

5

1 2 3 4

x1

5 6 7

c1
c2

c3

3.5 4 4.5 5 5.5 6 6.5 7 7.5

x1

Fig. 5. The pattern distribution with two dimensions and three classes of the cluster C1.

C.-J. Lin et al. / Neurocomputing 70 (2007) 2502–25162508
a profound effect on learning efficiency and classification
accuracy. If the number of quantum levels is too large, it
will take too long to finish the training and classification
processes, and overfitting may result. On the other hand, if
the number of quantum levels is too small, the size of each
decision region may be too big to fit the distribution of
input patterns, and classification performance may suffer.

Therefore, the selection of the optimal number of
quantum levels is an important task. In this subsection,
we will investigate a systematic method to select the
appropriate number of quantum levels. The proposed
criterion is based on quantum fuzzy entropy, since it has
the ability to reflect the actual distribution of pattern space.
Fig. 5 briefly shows distribution of the pattern space for a
cluster after the SCA clustering process in two-input space,
and that describes our proposed quantum fuzzy entropy of
the quantum interval for each dimension of the cluster. The
steps involved in selecting the quantum level number for
each dimension of the each cluster are described as follows:

Step 1: Set the initial number of quantum levels ns to 1,
i.e. the number of quantum levels is equal to one.

Step 2: Locate the centers and the quantum intervals.
The self-clustering algorithm will be used to locate the
center and the quantum interval of each cluster.

Step 3: Assign a quantum membership function to each
cluster. In order to apply quantum fuzzy entropy to
calculate the distribution information of patterns in a
cluster, we have to assign a quantum membership function
to each cluster.

Step 4: Compute the total quantum fuzzy entropy for all
clusters in each dimension for ns ¼ 1 and 2. We compute
the quantum fuzzy entropy for all clusters in each
dimension to obtain the distribution information of
patterns projected in this dimension. Quantum fuzzy
entropy is defined as follows:
(1)
 Let X ¼ {x1, x2, y, xnc} be a classification set with
elements xi distributed in a pattern space, where i ¼ 1;
2;y; nc.
(2)
 Let ~Q be a quantum fuzzy set defined in the quantum
interval of a pattern space. The mapped quantum
membership degree of the element xi with the quantum
fuzzy set ~Q is denoted by m ~QðxiÞ.
(3)
 Let CL1;CL2;y;CLp represent p classes into which the
n elements are divided.
(4)
 Let TCLj
ðxncÞ denote a set of elements of class j in the

cluster X. It is a subset of the cluster X.

(5)
 The sub-degree SDj with the quantum fuzzy set ~Q for

the elements of class j in the quantum interval, where
j ¼ 1; 2; y; p, is defined as

SDj ¼

P
x2TCLj

ðxncÞ
m ~QðxÞP

x2Xm ~QðxÞ
. (19)
(6)
 The quantum fuzzy entropy QFECLj
ð ~QÞ of the elements

of class j in the quantum interval is defined as

QFECLj
ð ~QÞ ¼ �SDj log SDj. (20)
(7)
 The quantum fuzzy entropy QFEð ~QÞ in the cluster X

for the elements within the quantum interval is
defined as

QFEð ~QÞ ¼
Xp

j¼1

QFECLj
ð ~QÞ. (21)
(8)
 In this step, we can compute the quantum fuzzy
entropy for the quantum levels ns ¼ 1 and ns ¼ 2, as
shown in Fig. 6.
Step 5: If the total quantum fuzzy entropy of ns+1

quantum levels is less than that of ns quantum levels, then
ns ¼ ns+1. Then go to Step 2. Otherwise, go to Step 6.

Step 6: The term ns represents the number of quantum
levels in a specified dimension. Since the quantum fuzzy
entropy does not decrease, we stop increasing the quantum
level in this dimension, and we let ns be the number of
quantum levels in this dimension.

3.1.3. The parameter learning

After the network structure is determined by the SCA,
the network then enters the parameter learning phase to

ARTICLE IN PRESS

8

8
.5

7
.5 7

6
.5

x2

6

5
.5 5

3
.5

4
4

.5
5

5
.5

6
6

.5
7

7
.5

x
1

8

8
.5

7
.5 7

6
.5

x2

6

5
.5 5

3
.5

4
4

.5
5

5
.5

6
6

.5
7

7
.5

x
1

1

0
.9

0
.8

0
.7

0
.6

0
.5

0
.4

0
.3

0
.2

0
.1 0

3
.5

4
4

.5
5

5
.5

6
6

.5
7

7
.5

1

0
.9

0
.8

0
.7

0
.6

0
.5

0
.4

0
.3

0
.2

0
.1 0

3
.5

4
4

.5
5

5
.5

6
6

.5
7

7
.5

a
b

F
ig
.
6
.
T
h
e
p
a
tt
er
n
d
is
tr
ib
u
ti
o
n
w
it
h
co
rr
es
p
o
n
d
in
g
q
u
a
n
tu
m

m
em

b
er
sh
ip

fu
n
ct
io
n
.
(a
)
T
h
e
n
u
m
b
er

o
f
q
u
a
n
tu
m

le
v
el
s
is
o
n
e;

(b
)
th
e
n
u
m
b
er

o
f
q
u
a
n
tu
m

le
v
el
s
is
tw

o
.

C.-J. Lin et al. / Neurocomputing 70 (2007) 2502–2516 2509

ARTICLE IN PRESS
C.-J. Lin et al. / Neurocomputing 70 (2007) 2502–25162510
adjust the parameters of the network based on the training
patterns. The learning process involves minimizing a given
cost function. The gradient of the cost function is
computed and adjusted along the negative gradient.
The backpagation algorithm is used for this supervised
learning method. When we consider the single output case
for clarity, our goal to minimize the cost function E is
Dmij ¼ �
qE

qmij

¼ �
qE

quð5Þ

� �
quð5Þ

qmij

� �
¼ de �

ða0j þ
Pn

i¼1aijxiÞ �
Pp

j¼1u
ð3Þ
j �

Pp
j¼1ðu

ð3Þ
j � ða0j þ

Pn
i¼1aijxiÞÞ

ð
Pp

j¼1u
ð3Þ
j Þ

2

" #Yp

j¼1
iaj

Qij

�
1

nsij

Xnsij

r¼1

�
b � ðexpð�b � ðxi �mij þ jy

r
ijjÞÞÞ

ð1þ expð�b � ðxi �mij þ jy
r
ijjÞÞÞ

2

"
[ðxi;�1;mijÞ þ

b � ðexpð�b � ðxi �mij þ jy
r
ijjÞÞÞ

ð1þ expð�b � ðxi �mij þ jy
r
ijjÞÞÞ

2
[ðxi;mij ;1Þ

#
. ð28Þ

The updated quantum interval is as follows:If yr
ijX0, then

Dyr
ij ¼ �

qE

qyr
ij

¼ �
qE

quð5Þ

� �
quð5Þ

qyr
ij

" #
¼ de �

ða0j þ
Pn

i¼1aijxiÞ �
Pp

j¼1u
ð3Þ
j �

Pp
j¼1ðu

ð3Þ
j � ða0j þ

Pn
i¼1aijxiÞÞ

ð
Pp

j¼1u
ð3Þ
j Þ

2

" #Yp

j¼1
iaj

Qij

�
1

nsij

�
b � ðexpð�b � ðxi �mij þ yr

ijÞÞÞ

ð1þ expð�b � ðxi �mij þ yr
ijÞÞÞ

2

"
[ðxi;�1;mijÞ �

b � ðexpð�b � ðxi �mij þ yr
ijÞÞÞ

ð1þ expð�b � ðxi �mij þ yr
ijÞÞÞ

2
[ðxi;mij ;1Þ

#
ð29Þ

else yr
ijo0

Dyr
ij ¼ �

qE

qyr
ij

¼ �
qE

quð5Þ

� �
quð5Þ

qyr
ij

" #
¼ de �

a0j þ
Pn

i¼1aijxi

� �
�
Pp

j¼1u
ð3Þ
j �

Pp
j¼1ðu

ð3Þ
j � ða0j þ

Pn
i¼1aijxiÞÞ

ð
Pp

j¼1ðu
ð3Þ
j Þ

2

" #Yp

j¼1
iaj

Qij

�
1

nsij

� �
b � ðexpð�b � ðxi �mij � yr

ijÞÞÞ

ð1þ expð�b � ðxi �mij � yr
ijÞÞÞ

2

"
[ðxi;�1;mijÞ þ

b � ðexpð�b � ðxi �mij � yr
ijÞÞÞ

ð1þ expð�b � ðxi �mij � yr
ijÞÞÞ

2
[ðxi;mij ;1Þ

#
. ð30Þ
defined as

E ¼
1

2
½y� yd �2, (22)

where yd is the desired output and y is the current output.
Then the parameter learning algorithm based on back-
propagation is described as follows:

The error term to be propagated is calculated as

de ¼ �
qE

qy
¼ yd � y. (23)

The parameter of consequent part is updated by the
amount

Da0j ¼ �
qE

qa0j

¼ �
qE

quð5Þ

� �
quð5Þ

qu
ð4Þ
j

" #
qu
ð4Þ
j

qa0j

" #
¼

deu
ð3Þ
jPp

j¼1u
ð3Þ
j

(24)

and

Daij ¼ �
qE

qaij

¼ �
qE

quð5Þ

� �
quð5Þ

qu
ð4Þ
j

" #
qu
ð4Þ
j

qaij

" #
¼

deu
ð3Þ
j xiPp

j¼1u
ð3Þ
j

. (25)

The parameter of consequent part in the output layer is
updated according to the following equation:

a0jðtþ 1Þ ¼ a0jðtÞ þ ZaDa0j, (26)

aijðtþ 1Þ ¼ aijðtÞ þ ZaDaij, (27)
where factor Za is the learning rate parameter of the
parameter and t denotes the jth iteration number. The
output error (i.e., the difference between the desired output
and the current output) is then backpropagated to the
quantum function neurons of the hidden layer to update
their centers and quantum intervals. According to the
chain rule, the updated center is as follows:
The centers and quantum intervals of the quantum
function neurons in this layer are updated as follows:

mijðtþ 1Þ ¼ mijðtÞ þ ZmDmij, (31)

yr
ijðtþ 1Þ ¼ yr

ijðtÞ þ ZyDy
r
ij , (32)

where Zm and Zy are the learning rate parameters of the
center and the quantum interval of the quantum function
neurons, respectively.
4. Illustrative examples

In this section, we evaluate the performance of the
proposed EQNFIS model using two better-known bench-
mark data sets used for classification. The first example
uses the Iris data, and the second example uses the
Wisconsin breast cancer data. These two data sets are
available from the University of California, Irvine, via the
ftp address ftp://ftp.ics.uci.edu/pub/machine-learning-da-
tabases, which is an anonymous site.
In the following simulations, the parameters and number

of training epochs were based on the desired accuracy. In
short, the trained EQNFIS model was stopped once its
high learning efficiency was demonstrated.

ftp://ftp.ics.uci.edu/pub/machine-learning-databases
ftp://ftp.ics.uci.edu/pub/machine-learning-databases

ARTICLE IN PRESS

8

7.5

7

6.5

6

5.5

5

4.5

4

S
e
p
a
l
le

n
g
th

S
e
p
a
l
le

n
g
th

0 50 100 150

Sample

7

6

5

P
e
ta

l
le

n
g
th

4

3

2

1

0 50

Sample

100 150

2.5

2

1.5

1

0.5

0

P
e
ta

l
w

id
th

0 50 100 150

Sample

0 50 100 150

Sample

4.5

4

3.5

3

2.5

2

Fig. 7. Iris data: Iris sestosa (W), Iris versiolor (J), and Iris virginica (&).

Table 1

The number of quantum levels for each dimension of cluster

No. of ns cluster Dimension

#1 #2 #3 #4

#1

#2

#3 1 1 1 1

C.-J. Lin et al. / Neurocomputing 70 (2007) 2502–2516 2511
4.1. Example 1: Iris data classification

The Fisher–Anderson iris data consists of four input
measurements—sepal length (sl), sepal width (sw), petal
length (pl), and petal width (pw)—of 150 specimens of the iris
plant. Three species of the iris were used: Iris sestosa, Iris

versiolor, and Iris virginica. Fifth instances of each species
were included. The measurements are shown in Fig. 7.

In the Iris data experiment, 25 instances with four
features from each species were randomly selected as the
training set (i.e., a total of 75 training patterns were used as
the training data set), and the remaining instances were
used as the testing set. The 75 training patterns were
obtained via a random selection process from the original
Iris dataset of 150 patterns. For the SCA, we chose the
parameter Dthr ¼ 4.5. Furthermore, we determined the
different number of quantum levels for each dimension of
each cluster using quantum fuzzy entropy and tabulated
them in Table 1. After structure learning, three clusters
were generated.

The network then entered the parameter learning phase.
We set the learning rate to Z ¼ 0.01 and trained the
EQNFIS model with different quantum levels for each
dimension of each cluster. After 100 training steps, the
final root-mean-square (RMS) error was 0.0138. Three
fuzzy logic rules were generated. The three designed fuzzy
rules were:

Rule 1: IF sl is m(6.38;0.45,0.77,1.12,1.50,1.87) and
sw is m(2.64;0.17,0.30,0.45,0.62,0.79) and
pl is m(5.77;0.91,1.46) and pw is m(1.77;0.44)

THEN y1 is �4.9+0.27sl-0.36sw-0.03pl+0.46pw and
y2 is �0.20-0.36sl+0.32sw+0.57pl-0.78pw and
y3 is 0.91-0.20sl-0.33sw+0.43pl-0.51pw
Rule 2: IF sl is m(5.52;1.09) and sw is m(2.89;0.26,0.40)
and

pl is m(4.09;1.37) and pw is m(1.29;0.29,0.55)
THEN y1 is �0.49-0.01sl+0.45sw-0.04pl-0.15pw and

y2 is �0.27+0.41sl-0.67sw+0.05pl-0.33pw and

ARTICLE IN PRESS
C.-J. Lin et al. / Neurocomputing 70 (2007) 2502–25162512
y3 is �0.65+0.20sl+0.27sw+0.12pl-0.67pw
5.5

5

4.5

4

S
e

p
a

l
W

id
th

3.5

3

2.5

2

1.5

1

8

7

6

5

4

3

2

1

0

P
e

ta
l
L

e
n

g
th

8

7

6

5

4

3

2

1

0

P
e

ta
l
L

e
n

g
th

a

c

e

Fig. 8. Th

Petal Leng

(e) For th
Rule 3: IF sl is m(4.90;0.90) and sw is m(3.30;1.36) and
pl is m(1.29;0.58) and pw is m(0.18;-0.53)

THEN y1 is �0.03+0.28sl-0.22sw-0.30pl-0.79pw and
y2 is 0.07+0.79sl-0.57sw-0.68pl-0.72pw and
y3 is 0.63+0.62sl-0.71sw-0.89pl+0.09pw
3 4 5 6 7 8 9

Sepal Length

3 4 5 6 7 8 9

Sepal Length

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Sepal Width

b

d

f

e distribution of input training patterns and final assignment of thre

th and Petal Width dimensions. (c) For the Sepal Length and Petal

e Sepal Width and Petal Length dimensions. (f) For the Sepal Lengt
patterns and the final assignment of the fuzzy rules (i.e.,

Fig. 8(a)–(f) show the distribution of the training

the distribution of the input membership functions). The
boundary of each rectangle represents a rule with a firing
strength of 0.5. We compared the testing accuracy of
our model with that of other methods—the traditional
P
e

ta
l
W

id
th

3.5

3

2.5

2

1.5

1

0.5

0

-0.5

-1

P
e

ta
l
W

id
th

3.5

3

2.5

2

1.5

1

0.5

0

-0.5

-1

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Sepal Width

3.5

3

2.5

2

1.5

1

0.5

0

-0.5

-1

P
e

ta
l
W

id
th

3 4 5 6 7 8 9

Sepal Length

3210 4 5 6 7 8

Petal Length

e rules. (a) For the Sepal Length and Sepal Width dimensions. (b) For the

Length dimensions. (d) For the Sepal Width and Petal Width dimensions.

h and Petal Width dimensions.

ARTICLE IN PRESS

0.06

0.05

R
M

S
 e

rr
o

r

0.04

0.03

0.02

0.01

0 10 20 30 40 50 60 70 80 90 100

Epochs

EQNFIS with quantum fuzzy entropy

EQNFIS (3)

RBFN

Fig. 9. Learning curves of the EQNFIS with quantum fuzzy entropy, the EQNFIS with the three quantum levels for each dimension of each cluster, and

the RBFN with the SCA model.

Table 2

Classification accuracy using various methods for the Iris data

Experiment # Model

Neural network RBFN with SCA EQNFIS (2) EQNFIS (3) EQNFIS (5) EQNFIS with quantum fuzzy entropy

1

2 92 93.33 94.67 96 94.67 96

3 97.33 94.67 94.67 96 96 97.33

4 97.33 98.67 97.33 97.33 97.33 98.67

5 94.67 94.67 94.67 96 94.67 96

Average (%) 95.47 96 96 96.8 96.27 97.33

Table 3

The average learning time using various methods for the Iris data

Experiment # Model

Neural

network

RBFN with

SCA

EQNFIS with

quantum fuzzy entropy

1 4.6563 2.1406 1.9688

2 4.6094 2.1250 2.0156

3 4.5781 2.0781 2.0313

4 4.6250 2.1563 1.9219

5 4.6406 2.1350 1.9844

Average

(second)

4.6219 2.1270 1.9843

Table 4

Average re-substitution accuracy comparison of various models for the

Iris data classification problem

Methods Average re-substitution accuracy (%)

FEBFC [9] 96.91

SANFIN [20] 97.33

FMMC [18] 97.3

FUNLVQ+GFENCE [8] 96.3

Wu and Chen’s [22] 96.21

EQNFIS 97.33

C.-J. Lin et al. / Neurocomputing 70 (2007) 2502–2516 2513
multiplayer neural network (NN) with 12 hidden nodes
and 84 parameters, the standard radial basis function
network (RBFN) with the SCA including 8 hidden nodes
and 88 parameters, and the EQNFIS with 3 fuzzy rules and
80 parameters—using the same quantum levels (ns ¼ 2, 3
and 5) for each dimension of each cluster. Five experiments
were used. These experiments calculated the classification
accuracy and the values of the average produced on the
testing set using the traditional multiplayer NN, the RBFN
with the SCA, the EQNFIS model, using 2, 3, and 5
quantum levels, and the proposed EQNFIS with quantum
fuzzy entropy.

During the learning phase, 100 epochs of training were
performed. The learning curves from the proposed
EQNFIS model with quantum fuzzy entropy, the EQNFIS
with the three quantum levels for each dimension of each
cluster, and the RBFN with the SCA model are shown in
Fig. 9. The figure reveals a smaller rms error and a faster
convergence for the EQNFIS model compared to the
RBFN model. In this example, five experiments were used.
These experiments have different orders of training
samples. Table 2 shows that the experiments with the
EQNFIS model for five different orders of data samples,
having an accuracy percentage ranging from 96% to
98.67%. The means of re-substitution accuracy was
97.33%. The average classification accuracy of the
EQNFIS model with quantum fuzzy entropy was better
than that of other methods. In Table 3, we compared the
learning speed (i.e., CPU time) of the EQNFIS model with
those of the NN and RBFN. The average learning times of
the EQNFIS, NN and RBFN were 1.9843, 2.127 and
4.6219 s, respectively. The average learning time was
measured on a personal computer with an Intel Pentium
4 (2500MHz) CPU inside. Table 4 shows the comparison

ARTICLE IN PRESS
C.-J. Lin et al. / Neurocomputing 70 (2007) 2502–25162514
of the classification results of the EQNFIS model with
other classifiers [8,9,18,20,22] on the Iris data. The results
show that the average classification accuracy of the
EQNFIS model is better than other methods.

4.2. Example 2: Wisconsin breast cancer diagnostic data

The Wisconsin breast cancer diagnostic data set contains
699 patterns distributed into two output classes, benign
and malignant. Each pattern consists of nine input
features: clump thickness, uniformity of cell size, unifor-
mity of cell shape, marginal adhesion, single epithelial cell
size, bare nuclei, bland chromatin, normal nucleoli, and
mitoses. A total of 458 patterns are in the benign class and
the other 241 patterns are in the malignant class. Since
there were 16 patterns containing missing values, we used
683 patterns to evaluate the performance of the proposed
EQNFIS model. To compare the performance with other
models, we used half of the 683 patterns as the training set
and the remaining patterns as the testing set.
Table 6

Classification accuracy for the Wisconsin breast cancer diagnostic data

Experiment # Model

Neural network RBFN with SCA EQN

1 96.49 95.32 97.37

2 97.08 95.61 97.66

3 94.44 93.86 97.37

4 97.37 94.74 97.66

5 96.49 94.74 97.66

Average (%) 96.37 94.85 97.54

0.1

0.08

R
M

S
 e

rr
o

r

0.06

0.04

0.02

0

0 10 20 30 40

E

Fig. 10. Learning curves from the EQNFIS with quantum fuzzy entropy, the

and the RBFN with the SCA model.

Table 5

The number of quantum level for each dimension of cluster

No. of ns cluster Dimension

#1 #2 #3 #4 #5 #6 #7 #8 #9

#1 1 1 1 1 1 2 1 1 1

#2 1 1 1 1 1 1 1 1 1
Experimental conditions were the same as the previous
experiment. We also used half of the original data patterns
as the training data (randomly selected) and the remaining
patterns as the testing data. For the SCA, we chose the
parameter Dthr ¼ 35. Furthermore, we determined the
different number of quantum levels for each dimension of
each cluster using quantum fuzzy entropy and tabulated in
them Table 5. After the structure learning phase, two
clusters were generated.
The network then entered the parameter learning phase.

We set the learning rate to Z ¼ 0:05 and trained the
EQNFIS model with different quantum levels for each
dimension of each cluster. Five experiments also were used.
These experiments calculated the classification accuracy
and the values of the average produced on the testing set by
the neural network with 7 hidden nodes and 77 parameters,
the RBFN with the SCA including 4 hidden nodes and 80
parameters, the EQNFIS model with 2 fuzzy rules and 77
parameters using 1 and 2 quantum levels, and the proposed
EQNFIS with quantum fuzzy entropy. During the
supervised learning phase, 100 epochs of training were
performed. Fig. 10 shows the learning curves from the
proposed EQNFIS model with quantum fuzzy entropy, the
EQNFIS with the two quantum levels for each dimension
of each cluster, and the RBFN with the SCA model. Our
model can obtain a smaller rms error and converge more
quickly.
Table 6 shows that the experiments with the EQNFIS

model with quantum fuzzy entropy result in high accuracy,
with an accuracy percentage ranging from 97.37% to
FIS(1) EQNFIS(2) EQNFIS with quantum fuzzy

entropy

97.37 97.66

98.54 98.54

97.37 97.37

97.37 97.37

97.37 97.66

97.6 97.72

50 60 70 80 90 100

pochs

EQNFIS with quantum fuzzy entropy
EQNFIS (2)

RBFN

EQNFIS with the two quantum levels for each dimension of each cluster,

ARTICLE IN PRESS

Table 7

The average learning time using various methods for the Wisconsin breast

cancer diagnostic data

Experiment # Model

Neural

network

RBFN with

SCA

EQNFIS with

quantum fuzzy entropy

1 9.5938 6.1094 6.0156

2 9.4531 6.0469 6.0781

3 9.5469 6.0625 5.8750

4 9.5156 6.0938 5.9688

5 9.5781 6.2344 5.9531

Average

(second)

9.5375 6.1094 5.9781

Table 8

Average accuracy comparison of various models for the wisconsin breast

cancer diagnostic data

Models Average accuracy (%)

NNFS [17] 94.15

FEBFC [9] 95.14

NEFCLASS [13] 92.7

SANFIS [20] 96.3

MSC [12] 94.9

EQNFIS 97.72

C.-J. Lin et al. / Neurocomputing 70 (2007) 2502–2516 2515
98.54%. The means of re-substitution accuracy was
97.72%. The average classification accuracy of the
EQNFIS model with quantum fuzzy entropy was better
than that of other methods. Table 7 shows the CPU time of
the cost of the EQNFIS model, the NN and RBFN. The
average learning times of the EQNFIS, NN and RBFN
were 5.9781, 6.1094 and 9.5375 s, respectively. We com-
pared the testing accuracy of our model with that of other
methods [9,12,13,17,20]. Table 8 shows the comparison
between the learned EQNFIS models and other fuzzy logic
system, neural network, and neuro-fuzzy classifiers. The
average classification accuracy of the EQNFIS model was
better than that of other methods.

5. Conclusion

In this paper, an entropy-based quantum neuro-fuzzy
inference system (EQNFIS) was proposed for classification
applications. The EQNFIS model is a five-layer structure,
which combines the traditional Takagi–Sugeno–Kang
(TSK). A self-constructing learning algorithm, which
consists of the self-clustering algorithm (SCA), quantum
fuzzy entropy, and the backpropagation algorithm, was
also proposed. The advantages of the proposed EQNFIS
model are summarized as follows: (1) it converges quickly;
(2) it uses an online, fast, and one-pass self-constructing
learning algorithm; (3) it has much lower rms error; and (4)
it has a higher accuracy classification rate than other
models. Finally, simulation results have shown that the
average classification accuracy of the EQNFIS model is
better than other methods. In addition to the simulations
done in this paper, the proposed EQNFIS model has been
used to solve face detection problem from color images in
our laboratory.

Acknowledgement

This work was supported by National Science Council,
R.O.C., under Grant no. NSC94-2218-E-324-004.

References

[1] P.O. Duda, P.E. Hart, Pattern Classification and Scene Analysis,

Wiley, New York, 1973.

[2] L. Fei, Z. Shengmei, Z. Baoyu, Quantum neural network in speech

recognition, Proc. IEEE Int. Conf. Signal Process. 6 (2000)

1267–1270.

[3] S. Halgamuge, M. Glesner, Neural networks in designing fuzzy

systems for real world applications, Fuzzy Sets Syst. 65 (1994) 1–12.

[4] J.-S.R. Jang, ANFIS: adaptive-network-based fuzzy inference sys-

tem, IEEE Trans. Syst. Man and Cybern. 23 (1993) 665–685.

[5] C.F. Juang, C.T. Lin, An on-line self-constructing neural fuzzy

inference network and its applications, IEEE Trans. Fuzzy Syst. 6 (1)

(1998) 12–31.

[6] N. Kasabov, Learning fuzzy rules and approximate reasoning in

fuzzy neural networks and hybrid systems, Fuzzy Sets Syst. 82 (1996)

135–149.

[7] R. Kretzschmar, R. Bueler, N.B. Karayiannis, F. Eggimann,

Quantum neural networks versus conventional feedforward neural

networks: an experimental study, Proc. IEEE Int. Conf. Signal

Process. 1 (2000) 328–337.

[8] H.M. Lee, A neural network classifier with disjunctive fuzzy

information, Neural Networks 11 (6) (1998) 1113–1125.

[9] H.M. Lee, C.M. Chen, J.M. Chen, Y.L. Jou, An efficient fuzzy

classifier with feature selection based on fuzzy entropy, IEEE Trans.

Syst., Man Cybern. B 31 (2001) 426–432.

[10] M. Leshno, V.Y. Lin, A. Pinkus, S. Schocken, Multilayer feedfor-

ward networks with a nonpolynomial activation function can

approximate any function, Neural Networks 6 (6) (1993) 861–867.

[11] C.J. Lin, C.T. Lin, An ART-based fuzzy adaptive learning control

network, IEEE Trans. Fuzzy Syst. 5 (4) (1997) 477–496.

[12] B.C. Lovel, A.P. Bradley, The multiscale classifier, IEEE Trans.

Pattern Anal. Machine Intell. 18 (1996) 124–137.

[13] D. Nauck, R. Kruse, A neuro-fuzzy method to learn fuzzy

classification rules from data, Fuzzy Sets Syst. 89 (1997) 277–288.

[14] S. Paul, S. Kumar, Subsethood-product fuzzy neural inference system

(SuPFuNIS), IEEE Trans. Neural Networks 13 (3) (2002) 578–599.

[15] G. Purushothaman, N.B. Karayiannis, Quantum neural networks

(QNNs): inherently fuzzy feedforward neural networks, IEEE Trans.

Neural Networks 8 (3) (1997) 679–693.

[16] M. Russo, FuGeNeSys—A fuzzy genetic neural system for fuzzy

modeling, IEEE Trans. Fuzzy Syst. 6 (1998) 373–388.

[17] R. Setiono, H. Liu, Neural-network feature selector, IEEE Trans.

Neural Network 8 (3) (1997) 654–662.

[18] P.K. Simpson, Fuzzy min-max neural networks-Part I: Classification,

IEEE Trans. Neural Networks, 3 (1992) 776–786.

[19] T. Takagi, M. Sugeno, Fuzzy identification of systems and its

applications to modeling and control, IEEE Trans. Syst. Man

Cybern. SMC-15 (1985) 116–132.

[20] J.S. Wang, C.S. George Lee, Self-adaptive neuro-fuzzy inference

systems for classification applications, IEEE Trans. Fuzzy Syst. 10 (6)

(2002) 790–802.

[21] L.X. Wang, J.M. Mendel, Generating fuzzy rules by learning from

examples, IEEE Trans. Sys. Man Cybern. 22 (6) (1992) 1414–1427.

ARTICLE IN PRESS
C.-J. Lin et al. / Neurocomputing 70 (2007) 2502–25162516
[22] T.P. Wu, S.M. Chen, A new method for constructing membership

functions and fuzzy rules from training examples, IEEE Trans. Syst.

Man. Cybern. B 29 (1999) 25–40.

Cheng–Jian Lin received the B.S. degree in

electrical engineering from Ta-Tung University,

Taiwan, R.O.C., in 1986 and the M.S. and Ph.D.

degrees in electrical and control engineering from

the National Chiao-Tung University, Taiwan,

R.O.C., in 1991 and 1996. From April 1996 to

July 1999, he was an Associate Professor in the

Department of Electronic Engineering, Nan-Kai

College, Nantou, Taiwan, R.O.C. Since August

1999, he has been with the Department of
Computer Science and Information Engineering, Chaoyang University

of Technology. Currently, he is a Professor of Computer Science and

Information Engineering Department, Chaoyang University of Technol-

ogy, Taichung, Taiwan, R.O.C. He served as the chairman of Computer

Science and Information Engineering Department from 2001 to 2005. His

current research interests are neural networks, fuzzy systems, pattern

recognition, intelligence control, bioinformatics, and FPGA design. He

has published more than 100 papers in the referred journals and

conference proceedings. Dr. Lin is a member of the Phi Tau Phi. He is

also a member of the Chinese Fuzzy Systems Association (CFSA), the

Chinese Automation Association, the Taiwanese Association for Artificial

Intelligence (TAAI), the IEICE (The Institute of Electronics, Information

and Communication Engineers), and the IEEE Computational Intelli-

gence Society. He is an executive committee member of the Taiwanese

Association for Artificial Intelligence (TAAI). Dr. Lin currently serves as

the Associate Editor of International Journal of Applied Science and

Engineering.
I–Fang Chung received the B. S. and M. S.

degrees in control engineering from the National

Chiao-Tung University (NCTU), Taiwan, in

1993 and 1995, respectively. He received the

Ph.D. degree in Electrical and Control Engineer-

ing from NCTU in 2000. From 2000 to 2003, he

was a Research Assistant Professor in Electrical

and Control Engineering, NCTU. During 2003 to

2004, he worked as a postdoctoral fellow in the

Institute of Medical Science, the laboratory of
DNA information analysis of Human Genome Center of Tokyo

University in Japan. Since 2004, he has served an assistant professor at

the Institute of Bioinformatics, National Yang-Ming University, Taiwan.

His current research interests are bioinformatics, machine learning,

biomedical engineering, biomedical signal processing, and fuzzy neural

networks.

Cheng–Hung Chen was born in Kaohsiung,

Taiwan, R.O.C. in 1979. He received the B.S.

and M.S. degree in computer science and

information engineering from the Chaoyang

University of Technology, Taiwan, R.O.C., in

2002 and 2004. He is currently pursuing the

Ph.D. degree in electrical and control engineering

from the National Chiao-Tung University, Tai-

wan, R.O.C. His current research interests are

neural networks, fuzzy logic systems, intelligence
control and pattern recognition.

	An entropy-based quantum neuro-fuzzy inference system for classification applications
	Introduction
	The structure of the EQNFIS
	A learning algorithm for the EQNFIS model
	Structure learning
	The self-clustering algorithm
	Quantum fuzzy fntropy
	The parameter learning

	Illustrative examples
	Example 1: Iris data classification
	Example 2: Wisconsin breast cancer diagnostic data

	Conclusion
	Acknowledgement
	References

