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Abstract

In this paper, an entropy-based quantum neuro-fuzzy inference system (EQNFIS) for classification applications is proposed. The

EQNFIS model is a five-layer structure, which combines the traditional Takagi-Sugeno-Kang (TSK). Layer 2 of the EQNFIS model

contains quantum membership functions, which are multilevel activation functions. Each quantum membership function is composed of

the sum of sigmoid functions shifted by quantum intervals. A self-constructing learning algorithm, which consists of the self-clustering

algorithm (SCA), quantum fuzzy entropy, and the backpropagation algorithm, is also proposed. The proposed SCA method is a fast,

one-pass algorithm that dynamically estimates the number of clusters in an input data space. Quantum fuzzy entropy is employed to

evaluate the information on pattern distribution in the pattern space. With this information, we can determine the number of quantum

levels. The backpropagation algorithm is used to tune the adjustable parameters. Simulations were conducted to show the performance

and applicability of the proposed model.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Classification is one of the most frequent decision-
making tasks performed by humans. A classification
problem occurs when an object needs to be assigned to a
predefined group or class based on the number of observed
attributes related to that object. Many problems in
business, science, industry, and medicine can be treated
as classification problems. Traditional statistical classifica-
tion procedures, such as discrimination analysis, are built
on the Bayesian decision theory [1]. In these procedures, an
underlying probability model must be assumed in order to
calculate the a posteriori probability upon which a
classification decision is made. One major limitation of
statistical models is that they work well only when the
underlying assumptions are correct. The effectiveness of
these methods depends to a large extent on the various
e front matter r 2006 Elsevier B.V. All rights reserved.
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assumptions or conditions under which the models are
developed. Users must have a good knowledge of both data
properties and model capabilities before the models can be
successfully applied.
Neural networks [17] have emerged as an important tool

for classification tasks. The recent and vast research
activities in neural classification have established that
neural networks are promising alternatives to various
conventional classification methods. However, it is difficult
to understand the meaning associated with each neuron
and each weight in the neural networks. A fuzzy entropy
measure [9] is employed to partition the input feature space
into decision regions and to select relevant features with
good separability for the classification task. However, as
compared with the neural networks, learning ability is lock
of fuzzy logical. When the views above are summarized, it
can be said that, in contrast to pure neural or fuzzy
methods, the neural fuzzy method [3,6,13,14,16,20] pos-
sesses the advantages of both neural networks and fuzzy
systems. Neuro-fuzzy systems (NFS) bring the low-level
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learning and computational power of neural networks into
fuzzy systems and give the high-level human-like thinking
and reasoning of fuzzy systems to neural networks.

Two typical types of neuro-fuzzy systems are the
Mamdani-type and Takagi–Sugeno–Kang (TSK)-type
neuro-fuzzy systems. For Mamdani-type neuro-fuzzy
systems [11,21], the minimum fuzzy implication is used in
fuzzy reasoning. For TSK-type neuro-fuzzy systems
[4,5,19], the antecedent is defined in the same way as the
Mamdani-type, while the consequent is a linear function of
the input variables. Many researchers [4,5] have shown that
using a TSK-type neuro-fuzzy system achieves superior
performance in network size and learning accuracy than
using Mamdani-type neuro-fuzzy systems.

Recently, quantum neural networks (QNNs) used to
limit conventional neural networks (NNs) were developed
[2,7,15]. Conventional NNs and QNNs satisfy the require-
ments outlined in [10] for a universal function approx-
imator. More specifically, QNNs can identify overlaps
between data due to their ability to approximate any
arbitrary membership profile up to any degree of accuracy.
However, QNNs and NNs are generally disadvantaged by
their ‘‘black box’’ format, lack a systematic way to
determine the appropriate model structure, have no
localizability, and converge slowly.

In this paper, an entropy-based quantum neuro-fuzzy
inference system (EQNFIS) is proposed. The EQNFIS
model is a five-layer structure, which combines the
traditional TSK. Layer 2 of the EQNFIS model contains
quantum membership functions, which are multilevel
activation functions. Each quantum membership function
is composed of the sum of sigmoid functions shifted by
quantum intervals. The quantum intervals add an addi-
tional degree of freedom that can be exploited during the
learning process to capture and quantify the structure of
the input space.

A self-constructing learning algorithm for the EQNFIS
is also proposed, as follows. First, a structure learning
scheme is used to determine proper input space partitioning
and to find the center of each cluster. Furthermore, we use
quantum fuzzy entropy to determine the number of
quantum levels, which reflect the actual distribution of
classification patterns. Second, a supervised learning
scheme is used to adjust the parameters to obtain the
desired outputs. The proposed learning algorithm uses the
self-clustering algorithm (SCA), quantum fuzzy entropy to
perform structure learning, and the backpropagation
algorithm to perform parameter learning. Finally, we
evaluate the performance of the proposed EQNFIS model
using two classification problems.

This paper is organized as follows. Section 2 describes
the quantum membership function and the structure of the
EQNFIS model. Section 3 describes the learning algorithm
of the EQNFIS model. The self-clustering algorithm,
quantum fuzzy entropy, and backpropagation algorithm
are presented in this section. In Section 4, the EQNFIS
model is used to classify the Iris data and the Wisconsin
breast cancer data to demonstrate its learning capability.
We also compare our approach with other methods in the
literature. Finally, conclusions are given in the last section.

2. The structure of the EQNFIS

The fuzzy if-then rule shown below is used by the
EQNFIS:

Rj : IF x1 is Q1j and . . . . . . and xn is Qnj

THEN y is a0j þ
Xn

i¼1

aijxi, ð1Þ

where xi and y are the input and output variables,
respectively; Qij is the linguistic term of the precondition
part with quantum membership function mQij

; a0j and aij

are the parameters of consequent part; n is the number of
input dimensions; Rj is jth fuzzy rule.
The membership function of the precondition part

discussed in this paper is different from the typical
Gaussian membership function. We adopt the quantum
membership function to approximate desired results.
Therefore, the response of the jth quantum membership
function for the ith feature vector can be written as

Qij ¼
1

nsij

Xnsij

r¼1

1

1þ expð�bðxi �mij þ jy
r
ijjÞÞ

 !
Uðxi;�1;mijÞ

"

þ
expð�bðxi �mij � jy

r
ijjÞÞ

1þ expð�bðxi �mij � jy
r
ijjÞÞ

 !
Uðxi;mij ;1Þ

#
, ð2Þ

where Uðxi; a; bÞ ¼
1 if apxiob

0 otherwise

�
, b is the slope factor,

yr
ij is the quantum interval, mij is the center of the quantum

membership function, and nsij is the number of levels in the
quantum membership function for the jth rule of the ith
input. Therefore, we can describe the fuzzy if-then rule as
follows:

Rj : IF x1 is mðm1j; y
r1j

1j Þ and . . . and xi is mðmij ; y
rij

ij Þ and . . .

and xn is mðmnj ; y
rnj

nj Þ

THEN y is a0j þ a1jx1 þ . . .þ aijxi þ . . .þ anjxn. ð3Þ

Fig. 1 shows the response of a three-level quantum
membership function.
The structure of the EQNFIS, which is systematized into

n input variables, p-term nodes for each input variable, one
output node, and n� p membership function nodes, is
shown in Fig. 2. We shall introduce the operation functions
of the nodes in each layer of the EQNFIS model. In the
following description, u(l) denotes an output of a node in
the lth layer.

Layer 1 (Input Node): No computation is done in this
layer. Each node in this layer is an input node, which
corresponds to one input variable and which only transmits
input values to the next layer directly.

u
ð1Þ
i ¼ xi. (4)
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Fig. 1. Quantum membership function shown in (a) one-dimension (b) two-dimensions.
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Layer 2 (Membership Function Node): Nodes in this
layer correspond to one linguistic label of the input
variables in layer 1 and a unit of memory. That is, the
membership value specifying the degree to which an input
value and a unit of memory belong to a fuzzy set is
calculated in layer 2. The quantum membership function,
the operation performed in layer 2 is

u
ð2Þ
ij ¼

1

nsij

Xnsij

r¼1

1

1þ expð�bðuð1Þi �mij þ jy
r
ijjÞÞ

 !"

Uðu
ð1Þ
i ;�1;mijÞ

þ
expð�bðuð1Þi �mij � jy

r
ijjÞÞ

1þ expð�bðuð1Þi �mij � jy
r
ijjÞÞ

 !
Uðu

ð1Þ
i ;mij ;1Þ

#
,

ð5Þ
where Uðxi; a; bÞ ¼
1 if apxiob

0 otherwise

�
, b is the slope factor,

yr
ij is the quantum interval, mij is the center of the quantum

membership function, and nsij is the number of levels in the
quantum membership function for the jth rule of the ith
input.

Layer 3 (Rule Node): Nodes in this layer represent the
preconditioned part of one fuzzy logic rule. They receive
one-dimensional membership degrees of the associated rule
from the nodes of a set in layer 2. Here, we use the product
operator mentioned above to perform IF-condition match-
ing of fuzzy rules. As a result, the output function of each
inference node is

u
ð3Þ
j ¼

Y
i

u
ð2Þ
ij

 !
, (6)
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where the
Q

iu
ð2Þ
ij of a rule node represents the firing

strength of its corresponding rule.
Layer 4 (Consequent Node): Nodes in this layer are

called consequent nodes. The input to a node in layer 4 is
the output delivered from layer 3, and the other inputs are
the input variables from layer 1, as depicted in Fig. 2. For
this kind of node, we have

u
ð4Þ
j ¼ u

ð3Þ
j a0j þ

Xn

i¼1

aijxi

 !
, (7)

where the summation is over all the inputs and where aij are
the corresponding parameters of the consequent part.

Layer 5 (Output Node): Each node in this layer
corresponds to one output variable. The node integrates
all the actions recommended by layers 3 and 4 and acts as a
defuzzifier with

y ¼ uð5Þ ¼

Pp
j¼1u

ð4Þ
jPp

j¼1u
ð3Þ
j

¼

Pp
j¼1u

ð3Þ
j a0j þ

Pn
i¼1aijxi

� �
Pp

j¼1u
ð3Þ
j

, (8)

where p is the number of the fuzzy rule.
3. A learning algorithm for the EQNFIS model

In this section, we present a learning algorithm for the
proposed EQNFIS model. The following two schemes are
part of this learning algorithm. First, a structure learning
scheme is used to determine proper input space partitioning
and to find the center of each cluster. Furthermore, we use
quantum fuzzy entropy to decide the number of quantum
levels that reflect the actual distribution of classification
patterns. Second, a supervised learning scheme is used to
adjust the parameters for the desired outputs. The
proposed learning algorithm uses the self-clustering algo-
rithm (SCA), quantum fuzzy entropy to perform structure
learning, and the backpropagation algorithm to perform
parameter learning.

3.1. Structure learning

The first step in structure learning is to determine the
number of rules using the SCA from the training data, as
well as to determine the number of fuzzy sets in the
universal of discourse for each input variable, since one
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cluster in the input space corresponds to one potential
fuzzy logic rule, with mij and yr

ij representing the center and
the quantum interval, respectively. Simultaneously, we
employ quantum fuzzy entropy to determine the appro-
priate number of quantum levels. After the SCA, the
quantum intervals and the number of quantum levels are
determined. It is then easy to decide on the quantum
membership function.

3.1.1. The self-clustering algorithm

Layer 2 of the EQNFIS model can be viewed as a
function that maps input patterns. Hence, the discrimina-
tive ability of these new features is determined by the
centers of the quantum membership function. To achieve
good classification, centers are best selected based on their
ability to provide large class separation.

A clustering method, called the SCA, is proposed to
implement scatter partitioning of the input space. Without
any optimization, the online SCA is a fast, one-pass
algorithm for a dynamic estimation of the number of
clusters in a set of data and for finding the current centers
of clusters in the input data space. It is a distance-based
connectionist-clustering algorithm. In any cluster, the
maximum distance between a sample point and the cluster
center is less than a threshold value which has been set as a
clustering parameter and which would affect the number of
clusters to be estimated. The notations in the SCA are
described as follows:
Fig. 3. A b

P2: update

create a ne
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 the cluster center
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In the clustering process, the data samples come from a
data stream. The process starts with an empty set of
clusters. When a new cluster is created, the cluster center,
C, is defined, and its cluster distance and cluster width, Dc

and Wc, is initially set to zero. When more samples are
presented one after another, some created clusters will be
updated by changing the positions of their centers and
increasing the cluster distances and cluster width. Which
cluster will be updated and how much it will be changed
depends on the position of the current sample in the input
space. A cluster will not be updated any more when its
cluster distance, Dc, reaches the value that is equal to the
threshold value Dthr. In the clustering process, the thresh-
old parameter Dthr is an important parameter. A low
threshold value leads to the learning of coarse clusters
(i.e., less rules are generated), whereas a high threshold
value leads to the learning of fine clusters (i.e., more
rules are generated). Therefore, the selection of the
threshold value Dthr will critically affect the simulation
results, and the value will be based on practical experi-
mentation or on trial-and-error tests. Generally, Dthr is set
from 0.5 to 1 time the summation of the samples variance
in this study.
In this paper, we use two-dimensional feature spaces as

an example to explain the proposed clustering algorithm.
.
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Fig. 3 briefly shows the SCA clustering process in two-
input space. The SCA is described as follows.

Step 1: We have to disarrange the order of the original
data samples by randomization. Create the first cluster by
simply taking the position of the first sample from the input
stream as the first cluster center C1, and setting its cluster
distance Dc1 and cluster width Wc11 and Wc21 to zero, as
shown in Fig. 3(a).

Step 2: If all samples of the data stream have been
processed, the algorithm is finished. Otherwise, the current
input sample, Pi, is taken and the distances between this
sample and all R already created cluster centers Cj,
Distij ¼ jjPi � Cjjj, j ¼ 1,2,y,R, are calculated.

Step 3: If there is any distance value Distij equal to, or
less than, at least one of the distance Dcj, j ¼ 1,2,y,R, it
means that the current sample Pi belongs to a cluster Cm

with the minimum distance

Distim ¼ jjPi � Cmjj ¼ minðjjPi � CjjjÞ; j ¼ 1; 2; . . . ;R.

(9)

In this case, neither a new cluster is created, nor any
existing cluster is updated, as in the cases of P4 and P6

shown in Fig. 3, for example. The algorithm then returns to
Step2. Otherwise, the algorithm goes to the next step.

Step 4: Find a cluster with center Cm and cluster distance
Dcm from all R existing cluster centers by calculating the
values Sij ¼Wcij þDcj, j ¼ 1,2,y,R, and then choosing
the cluster center Cm with the minimum value Sim:

Sim ¼Wcim þDcm ¼ minðSijÞ; j ¼ 1; 2; . . . ;R. (10)

In Eq. (9), the maximum distance from any cluster center
to the samples that belong to this cluster is not greater than
the threshold, Dthr, though the algorithm does not keep
any information of passed samples. However, we find that
the formulation only considers the distance between the
input data and cluster center in Eq. (10). But the special
situation shows that the distances between a given point
P10 and both cluster centers Dist10,1 and Dist10,2 are the
same as shown in Fig. 4. In the aforementioned technique,
the cluster C2, which has small dimension distances Dc2,
will be selected to expand according to Eq. (10). However,
this causes a problem in that the cluster numbers increase
..

Dc1

Dist10,1

C1

P10
C2

Dc2

Dist10,2

Fig. 4. The special case of SCA.
quickly. To avoid this problem, we make a judgment, as
follows:

If (the distance and Dist10,1 is equal to the distance and
Dist10,2)
and (Dc14Dc2)
Then Dcm ¼ Dc1.

From the above rule, we find that when the distances
between the input data and both clusters are the same, the
formulation will choose the cluster that has large dimen-
sion distances Dc1.

Step 5: If Sim is greater than Dthr, the sample Pi does not
belong to any existing clusters. A new cluster is created
in the same way as described in Step 1, as in the cases
of P3 and P8 shown in Fig. 3, and the algorithm returns to
Step 2.

Step 6: If Sim is not greater than Dthr, the cluster Cm is
updated by moving its center, Cm, and increasing the value
of its cluster distance, Dcm, and cluster width Wc1m, Wc2m.
The parameters are updated by the following equation:

Wcnew1m ¼
ðjjCm_x � Pi_xjj þWc1mÞ

2
, (11)

Wcnew2m ¼
ðjjCm_y � Pi_yjj þWc2mÞ

2
, (12)

Cnew
m_x ¼ jjPi_x �Dnew

1m jj, (13)

Cnew
m_y ¼ jjPi_y �Dnew

2m jj, (14)

Dcnewm ¼ Sim=2, (15)

where Cm_x is the value of the x dimension for Cm, Cm_y is
the value of the y dimension for Cm, Pi_x is the value of the
x dimension for Pi, and Pi_y is the value of the y dimension
for Pi, as in the cases of P2, P5, P7, and P9 shown in Fig. 3.
The algorithm returns to Step 2.
In this way, the maximum distance from any cluster

center to the samples that belong to this cluster is not
greater than the threshold value Dthr, though the algorithm
does not keep any information of passed samples. After
that, the number of rules, the center and the quantum
interval of the quantum membership function are defined
by the following equation:

mij ¼ Cj ; j ¼ 1; 2; . . . ;R, (16)

yr
ij ¼

1

ððnsij þ 1Þ=2Þ
rDj ;

r ¼ 1; 2; . . . ; nsij ; j ¼ 1; 2; . . . ;R ð17Þ

R ¼ the number of clusters (18)

3.1.2. Quantum fuzzy fntropy

After that, the center and the quantum interval of the
quantum membership function are determined. The
number of quantum levels in each dimension has
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a profound effect on learning efficiency and classification
accuracy. If the number of quantum levels is too large, it
will take too long to finish the training and classification
processes, and overfitting may result. On the other hand, if
the number of quantum levels is too small, the size of each
decision region may be too big to fit the distribution of
input patterns, and classification performance may suffer.

Therefore, the selection of the optimal number of
quantum levels is an important task. In this subsection,
we will investigate a systematic method to select the
appropriate number of quantum levels. The proposed
criterion is based on quantum fuzzy entropy, since it has
the ability to reflect the actual distribution of pattern space.
Fig. 5 briefly shows distribution of the pattern space for a
cluster after the SCA clustering process in two-input space,
and that describes our proposed quantum fuzzy entropy of
the quantum interval for each dimension of the cluster. The
steps involved in selecting the quantum level number for
each dimension of the each cluster are described as follows:

Step 1: Set the initial number of quantum levels ns to 1,
i.e. the number of quantum levels is equal to one.

Step 2: Locate the centers and the quantum intervals.
The self-clustering algorithm will be used to locate the
center and the quantum interval of each cluster.

Step 3: Assign a quantum membership function to each
cluster. In order to apply quantum fuzzy entropy to
calculate the distribution information of patterns in a
cluster, we have to assign a quantum membership function
to each cluster.

Step 4: Compute the total quantum fuzzy entropy for all
clusters in each dimension for ns ¼ 1 and 2. We compute
the quantum fuzzy entropy for all clusters in each
dimension to obtain the distribution information of
patterns projected in this dimension. Quantum fuzzy
entropy is defined as follows:
(1)
 Let X ¼ {x1, x2, y, xnc} be a classification set with
elements xi distributed in a pattern space, where i ¼ 1;
2;y; nc.
(2)
 Let ~Q be a quantum fuzzy set defined in the quantum
interval of a pattern space. The mapped quantum
membership degree of the element xi with the quantum
fuzzy set ~Q is denoted by m ~QðxiÞ.
(3)
 Let CL1;CL2;y;CLp represent p classes into which the
n elements are divided.
(4)
 Let TCLj
ðxncÞ denote a set of elements of class j in the

cluster X. It is a subset of the cluster X.

(5)
 The sub-degree SDj with the quantum fuzzy set ~Q for

the elements of class j in the quantum interval, where
j ¼ 1; 2; y; p, is defined as

SDj ¼

P
x2TCLj

ðxncÞ
m ~QðxÞP

x2Xm ~QðxÞ
. (19)
(6)
 The quantum fuzzy entropy QFECLj
ð ~QÞ of the elements

of class j in the quantum interval is defined as

QFECLj
ð ~QÞ ¼ �SDj log SDj. (20)
(7)
 The quantum fuzzy entropy QFEð ~QÞ in the cluster X

for the elements within the quantum interval is
defined as

QFEð ~QÞ ¼
Xp

j¼1

QFECLj
ð ~QÞ. (21)
(8)
 In this step, we can compute the quantum fuzzy
entropy for the quantum levels ns ¼ 1 and ns ¼ 2, as
shown in Fig. 6.
Step 5: If the total quantum fuzzy entropy of ns+1

quantum levels is less than that of ns quantum levels, then
ns ¼ ns+1. Then go to Step 2. Otherwise, go to Step 6.

Step 6: The term ns represents the number of quantum
levels in a specified dimension. Since the quantum fuzzy
entropy does not decrease, we stop increasing the quantum
level in this dimension, and we let ns be the number of
quantum levels in this dimension.

3.1.3. The parameter learning

After the network structure is determined by the SCA,
the network then enters the parameter learning phase to
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adjust the parameters of the network based on the training
patterns. The learning process involves minimizing a given
cost function. The gradient of the cost function is
computed and adjusted along the negative gradient.
The backpagation algorithm is used for this supervised
learning method. When we consider the single output case
for clarity, our goal to minimize the cost function E is
Dmij ¼ �
qE

qmij

¼ �
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quð5Þ

� �
quð5Þ

qmij

� �
¼ de �

ða0j þ
Pn

i¼1aijxiÞ �
Pp

j¼1u
ð3Þ
j �

Pp
j¼1ðu

ð3Þ
j � ða0j þ

Pn
i¼1aijxiÞÞ

ð
Pp

j¼1u
ð3Þ
j Þ

2

" #Yp

j¼1
iaj

Qij

�
1

nsij

Xnsij

r¼1

�
b � ðexpð�b � ðxi �mij þ jy

r
ijjÞÞÞ

ð1þ expð�b � ðxi �mij þ jy
r
ijjÞÞÞ

2

"
[ ðxi;�1;mijÞ þ

b � ðexpð�b � ðxi �mij þ jy
r
ijjÞÞÞ

ð1þ expð�b � ðxi �mij þ jy
r
ijjÞÞÞ

2
[ ðxi;mij ;1Þ

#
. ð28Þ
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defined as

E ¼
1

2
½y� yd �2, (22)

where yd is the desired output and y is the current output.
Then the parameter learning algorithm based on back-
propagation is described as follows:

The error term to be propagated is calculated as

de ¼ �
qE

qy
¼ yd � y. (23)

The parameter of consequent part is updated by the
amount

Da0j ¼ �
qE
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" #
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j

" #
qu
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j

qaij

" #
¼

deu
ð3Þ
j xiPp
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The parameter of consequent part in the output layer is
updated according to the following equation:

a0jðtþ 1Þ ¼ a0jðtÞ þ ZaDa0j, (26)

aijðtþ 1Þ ¼ aijðtÞ þ ZaDaij, (27)
where factor Za is the learning rate parameter of the
parameter and t denotes the jth iteration number. The
output error (i.e., the difference between the desired output
and the current output) is then backpropagated to the
quantum function neurons of the hidden layer to update
their centers and quantum intervals. According to the
chain rule, the updated center is as follows:
The centers and quantum intervals of the quantum
function neurons in this layer are updated as follows:

mijðtþ 1Þ ¼ mijðtÞ þ ZmDmij, (31)

yr
ijðtþ 1Þ ¼ yr

ijðtÞ þ ZyDy
r
ij , (32)

where Zm and Zy are the learning rate parameters of the
center and the quantum interval of the quantum function
neurons, respectively.
4. Illustrative examples

In this section, we evaluate the performance of the
proposed EQNFIS model using two better-known bench-
mark data sets used for classification. The first example
uses the Iris data, and the second example uses the
Wisconsin breast cancer data. These two data sets are
available from the University of California, Irvine, via the
ftp address ftp://ftp.ics.uci.edu/pub/machine-learning-da-
tabases, which is an anonymous site.
In the following simulations, the parameters and number

of training epochs were based on the desired accuracy. In
short, the trained EQNFIS model was stopped once its
high learning efficiency was demonstrated.

ftp://ftp.ics.uci.edu/pub/machine-learning-databases
ftp://ftp.ics.uci.edu/pub/machine-learning-databases
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Fig. 7. Iris data: Iris sestosa (W), Iris versiolor (J), and Iris virginica (&).

Table 1

The number of quantum levels for each dimension of cluster

No. of ns cluster Dimension

#1 #2 #3 #4

#1

#2

#3 1 1 1 1
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4.1. Example 1: Iris data classification

The Fisher–Anderson iris data consists of four input
measurements—sepal length (sl), sepal width (sw), petal
length (pl), and petal width (pw)—of 150 specimens of the iris
plant. Three species of the iris were used: Iris sestosa, Iris

versiolor, and Iris virginica. Fifth instances of each species
were included. The measurements are shown in Fig. 7.

In the Iris data experiment, 25 instances with four
features from each species were randomly selected as the
training set (i.e., a total of 75 training patterns were used as
the training data set), and the remaining instances were
used as the testing set. The 75 training patterns were
obtained via a random selection process from the original
Iris dataset of 150 patterns. For the SCA, we chose the
parameter Dthr ¼ 4.5. Furthermore, we determined the
different number of quantum levels for each dimension of
each cluster using quantum fuzzy entropy and tabulated
them in Table 1. After structure learning, three clusters
were generated.

The network then entered the parameter learning phase.
We set the learning rate to Z ¼ 0.01 and trained the
EQNFIS model with different quantum levels for each
dimension of each cluster. After 100 training steps, the
final root-mean-square (RMS) error was 0.0138. Three
fuzzy logic rules were generated. The three designed fuzzy
rules were:

Rule 1: IF sl is m(6.38;0.45,0.77,1.12,1.50,1.87) and
sw is m(2.64;0.17,0.30,0.45,0.62,0.79) and
pl is m(5.77;0.91,1.46) and pw is m(1.77;0.44)

THEN y1 is �4.9+0.27sl-0.36sw-0.03pl+0.46pw and
y2 is �0.20-0.36sl+0.32sw+0.57pl-0.78pw and
y3 is 0.91-0.20sl-0.33sw+0.43pl-0.51pw
Rule 2: IF sl is m(5.52;1.09) and sw is m(2.89;0.26,0.40)
and

pl is m(4.09;1.37) and pw is m(1.29;0.29,0.55)
THEN y1 is �0.49-0.01sl+0.45sw-0.04pl-0.15pw and

y2 is �0.27+0.41sl-0.67sw+0.05pl-0.33pw and
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y3 is �0.65+0.20sl+0.27sw+0.12pl-0.67pw
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Table 2

Classification accuracy using various methods for the Iris data

Experiment # Model

Neural network RBFN with SCA EQNFIS (2) EQNFIS (3) EQNFIS (5) EQNFIS with quantum fuzzy entropy

1

2 92 93.33 94.67 96 94.67 96

3 97.33 94.67 94.67 96 96 97.33

4 97.33 98.67 97.33 97.33 97.33 98.67

5 94.67 94.67 94.67 96 94.67 96

Average (%) 95.47 96 96 96.8 96.27 97.33

Table 3

The average learning time using various methods for the Iris data

Experiment # Model

Neural

network

RBFN with

SCA

EQNFIS with

quantum fuzzy entropy

1 4.6563 2.1406 1.9688

2 4.6094 2.1250 2.0156

3 4.5781 2.0781 2.0313

4 4.6250 2.1563 1.9219

5 4.6406 2.1350 1.9844

Average

(second)

4.6219 2.1270 1.9843

Table 4

Average re-substitution accuracy comparison of various models for the

Iris data classification problem

Methods Average re-substitution accuracy (%)

FEBFC [9] 96.91

SANFIN [20] 97.33

FMMC [18] 97.3

FUNLVQ+GFENCE [8] 96.3

Wu and Chen’s [22] 96.21

EQNFIS 97.33
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multiplayer neural network (NN) with 12 hidden nodes
and 84 parameters, the standard radial basis function
network (RBFN) with the SCA including 8 hidden nodes
and 88 parameters, and the EQNFIS with 3 fuzzy rules and
80 parameters—using the same quantum levels (ns ¼ 2, 3
and 5) for each dimension of each cluster. Five experiments
were used. These experiments calculated the classification
accuracy and the values of the average produced on the
testing set using the traditional multiplayer NN, the RBFN
with the SCA, the EQNFIS model, using 2, 3, and 5
quantum levels, and the proposed EQNFIS with quantum
fuzzy entropy.

During the learning phase, 100 epochs of training were
performed. The learning curves from the proposed
EQNFIS model with quantum fuzzy entropy, the EQNFIS
with the three quantum levels for each dimension of each
cluster, and the RBFN with the SCA model are shown in
Fig. 9. The figure reveals a smaller rms error and a faster
convergence for the EQNFIS model compared to the
RBFN model. In this example, five experiments were used.
These experiments have different orders of training
samples. Table 2 shows that the experiments with the
EQNFIS model for five different orders of data samples,
having an accuracy percentage ranging from 96% to
98.67%. The means of re-substitution accuracy was
97.33%. The average classification accuracy of the
EQNFIS model with quantum fuzzy entropy was better
than that of other methods. In Table 3, we compared the
learning speed (i.e., CPU time) of the EQNFIS model with
those of the NN and RBFN. The average learning times of
the EQNFIS, NN and RBFN were 1.9843, 2.127 and
4.6219 s, respectively. The average learning time was
measured on a personal computer with an Intel Pentium
4 (2500MHz) CPU inside. Table 4 shows the comparison
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of the classification results of the EQNFIS model with
other classifiers [8,9,18,20,22] on the Iris data. The results
show that the average classification accuracy of the
EQNFIS model is better than other methods.

4.2. Example 2: Wisconsin breast cancer diagnostic data

The Wisconsin breast cancer diagnostic data set contains
699 patterns distributed into two output classes, benign
and malignant. Each pattern consists of nine input
features: clump thickness, uniformity of cell size, unifor-
mity of cell shape, marginal adhesion, single epithelial cell
size, bare nuclei, bland chromatin, normal nucleoli, and
mitoses. A total of 458 patterns are in the benign class and
the other 241 patterns are in the malignant class. Since
there were 16 patterns containing missing values, we used
683 patterns to evaluate the performance of the proposed
EQNFIS model. To compare the performance with other
models, we used half of the 683 patterns as the training set
and the remaining patterns as the testing set.
Table 6

Classification accuracy for the Wisconsin breast cancer diagnostic data

Experiment # Model

Neural network RBFN with SCA EQN

1 96.49 95.32 97.37

2 97.08 95.61 97.66

3 94.44 93.86 97.37

4 97.37 94.74 97.66

5 96.49 94.74 97.66

Average (%) 96.37 94.85 97.54
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Fig. 10. Learning curves from the EQNFIS with quantum fuzzy entropy, the

and the RBFN with the SCA model.

Table 5

The number of quantum level for each dimension of cluster

No. of ns cluster Dimension

#1 #2 #3 #4 #5 #6 #7 #8 #9

#1 1 1 1 1 1 2 1 1 1

#2 1 1 1 1 1 1 1 1 1
Experimental conditions were the same as the previous
experiment. We also used half of the original data patterns
as the training data (randomly selected) and the remaining
patterns as the testing data. For the SCA, we chose the
parameter Dthr ¼ 35. Furthermore, we determined the
different number of quantum levels for each dimension of
each cluster using quantum fuzzy entropy and tabulated in
them Table 5. After the structure learning phase, two
clusters were generated.
The network then entered the parameter learning phase.

We set the learning rate to Z ¼ 0:05 and trained the
EQNFIS model with different quantum levels for each
dimension of each cluster. Five experiments also were used.
These experiments calculated the classification accuracy
and the values of the average produced on the testing set by
the neural network with 7 hidden nodes and 77 parameters,
the RBFN with the SCA including 4 hidden nodes and 80
parameters, the EQNFIS model with 2 fuzzy rules and 77
parameters using 1 and 2 quantum levels, and the proposed
EQNFIS with quantum fuzzy entropy. During the
supervised learning phase, 100 epochs of training were
performed. Fig. 10 shows the learning curves from the
proposed EQNFIS model with quantum fuzzy entropy, the
EQNFIS with the two quantum levels for each dimension
of each cluster, and the RBFN with the SCA model. Our
model can obtain a smaller rms error and converge more
quickly.
Table 6 shows that the experiments with the EQNFIS

model with quantum fuzzy entropy result in high accuracy,
with an accuracy percentage ranging from 97.37% to
FIS(1) EQNFIS(2) EQNFIS with quantum fuzzy

entropy

97.37 97.66

98.54 98.54

97.37 97.37

97.37 97.37

97.37 97.66

97.6 97.72

50 60 70 80 90 100

pochs

EQNFIS with quantum fuzzy entropy
EQNFIS (2)

RBFN

EQNFIS with the two quantum levels for each dimension of each cluster,
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Table 7

The average learning time using various methods for the Wisconsin breast

cancer diagnostic data

Experiment # Model

Neural

network

RBFN with

SCA

EQNFIS with

quantum fuzzy entropy

1 9.5938 6.1094 6.0156

2 9.4531 6.0469 6.0781

3 9.5469 6.0625 5.8750

4 9.5156 6.0938 5.9688

5 9.5781 6.2344 5.9531

Average

(second)

9.5375 6.1094 5.9781

Table 8

Average accuracy comparison of various models for the wisconsin breast

cancer diagnostic data

Models Average accuracy (%)

NNFS [17] 94.15

FEBFC [9] 95.14

NEFCLASS [13] 92.7

SANFIS [20] 96.3

MSC [12] 94.9

EQNFIS 97.72
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98.54%. The means of re-substitution accuracy was
97.72%. The average classification accuracy of the
EQNFIS model with quantum fuzzy entropy was better
than that of other methods. Table 7 shows the CPU time of
the cost of the EQNFIS model, the NN and RBFN. The
average learning times of the EQNFIS, NN and RBFN
were 5.9781, 6.1094 and 9.5375 s, respectively. We com-
pared the testing accuracy of our model with that of other
methods [9,12,13,17,20]. Table 8 shows the comparison
between the learned EQNFIS models and other fuzzy logic
system, neural network, and neuro-fuzzy classifiers. The
average classification accuracy of the EQNFIS model was
better than that of other methods.

5. Conclusion

In this paper, an entropy-based quantum neuro-fuzzy
inference system (EQNFIS) was proposed for classification
applications. The EQNFIS model is a five-layer structure,
which combines the traditional Takagi–Sugeno–Kang
(TSK). A self-constructing learning algorithm, which
consists of the self-clustering algorithm (SCA), quantum
fuzzy entropy, and the backpropagation algorithm, was
also proposed. The advantages of the proposed EQNFIS
model are summarized as follows: (1) it converges quickly;
(2) it uses an online, fast, and one-pass self-constructing
learning algorithm; (3) it has much lower rms error; and (4)
it has a higher accuracy classification rate than other
models. Finally, simulation results have shown that the
average classification accuracy of the EQNFIS model is
better than other methods. In addition to the simulations
done in this paper, the proposed EQNFIS model has been
used to solve face detection problem from color images in
our laboratory.
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