
A QoS-Aware and Energy-Conserving
Transcoding Proxy Using

On-Demand Data Broadcasting
Jiun-Long Huang and Ming-Syan Chen, Fellow, IEEE

Abstract—Most research works in transcoding proxies in mobile computing environments are on the basis of the traditional client-

server architecture and do not employ the data broadcast technique. In addition, the issues of QoS provision and energy conservation

are also not addressed in the prior studies. In view of this, we design in this paper a QoS-aware and energy-conserving transcoding

proxy by utilizing the on-demand broadcasting technique. We first propose a QoS-aware and energy-conserving transcoding proxy

architecture, abbreviated as QETP, and model it as a queuing network consisting of three queues. By analyzing the queuing network,

three lemmas are derived to estimate the load of these queues. We then propose a version decision policy and a service admission

control scheme to provide QoS in QETP. The derived lemmas are used to guide the execution of the proposed version decision policy

and service admission control scheme to achieve the given QoS requirement. In addition, we also propose a data indexing method to

reduce the power consumption of clients. To measure the performance of the proposed architecture, three experiments are conducted.

Experimental results show that the average access time reduction of the proposed scheme over the traditional client-server

architecture ranges from 45 percent to 75 percent. Experimental results also show that the proposed scheme is more scalable than the

traditional client-server architecture and is able to effectively control the system load to attain the given QoS requirements. In addition,

the proposed scheme is able to greatly reduce the average tuning time of clients at the cost of a slight increase (around 5 percent in our

experiments) in average access time.

Index Terms—Transcoding proxy, QoS, energy-conservation, data broadcast, on-demand broadcast.

Ç

1 INTRODUCTION

IN a pervasive computing environment, due to the
constraints resulting from power-limited mobile devices

and low-bandwidth wireless networks, designing a power
conserving mobile information system with high scalability
and high bandwidth utilization becomes an important
research issue and, hence, attracts a significant amount of
research attention. In addition, the high diversity in the
capabilities of various mobile devices such as display
capabilities (e.g., screen size, color depth, and supported
data formats) and computation power makes the design of
mobile information systems more challenging. This diver-
sity also results in an increasing demand on the capability
of context awareness for mobile information systems.

Content adaptation, which is an important technique to
realize context awareness, emerges to remedy the problem
resulting from the said diversity by offering different
mobile users suitable versions of the same object according
to the capabilities of the mobile devices, the traffic of the
networks, and the users’ preferences [20]. Transcoding,
which transforms a data object from one version into

another, is recognized as a promising technique to realize
content adaptation [20], [21], [23]. A proxy capable of
transcoding (referred to as a transcoding proxy) is placed
between a client and an information server to coordinate the
mismatch between what the server provides and what the
client prefers. Since proxy-based approaches are transpar-
ent to the content providers and users, this kind of
approach is able to simplify the design of servers and
clients and, as a result, attracts much research attention.

In recent years, data broadcast [2], [3], [29] has been
employed as an important technique to design a scalable
and power conserving mobile information system. How-
ever, most research works in transcoding proxies in mobile
computing environments are on the basis of the traditional
client-server architecture and do not employ the data
broadcast technique. Hence, the transcoding proxies are
not scalable and the network bandwidth is not well utilized.
In addition, most prior studies do not consider the issue of
quality of service (abbreviated as QoS), which is crucial in a
mobile computing environment.

In addition, as shown in [26], only a modest improve-
ment (20 to 30 percent) in battery lifetime is expected in the
next few years. Hence, energy conservation is raised as a
key factor of the design of mobile devices. Since data
indexing is recognized as a promising means to reduce
power consumption [17], many researchers have studied
the design of data indexing algorithms in push-based data
broadcasting environments [9], [22], [28], [30]. However,
most studies on on-demand data broadcasting focus on the
design of scheduling algorithms [1], [3], and only a few of

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 8, AUGUST 2007 971

. J.-L. Huang is with the Department of Computer Science, National Chiao
Tung University, Hsinchu, Taiwan, ROC.
E-mail: jlhuang@cs.nctu.edu.tw.

. M.-S. Chen is with the Electrical Engineering Department, National
Taiwan University, Taipei, Taiwan, ROC.
E-mail: mschen@cc.ee.ntu.edu.tw.

Manuscript received 22 Oct. 2005; revised 21 Apr. 2006; accepted 13 Nov.
2006; published online 7 Feb. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-0307-1005.
Digital Object Identifier no. 10.1109/TMC.2007.1038.

1536-1233/07/$25.00 � 2007 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS



them consider the employment of data indexing in on-
demand data broadcasting environments [18].

In view of this, we design in this paper a scalable, QoS-
aware and energy-conserving transcoding proxy by utiliz-
ing the on-demand broadcasting technique. Explicitly, we
first propose a QoS-aware and energy-conserving transcod-
ing proxy architecture, abbreviated as QETP, and model it
as a queuing network with three queues. By analyzing the
queuing network, three lemmas are derived to formulate
the average waiting time of these queues. We then devise
scheme ODB-QoS-Index to provide QoS in QETP, where
ODB-QoS-Index stands for “On-demand Data Broadcasting
with QoS and data Indexing.” Scheme ODB-QoS-Index is an
online, iterative, and adaptive algorithm comprising

1. a version decision policy to determine the suitable
version for each data request according to the users’
device profiles and the state of the server,

2. a service admission control scheme to determine
whether to grant a service registration or a service
handoff according to the state of the server, and

3. a data indexing method to insert data indices into
the broadcast program to reduce the power con-
sumption of clients.

In each iteration, scheme ODB-QoS-Index estimates the
average waiting time of each queue based on the derived
results, determines the state of each queue according to the
corresponding estimation of average waiting time, and
configures the behavior of the version decision policy and
the service admission control scheme in accordance with the
states of these queues to attain the desired QoS. In addition,
scheme ODB-QoS-Index inserts index items into the broad-
cast program to reduce the clients’ power consumption. To
measure the performance of QETP, three experiments are
conducted. Experimental results show that the average
access time reduction of the proposed scheme over tradi-
tional client-server architecture ranges from 45 percent to
75 percent. Experimental results also show that scheme
ODB-QoS-Index is more scalable than the traditional client-
server architecture and is able to achieve the system
administrators’ QoS requirements by the devised version
decision policy and the service admission control scheme. In
addition, scheme ODB-QoS-Index is able to greatly reduce
the average tuning time at the cost of a slight increase
(around 5 percent in our experiments) in average access
time. Access time is defined as the summation of time
periods from the moment that mobile clients submit data
requests to the moment that mobile clients receive the
requested data items. On the other hand, tuning time is
defined as the summation of time periods that mobile clients
operate in active mode. The access time is widely used to
evaluate the efficiency of broadcast systems, while the
tuning time is used to evaluate the power consumption of
mobile devices. To the best of our knowledge, there is no
prior research on the design of transcoding proxies employ-
ing data broadcast. This feature distinguishes this paper
from others.

The rest of this paper is organized as follows: The
descriptions of related work and the proposed transcoding
proxy architecture, QETP, are given in Section 2. An
analytical model and a transcoding model are devised in

Section 3. Then, Section 4 describes the proposed version
decision policy, service admission control scheme, and data
indexing method. The performance evaluation is shown in
Section 5 and, finally, Section 6 concludes this paper.

2 PRELIMINARIES

2.1 On-Demand Data Broadcasting

Fig. 1 shows an example on-demand broadcasting system.
In an on-demand data broadcasting system [1], [3], [4], a
server maintains a data request queue and serves these
requests according to the employed scheduling algorithm.
When requiring one data item, a mobile client sends a data
request to the server. After receiving a data request, the
server first checks whether there exists another data
request in the data request queue with the same required
data object. If yes, the new-coming data request is merged
into that data request. This phenomenon is called request
merge. Data requests with the same requested data object
can be safely merged since one transmission of the data
object in a broadcast channel is able to serve all merged
data requests. Therefore, the higher the occurrence prob-
ability of request merge is, the more efficient the system is.
Otherwise, the new-coming data request is inserted into the
data request queue.

A scheduling algorithm is used to prioritize all data
requests in the data request queue, and the server will serve
these data requests according to their priorities. To serve a
data request, the system retrieves the required data object
from the corresponding data server and then broadcasts
this object to all its clients via a dedicated and shared
broadcast channel. As a result, the on-demand broadcast
system is more scalable and can obtain higher network
utilization than the traditional client-server architecture.

2.2 Related Work

2.2.1 Prior Work Related to On-Demand Data

Broadcasting

Dykeman et al. pointed out in [10] that traditional FCFS
scheduling would produce a long average access time for an
on-demand broadcast system when the access frequencies of
all data items were not uniformly distributed. They
proposed several scheduling algorithms and concluded
that LWF could provide the best performance among the

972 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 8, AUGUST 2007

Fig. 1. An example on-demand broadcasting system.



proposed algorithms. Aksoy and Franklin pointed out in [3]
that, although it is able to produce the shortest average
access time, LWF is not efficient when the number of data
requests is large. To address this problem, they proposed
algorithm RxW, which is able to schedule the received data
requests efficiently by employing a pruning technique.
Experimental results showed that the performance (i.e.,
average access time) of RxW is close to that of LWF.
Unfortunately, the algorithm RxW is designed under the
premise that each data item is of the same size. Hence, it is
not suitable for variable-sized data items. In [1], Acharya and
Muthukrishnan addressed the broadcast scheduling pro-
blem in the environments with variable-sized data items.
They defined a new metric, stretch, as the ratio of the
response time of a request to its service time. Based on
stretch, they proposed a scheduling algorithm, called LTSF,
to minimize the stretch. Wu and Cao argued that algorithm
LTSF is not optimal in terms of overall stretch [27]. In
addition, algorithm LTSF is not scalable in a large-scale
environment. Therefore, they proposed a scheduling algo-
rithm to optimize the system performance in terms of stretch.
Moreover, the proposed scheduling algorithm is more
scalable than LTSF and, hence, is suitable for practical use.

However, most studies on on-demand data broadcasting
focus on the design of scheduling algorithms [1], [3] and
only a few of them consider the employment of data
indexing in on-demand data broadcasting environments
[18]. Fig. 2a and Fig. 2b show examples where a mobile
client issues a data request at time t on broadcast programs
without and with data indexing, respectively. In Fig. 2a and
Fig. 2b, the time periods marked “A” and “D” indicate the
time periods where the mobile device is in active and doze
mode, respectively. Since the sizes of index items are much
smaller than those of data items, employing data indexing is
able to greatly reduce the average tuning time at the cost of
a slight increase in the average access time.

In [18], Lee et al. proposed a data indexing method in an
on-demand data broadcasting environment. As shown in
Fig. 3, the proposed broadcast program is partitioned into a
series of buckets and each bucket contains an index segment
and a data segment. The number of the index items in an
index segment is equal to the number of data items in the
corresponding data segment in the same bucket. In
bucket Bk, the ith index item (i.e., IkðiÞ) contains 1) the
identifier and the version number of the corresponding data

item in bucket Bk (i.e., DkðiÞ), 2) the time offset that DkðiÞ
will be broadcast, and 3) the size of DkðiÞ. The number of
index items within an index segment is called the degree of
the broadcast program. In [18], the degree of all buckets is
fixed, and the experimental results suggest setting the
degree of broadcast programs to two for better performance.

2.2.2 Prior Work Related to Transcoding Proxy

Han et al. proposed in [13] an image transcoding proxy
which is able to control the data retrieval time to meet users’
requirements. The proposed transcoding proxy can adap-
tively adjust the sizes of the objects transmitted to users by
using an aggressive lossy compression method. They also
presented an analytical framework for determining whether
to transcode and how much to transcode an image and a
process used by the transcoding proxy to adapt its image
coding to meet an upper bound on the delay tolerated by
the end user.

In [7], Cardellini et al. analyzed how network proxies can
work collaboratively in content transcoding and caching.
They proposed a distributed algorithm to distribute the
computation load caused by transcoding throughout a
collaborative proxy system. They also proposed two
extended strategies to cache data objects. In [8], Chang
and Chen explored the aggregate effect when caching
multiple versions of the same Web object in the transcoding
proxy. They argued that the aggregate profit of caching
multiple versions of an object is not simply equal to the sum
of the profits of caching individual versions, but rather,
depends on the transcoding relationships among them.
They devised the notion of a weighted transcoding graph
and formulated a generalized profit function. Based on the
weighted transcoding graph and the generalized profit
function, an innovative cache replacement algorithm for
transcoding proxies was proposed, and the proposed cache
replacement algorithm was shown to perform well in terms
of the delay saving ratios and cache hit ratios.

Hsiao et al. proposed the architecture of versatile
transcoding proxy in [14]. Based on the concept of the
agent system, the proposed architecture can accept and
execute the transcoding preference script provided by the
client or the server to transform the corresponding data or
protocol according to the user’s specification. Fine granu-
larity control is achieved by building a weighted transcod-
ing graph which depicts the transcoding relationship
among transcodable versions dynamically. Based on the
weighted transcoding graph, the transcoding proxy per-
forms cache replacement according to the content in the
caching candidate set, which is generated by the concept of
dynamic programming.

In the early study [15] of this paper, we proposed a QoS-
aware transcoding proxy architecture to use on-demand

HUANG AND CHEN: A QOS-AWARE AND ENERGY-CONSERVING TRANSCODING PROXY USING ON-DEMAND DATA BROADCASTING 973

Fig. 2. Employment of data indexing. (a) Without data indexing. (b) With

data indexing.

Fig. 3. Index structure.



broadcast to transmit the requested data objects. However,
the issue of energy conservation is not considered. There-
fore, for energy conservation, we extend in this paper the
prior architecture to support data indexing techniques. In
addition, we also revise the version decision policy and the
service admission control scheme proposed in [15] for better
performance.

2.3 System Architecture

Fig. 4 shows the proposed architecture of QETP. In a
cellular environment, the whole service area of a mobile
environment is divided into a number of cells. Two
dedicated channels, one control channel and one broadcast
channel, are provided in each cell. A control channel is used
to transmit control messages such as registration messages,
data requests, acknowledgments, and so on. On the other
hand, a broadcast channel is used by the transcoding proxy
to disseminate data objects to its clients. According to the
locations of these components, QETP comprises the follow-
ing two types of components: front-end and back-end.

A front-end, which comprises a service manager and a
scheduler, is allocated to each cell. These two components
are described below.

. Service Manager: A service manager is in charge of all
service-related operations such as service registra-
tion, service termination, service admission control,
and so on. Each service manager owns a profile
database storing the users’ profiles and the profiles
of these users’ devices.

. Scheduler: A scheduler is a software component which
handles the data requests of the corresponding cell.
After receiving a data request, the scheduler will first
determine a suitable version for this data request
according to the user’s device profile and the network
state. Then, the scheduler will check whether the
received data request can be merged to an existing
data request in the data request queue. Different from
the traditional on-demand broadcasting architecture
described in Section 2.1, request merge occurs only
when there exists another data request in the data
request queue asking for the same version of the same
required data object of the received data request.
Otherwise, the scheduler will insert the received data
request into the data request queue.

In addition, a scheduling algorithm is employed

to determine the service order of the data requests in

the data request queue. While serving a data request,

the scheduler will send this request to the cache

manager and the cache manager will respond with

the content of the required data object. The scheduler

then broadcasts the required data object via the

broadcast channel and serves the next data request in

the data request queue. Moreover, the scheduler will

broadcast index items through the broadcast channel

to reduce the power consumption of mobile clients.

A back-end, which comprises a cache manager and a

transcoder, behaves like a traditional transcoding proxy.

These two components are described below.

. Cache Manager: After receiving a data request from a
scheduler, the cache manager is responsible for
returning the required version of the required data
object to the scheduler. Suppose that the cache
manager receives a data request of the jth version of
data object DðiÞ. If the jth version of Di is cached, the
cache manager will return the cached data object to
the scheduler immediately. If the jth version of Di is
not cached, the cache manager will check whether
there exists another version of Di which can be
transcoded into the jth version of Di. If yes, the
cache manager will ask the transcoder to generate
the jth version of Di. Otherwise, the cache manager
will request the original version of the requested
data object from the data server, ask the transcoder
to transform the returned data object into the
required version, and then transmit the result of
transcoding to the scheduler.

. Transcoder: A transcoder is in charge of the transfor-
mation of data objects among different versions
according to the received transformation requests
generated by the cache manager.

Since the design of the back-end is similar to the systems

proposed in some prior works [7], [8], [13], [25], we focus in

this paper on the design of the front-end.

3 ANALYTICAL AND TRANSCODING MODELS

3.1 Analytical Model

In this subsection, we derive the worst case of the average

access time1 of QETP and use the derived results to propose

a version decision policy and a service admission control

scheme in Section 4. To facilitate the following discussion,

we first make the following assumptions:

1. The employed scheduling scheme of the scheduler is
FCFS (standing for first come, first served).

2. No request merge occurs in the data request queue
of the scheduler.

3. One transmission of a data object in the broadcast
channel is received by exactly one client.

4. The messages of registration, deregistration, and
handoff are negligible.

974 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 8, AUGUST 2007

1. In this paper, we use access time and waiting time interchangeably.

Fig. 4. The architecture of QETP.



Assumptions 2 and 3 occur when the users’ interests are
highly diverse and, hence, the effect of on-demand broad-
cast diminishes. We make these two assumptions since we
focus on the worst case of the transcoding proxy. Assump-
tion 4 is made since we focus on the situation where the
number of data requests is much higher than the number of
control messages (i.e., registration, deregistration, handoff,
and service termination). These assumptions will be relaxed
in our simulation model. For better readability, a list of used
symbols is shown in Table 1.

We model QETP as a queuing network as shown in
Fig. 5. Queue 2 is a physical queue which is located in the
scheduler. On the contrary, Queue 1 and Queue 3 are logical
queues which are only used to model the control and
broadcast channels in order to derive the average waiting
time of a data request on the control and broadcast
channels, respectively. Suppose that the data requests
submitted by a mobile user i follow a Poisson process with
rate �i and NUser is the number of mobile users in the cell.
To facilitate the following discussion, we number the
mobile users in the cell as user 1; 2; � � � ; NUser. Due to the
characteristic of the Poisson process, the aggregate data
requests of all mobile users in the cell follow a Poisson
process with rate �Ctrl: ¼

PNUser

i¼1 �i. Denote the sizes of data
requests and request acknowledgments as sCtrl: and sAck:,
respectively. Also, let BCtrl: be the bandwidth of the control

channel and let the waiting time of the control channel for a

data request (denoted as WCtrl:) be the time interval

between the user sending a data request and the user

receiving the acknowledgment. Then, we have the follow-

ing lemma:

Lemma 1. The average waiting time of the control channel is

WCtrl: ¼
1

BCtrl:

sCtrl:þsAck: � �Ctrl:
:

Proof. Similar to [19], we assume that the average waiting

time to transmit a data request and a request acknowl-

edgment by the control channel is an exponential

distribution with mean 1
�Ctrl:

. Hence, the control channel

can be modeled as an M/M/1 queue. Then, the average

service rate of the control channel is

�Ctrl: ¼
BCtrl:

sCtrl: þ sAck:
:

Omitting the equation manipulation which can be found

in [12], the approximated average waiting time for each

mobile device from submitting a data request to

receiving the corresponding request acknowledgment is

WCtrl: ¼
1

�Ctrl: � �Ctrl:
¼ 1

BCtrl:

sCtrl:þsAck: � �Ctrl:
: ð1Þ

tu

Let the waiting time of the scheduler for a data request

(denoted as WSche:) be, from the scheduler’s perspective, the

time interval from the arrival of the data request to the time

that the requested data object has been obtained. Since the

service time of a cache manager is affected by several

factors, such as the cache status of the required data objects,

the employed replacement scheme, the characteristics of the

input jobs, and so on, the service time of the cache manager

cannot be modeled by a particular mathematical distribu-

tion. Therefore, we model the average service time of the

cache manager as an arbitrary distribution with mean 1
�Sche:

and variance �2
Sche:. Let �Sche: ¼ �Ctrl:

�Sche:
be the load of the

scheduler. We then have the following lemma:

HUANG AND CHEN: A QOS-AWARE AND ENERGY-CONSERVING TRANSCODING PROXY USING ON-DEMAND DATA BROADCASTING 975

TABLE 1
Description of Symbols

Fig. 5. The analytical model of the proposed transcoding proxy.



Lemma 2. The average waiting time of the scheduler is

WSche: ¼
1

�Sche:
þ

�Sche:
�Sche:
þ �Ctrl:�2

Sche:

2ð1� �Sche:Þ
:

Proof. With Assumptions 1 and 2 and the characteristic of
M=M=1 queues, the input process seen by the data
request queue of the scheduler is also a Poisson process
with rate �Ctrl:. When receiving a data request, the
scheduler determines the most suitable version of the
requested data object according to the profile of the
mobile device and network status and then inserts the
corresponding job (including data object id and the most
suitable version number) into the data request queue. To
serve a data request, the scheduler passes the job to the
cache manager and the cache manager will retrieve the
specified version of the data object requested by the job
and return the retrieved data object to the scheduler.
Then, the scheduler disseminates the returned data
object to its clients via the broadcast channel.

With Assumption 2, the processing of the scheduler
can be modeled as an M/G/1 queue. Then, as shown in
[12], the expected system size in steady-state is

LSche: ¼ �Sche: þ
�2
Sche: þ �2

Ctrl:�
2
Sche:

2ð1� �Sche:Þ
:

By Little’s formula, the average waiting time of this
queue is

WSche: ¼
LSche:
�Ctrl:

¼ 1

�Sche:
þ

�Sche:
�Sche:
þ �Ctrl:�2

Sche:

2ð1� �Sche:Þ
: ð2Þ

tu

Let the waiting time of the broadcast channel for a data
request be the time interval from the time that the requested
data object has been obtained by the scheduler to the time
that the user has received it. Then, we have the following
lemma:

Lemma 3. The average waiting time of the broadcast channel is

WBCast ¼
1

�BCastð1� r0Þ
;

where r0 is the root of z ¼ A�½�BCastð1� zÞ� with value larger
than zero and less than one.

Proof. Similar to the proof of Lemma 1, we assume that the

average waiting time of the broadcast channel follows an

exponential distribution with mean 1
�BCast

. Since the

broadcast channel is a dedicated downlink channel,

similar to [19], we have

1

�BCast
¼ Average size of the incoming data objects

BBCast
: ð3Þ

As shown in Fig. 5, the input process of the broadcast
channel is the output process of the scheduler. Since the
service time of the scheduler (i.e., Queue 2) is an
arbitrary distribution, the output process of the schedu-
ler does not follow a particular mathematical distribu-
tion. Suppose that the interarrival time of the input

process follows an arbitrary distribution with cumulative
distribution function AðtÞ. The broadcast channel can be
modeled as a G/M/1 queue. Let A�ðzÞ be the Laplace-
Stieltjes transform of AðtÞ. Omitting the mathematical
manipulation which can be found in [12], the average
waiting time of the broadcast channel (denoted as
WBCast) is

WBCast ¼
1

�BCastð1� r0Þ
; ð4Þ

where r0 is the root of the following equation with value
larger than zero and less than one:

z ¼ A�½�BCastð1� zÞ�: ð5Þ

tu

Finally, the average waiting time of the whole system
(denoted as WSys:) is equal to the summation of the average
waiting time of the control channel, the scheduler, and the
broadcast channel. Then, with Lemmas 1, 2, and 3, WSys: can
be formulated as

WSys: ¼WCtrl: þWSche: þWBCast: ð6Þ

3.2 Transcoding Model

Suppose that the mobile devices are classified into several
categories based on their capabilities, and the capabilities of
each category are described by one device profile. Let Pi be
the ith device profile. Without loss of generality, we order
the device profiles according to their capabilities in ascend-
ing order. That is, the capability of Pi is better than that of Pj
when i > j. We also let DiðjÞ be the jth version of data object
Di. Again, we order all versions of a data object according to
their quality in ascending order, which means that the
quality of DiðjÞ is better than that of DiðkÞ when j > k. For
each data object, we assume that the data size of a version
with higher quality is larger than that of another version
with lower quality.

To facilitate the following discussion, the concept of
viewable version set is defined below:

Defintion 1. A viewable version set of a device profile Pi and a
data object Dj (denoted as V V Sði; jÞ) is a set of versions of Dj

which are able to be displayed by mobile devices with profile Pi.
Then, we have the following example:

Example 1. Consider the example shown in Fig. 6. Mobile
devices are classified into three categories: notebook,
PDA, and smart phone, and their capabilities are
described in device profiles P3, P2, and P1, respectively.
In addition, there are six versions of data object Dj.

976 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 8, AUGUST 2007

Fig. 6. Example device profiles.



V V Sð3; jÞ, V V Sð2; jÞ, and V V Sð1; jÞ are {3, 4, 5, 6}, {3, 4},
and {1, 2}, respectively. We have V V Sð2; jÞ � V V Sð3; jÞ
since devices with profile P3 (e.g., notebooks) are capable
of displaying all versions of Dj viewable by devices with
profile P2 (e.g., PDAs). On the other hand, we have
V V Sð3; jÞ

T
V V Sð1; jÞ ¼ � and V V Sð2; jÞ

T
V V Sð1; jÞ ¼

� since devices with profile P1 (e.g., smart phone)
employ special data formats (e.g., WML and WBMP)
that are not supported by devices with profile P2 and P3.

Le t t he func t ion BEST ði; jÞ ¼ k ( r e s p e c t i ve l y ,
WORST ði; jÞ ¼ k) represent that the best (respectively,
worst) viewable version of data objectDj for a mobile device
with device profile Pi is version k. In practice, we have
BEST ði; jÞ � BEST ðl; jÞ and WORST ði; jÞ �WORST ðl; jÞ
when i > l. We also have BEST ði; jÞ ¼ maxfV V Sði; jÞg and
WORST ði; jÞ ¼ minfV V Sði; jÞg.
Example 2. Consider the example shown in Fig. 6. The best

viewable versions of P3, P2, and P1 are Djð6Þ, Djð4Þ, and
Djð2Þ, respectively. As a result, we have BEST ð3; jÞ ¼ 6,
BEST ð2; jÞ ¼ 4, and BEST ð1; jÞ ¼ 2. In addition, we
also have WORST ð3; jÞ ¼ 3, WORST ð2; jÞ ¼ 3, and
WORST ð1; jÞ ¼ 1.

When a user registers the service, the user’s mobile
device will transmit the identifications of the user and the
corresponding device profile to the server. Suppose that
the device profile of the mobile device is Pi. Then, when
the mobile user requests Dj, the server will return a
suitable version of Dj, say, the kth version of Dj, where
k 2 V V Sði; jÞ, according to the result of the underlying
version decision policy.

4 DESIGN OF SCHEME ODB-QoS-INDEX

An overview of scheme ODB-QoS-Index is given in
Section 4.1. The proposed version decision policy and
admission control scheme are described in Section 4.2 and
Section 4.3, respectively. Finally, the description of the
proposed data indexing method is given in Section 4.4.

4.1 Overview

In this paper, we take the average waiting time of the system
as the QoS metric. Before executing scheme ODB-QoS-Index,

system administrators should specify a QoS requirement by
setting two thresholds of average access time, W1 and W2,
where W1 < W2. The meanings of these two thresholds are
as follows: The users are guaranteed to receive the best
viewable versions of the requested data objects when the
average waiting time is smaller than W1. On the other hand,
scheme ODB-QoS-Index will try its best to prevent the
average waiting time from being larger than W2.

Scheme ODB-QoS-Index is an online, iterative, and
adaptive algorithm which comprises a version decision
policy, a service admission control scheme, and a data
indexing method. The flowchart of scheme ODB-QoS-Index
is shown in Fig. 7. Scheme ODB-QoS-Index is executed
periodically, and the following three steps are executed in
each iteration. First, in the average waiting time estimation
step, scheme ODB-QoS-Index measures the average waiting
time of each queue according to the analytical results
derived in Section 3. Since only Queue 2 is physical, only
the average waiting time of Queue 2 (i.e., WSche:) can be
directly observed. In view of this, we propose an approx-
imation algorithm to estimate the average waiting times of
Queue 1 and Queue 3 (i.e., WCtrl: and WBCast). For better
readability, the proposed approximation algorithm is
described in Appendix A. Then, scheme ODB-QoS-Index
measures the load of each queue based on the estimated
average waiting time and determines the current state of
each queue according to the load of each queue. Finally,
scheme ODB-QoS-Index configures the version decision
policy and the service admission control scheme according
to the state of each queue. In addition, a data indexing
method is employed by the scheduler to insert index items
into the broadcast program to reduce power consumption
of mobile clients. The details of scheme ODB-QoS-Index are
described in the following subsections.

4.2 Version Decision Policy

4.2.1 Overview

Fig. 8 shows the relationship between the average waiting
time and the load of a queue. It is intuitive that, when the
load is larger than or equal to one, the system is not stable
since the average waiting time does not converge and will
approach infinity. In addition, when the load is smaller
than one, the average waiting time increases as the load

HUANG AND CHEN: A QOS-AWARE AND ENERGY-CONSERVING TRANSCODING PROXY USING ON-DEMAND DATA BROADCASTING 977

Fig. 7. The flowchart of scheme ODB-QoS-Index. Fig. 8. The relationship between load and average access time of a

queue.



increases, and the increment will increase drastically when
the load approaches one.

With the above observations, the rationale of our
scheduling algorithm is to keep the system loads of the
scheduler (i.e., Queue 2 in Fig. 5) and the broadcast channel

(i.e., Queue 3 in Fig. 5) smaller than the predetermined
thresholds at the cost of degrading the quality of requested data
objects. As a consequence, when the load of the scheduler
or the load of the broadcast channel is high, for each data
request, the system will return the version of quality worse
than the best viewable version. This strategy has the
following two effects:

1. Decrease the average waiting time of the broadcast
channel ð 1

�BCast
Þ. Since the data size of a data object

with lower quality is usually smaller than that of the
same data object with higher quality, transmitting
data objects with lower quality is able to reduce the
load of the broadcast channel ð�BCastÞ.

2. Increase the occurrence probability of request merge.
Consider the device profiles shown in Fig. 6 and two
data requests of Dj for device profiles P2 and P3,
respectively. These two data requests will not be
merged together when the load of the scheduler or
the broadcast channel is light since the system will
return the best viewable versions of Dj for P2 and P3,
respectively. When the load is heavy, the system
decides to return the third version of Dj. Hence,
these two data requests can be merged together, and
the arrival rates of the input processes of the cache
and the broadcast channel decrease. As a result, this
strategy is able to reduce the load of the cache ð�Sche:Þ
and the broadcast channel ð�BCastÞ.

The proposed version decision policy consists of three
phases: the state determination phase, the candidate version
selection phase, and the version decision phase. First, in the
state determination phase, the server determines the states
of the scheduler and the broadcast channel according to the
loads of the scheduler and the broadcast channel. Then, in
the candidate version selection phase, several versions,
called candidate versions, are selected according to the
states of the scheduler and the broadcast channel. Finally,
the server decides the resultant version from the candidate
versions according to the content of the request queue and
the objects stored in the cache.

4.2.2 State Determination Phase

Two thresholds, �Sche:1 and �Sche:2 (respectively, �BCast1 and

�BCast2 ), are specified to divide the load of the scheduler

(respectively, the broadcast channel) into three states:

LIGHT, FAIR, and HEAVY. Fig. 9 shows the state transition

diagram of the scheduler. The state transition scenarios are

as follows: When the previous state is LIGHT, the current

state will transit to FAIR if �Sche: > ð1þ �Þ � �Sche:1 . Other-

wise, the current state will still be LIGHT. When the

previous state is FAIR, the current state will transit to

LIGHT when �Sche: < ð1� �Þ � �Sche:1 and transit to HEAVY

when �Sche: > ð1þ �Þ � �Sche:2 . Otherwise, the current state

will still be FAIR. When the previous state is HEAVY, the

current state will transit to FAIR if �Sche: < ð1� �Þ � �Sche:2 .

Otherwise, the current state will still be HEAVY. The

factor �, where 0 < � < 1, is used to avoid state oscillation.

We assume that ð1þ �Þ � �Sche:2 < 1 without loss of general-

ity. To facilitate fine-grained control, system admin-

istrators can divide the FAIR state into several substates.

Suppose that there are n substates of the FAIR state. The

interval ð�Sche:1 ; �Sche:2 Þ is then divided into n partitions by

n� 1 thresholds, �Sche:ð1Þ; �Sche:ð2Þ; � � � ; �Sche:ðn� 1Þ, where

�Sche:ðkÞ ¼ �Sche:1 þ k� ð�
Sche:
2 � �Sche:1 Þ

n

� �
:

The transition between these substates is similar to that

between the LIGHT, FAIR, and HEAVY states. The state

transition diagram and transition scenarios of the broadcast

channel are as shown in Fig. 9 by substituting �BCast1 and

�BCast2 for �Sche:1 and �Sche:2 , respectively. The determination of

the values of �Sche:1 , �Sche:2 , �BCast1 , and �BCast2 is described in

Appendix B.
We also define the aggregate state of the scheduler and the

broadcast channel as follows: The aggregate state is LIGHT
when the loads of the scheduler and the broadcast channel
are both LIGHT. The aggregate state is HEAVY when, in at
least one of the loads, the scheduler and broadcast channel
are HEAVY. Otherwise, the aggregate state is FAIR. In the
FAIR state, the current substate is determined to be the
heaviest of the current substates (i.e., the heaviest load) of
the scheduler and the broadcast channel. For each new-
coming data request, the scheduler will decide a suitable
version, fill the version information into the data request

978 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 8, AUGUST 2007

Fig. 9. State transition diagram.



according to the aggregate state, and insert it into the data
request queue. The scheduler will also inform the mobile
client of the decided version by replying with an acknowl-
edgment message.

4.2.3 Candidate Version Selection Phase

Let degradation and maxDegradation indicate the sug-
gested and maximal degrees of degradation, respectively.
The value of maxDegradation is determined by

maxDegradation ¼ max
8Pk;Dj

fBEST ðk; jÞ �WORST ðk; jÞg:

In the candidate version selection phase, the server will
determine a proper value of degradation according to the
state of the server, and versions BEST ðk; jÞ; BEST ðk; jÞ �
1; � � � ; BEST ðk; jÞ � degradation are called candidate ver-
sions. The procedure in candidate version select phase is
described below:

. Case 1: The aggregate state is LIGHT. The scheduler
operates in the traditional on-demand broadcast
mode when the aggregate state is LIGHT. Hence, the
server guarantees that each client will receive the
best viewable versions of the requested data objects.
That is, the system will return the BEST ði; jÞth
version of Dj when a user requests Dj by a mobile
device belonging to device profile Pi. Therefore, the
value of degradation is set to zero.

. Case 2: The aggregate state is FAIR. In the FAIR state,
the quality of the received data objects may be
degraded. Suppose that the FAIR state consists of
n substates. Then, the value of degradation is set
to dk� maxDegradation

nþ1 e when the server is in the
kth substate of the FAIR state.

. Case 3: The aggregate state is HEAVY. When the
aggregate state is HEAVY, the server will suggest
returning the WORST ði; jÞth version of Dj when a
user requests Dj by a mobile device belonging to
device profile Pi. Therefore, the value of degradation
is set to maxDegradation.

4.2.4 Version Decision Phase

In this phase, the server should pick a proper one from
candidate versions, i.e.,

BEST ði; jÞ; BEST ði; jÞ � 1; � � � ; BEST ði; jÞ � degradation:

Suppose that the incoming request is for Di. The steps of the
decision are as follows:

. Step 1: In this step, the server checks the data
requests in the request queue. If, in the request
queue, there is a data request for Di, say Req, with
version v,

BEST ði; jÞ 	 v 	 BEST ði; jÞ � degradation;

version v is selected since this incoming request can
be merged into Req without increasing the load of
the server. The server will perform Step 2 if there is
no such data request in the request queue.

. Step 2: In this step, the server checks the objects
stored in the cache. If there is an object DiðvÞ,

BEST ði; jÞ 	 v 	 BEST ði; jÞ � degradation, stored
in cache, version v is selected so that the server
need neither retrieve Dv from its data server nor
perform transcoding. Otherwise, the server will
perform Step 3 if there is no such object in the cache.

. Step 3: Select the version v which is covered by the
most profiles among versions

BEST ði; jÞ; BEST ði; jÞ � 1; � � � ; BEST ði; jÞ � degradation:

Although the server load cannot be reduced by this
decision, the probability that successive requests can
perform request merge will increase.

4.3 Service Admission Control Scheme

The proposed service admission control scheme consists of
two phases: the state determination phase and the admis-
sion control phase. To perform service admission control,
the server first determines the state of the control channel in
the state determination phase and then determines whether
to grant a service registration or a service handoff in the
admission control phase. The procedures of these two
phases are described in the following subsections.

4.3.1 State Determination Phase

The proposed service admission control scheme is em-
ployed in each service manager to determine whether
to grant a service registration or a service handoff by
considering the number of users in service, the network
status, and so on. The rate that a service registration is
blocked is called service blocking rate (abbreviated as SBR),
while the rate that a service handoff is forced to terminate is
called service dropping rate (abbreviated as SDR). The
rationale of our service admission control scheme is to keep
the system load of the control channel (i.e., Queue 1 in Fig. 5)
smaller than the predetermined thresholds at the cost of increasing
SBR and SDR. To achieve this, two thresholds, �Ctrl:1 and
�Ctrl:2 where �Ctrl:1 < �Ctrl:2 < 1, are specified to divide the
load of the control channel into three states: LIGHT, FAIR,
and HEAVY. The state transition diagram and transition
scenario of the service manager are shown in Fig. 9 by
substituting �Ctrl:1 and �Ctrl:2 for �Sche:1 and �Sche:2 , respectively.
Similarly, the determination of �Ctrl:1 and �Ctrl:2 is described
in Appendix B.

4.3.2 Admission Control Phase

Although the proposed version decision policy can reduce
the loads of the scheduler and the broadcast channel, the
effect of the proposed version decision policy is limited
since it depends on several factors such as the locality of
data requests, the cache size, and so on. As a consequence,
in addition to the load of the control channel, the service
admission control scheme should also take the loads of the
scheduler and the broadcast channel into consideration. The
procedure in the admission control phase is as below.

When the load in the control channel is HEAVY, the
server will block all service registrations and drop all
service handoffs in order to relieve the server load. When
the load of the control channel is FAIR or LIGHT, the server
will determine the values of two probabilities, ProbBlock
and ProbDrop. Then, a service registration will be blocked

HUANG AND CHEN: A QOS-AWARE AND ENERGY-CONSERVING TRANSCODING PROXY USING ON-DEMAND DATA BROADCASTING 979



with probability ProbBlock, while a service handoff will
be dropped with probability ProbDrop. It is the system
administrators’ responsibility to specify how to determine
the values of ProbBlock and ProbDrop. Let curStateCtrl: be the
current state of the control channel, and let curStateAgg: be
the aggregate state of the scheduler and the broadcast
channel. Note that SBR should be sacrificed first since
mobile users can tolerate a service registration being
blocked rather than a service handoff being forced to
terminate (i.e., dropped). Therefore, in each combination of
curStateCtrl: and curStateAgg:, ProbBlock should be larger
than or equal to ProbDrop. An example setting for determin-
ing ProbBlock and ProbDrop in an environment with three
substates in the FAIR state is given in Table 2.

Consider the case that the server decides to reject a
service registration of a service handoff since the server’s
load cannot afford it. If the owner of the service registration
or the service handoff, say, user i, has the same interest to
other users using the service, granting this service registra-
tion or the service handoff will not increase the server load
since all the user i’s requests are expected to be able to be
merged to other users’ requests. Hence, to decrease SBR and
SDR, the server should grant user i’s service registration or
service handoff. From the above example, we observe that
we can aggressively grant a server registration or a service
handoff as long as the owner and other users are of
common interest.

To measure the similarity of interest of user i and other
users using the service, we define the similarity factor as the
probability that a user’s request will be merged to another
request. When receiving a data request, the server will
check whether the data request is merged into another
request and update the user’s similarity factor stored in the
user’s profile. The system administrators have to specify a
threshold �, 0 	 � 	 1, so that a service registration or a
service handoff will be granted (even the server cannot
afford it) as long as the value of the owner’s similarity factor
is larger than or equal to �.

4.4 Data Indexing

As shown in [18], setting the degree of broadcast programs
to a smaller value will make mobile devices meet index
segments more quickly, thus reducing energy consumption.
However, it is true only in the cases that turning on and
turning off WNIs do not consume energy. As pointed out in
[24], in reality, turning on and turning off the WNIs
consumes some time and energy, and the transition times of
a WNI from active mode to doze mode and from doze
mode to active mode are both on the order of tens of
milliseconds.

Consider two organizations of index and data items
shown in Fig. 10. Note that the time periods marked “A”

and “D” indicate the time periods where the mobile device
is in active and doze mode, respectively, while the time
periods marked “F” and “N” indicate the time periods
where the mobile device is turning off and turning on the
wireless network interfaces (abbreviated as WNIs). Suppose
that a mobile device tunes to the broadcast channel at
time tStart and finishes the retrieval of the desired data item
at time tEnd. As observed in Fig. 10, when the value of
degree of broadcast programs decreases, mobile devices
will switch back and forth between active and doze modes
(i.e., turn on and turn off WNIs) more frequently, and
therefore, may consume more energy. As a result, the value
of degree of broadcast programs should be set to a proper
value to minimize energy consumption of mobile devices.

In view of this, we adopt an adaptive data indexing
method [16] which is able to dynamically adjust the degree
of broadcast programs according to system workload. The
employed data indexing method consists of two phases, the
statistics collection phase and the degree adjustment phase,
and switches back and forth between these two phases
periodically. In the statistics collection phase, the system
collects the arrival time, finish time, and other statistical
information of each served data request. Then, in the
successive degree adjustment phase, the server determines
a proper value of degree of broadcast programs according
to the collected information. For the interest of space, we
omit the description of the determination of the value of
degree of broadcast programs. Interested readers can refer
to [16] for details.

After determining the current value of degree of broad-
cast programs, the server then generates the broadcast
program accordingly. Since the data items are of different
sizes, we use the parameter budget, which is defined as the
maximal length of the data segments of all buckets, to
control the length of each bucket. Initially, the bucket is
empty and the scheduler fetches as many data items as
possible from the cache under the constraint that the
summation of the sizes of the fetched data items is smaller
than or equal to budget. In addition, the scheduler marks the
fetched data items as LOCKED. Then, the scheduler inserts
the corresponding index items in front of these data items.
Finally, the scheduler broadcasts the index and data items
in the bucket sequentially. An index item or a data item is
removed from the bucket once it has been broadcast. In

980 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 8, AUGUST 2007

TABLE 2
An Example Setting for Determining ProbBlock and ProbDrop

Fig. 10. Example organizations of index and data items. (a) Example

broadcast program with degree four. (b) Example broadcast program

with degree one.



addition, the state of a data item which has been broadcast
is marked as UNLOCKED. The above procedure repeats
until the bucket becomes empty. To employ data indexing,
the cache replacement policy should be also modified to
consider only data items in UNLOCKED states as the
candidates to be replaced.

4.5 Remarks

Currently, the proposed version decision policy and service
admission control scheme are designed with the goal of
reducing the overall average waiting time and average
tuning time. Therefore, if two users submit two data
requests (each user submits one request) for the same data
object at the same time, their priorities and version numbers
will be the same.

It is possible to implement differentiated QoS control in
the proposed architecture. For example, we can add a
classifier in front of the scheduler to classify the received
data requests according to some administrator-specified
rules. Hence, the version decision policy is able to assign
their version numbers according to their classes. In addition,
when processing a service registration or a service handoff,
the server first classifies the service according to the user’s
profile and then takes action according to the user’s class.
Consider the case that the server receives two service
registrations. Suppose that one is submitted by a VIP user
and the other is submitted by a normal user. The latter
will be rejected if the server can accept only one service
registration.

5 PERFORMANCE EVALUATION

To evaluate the performance of scheme ODB-QoS-Index, we
build an event-driven simulator with SIM [5]. In order to
measure the reduction of power consumption of scheme
ODB-QoS-Index, we also implement scheme ODB-QoS,
which only employs the proposed version decision policy
and service admission control scheme. Both scheme ODB-
QoS-Index and scheme ODB-QoS are executed periodically
with period two minutes and the simulation is run for
12 hours. Scheme CS (standing for traditional Client-Server)
and scheme ODB (standing for On-Demand Broadcasting)
are also implemented for comparison purposes. The
average access time and tuning time are employed as the

performance metrics of experiments. In addition, the
average value of degradation, SBR, and SDR, are taken as
the metrics of the cost of scheme ODB-QoS-Index. The
average value of degradation is used to measure the degree
of quality degradation of the received data objects.

5.1 Simulation Model

We set the cell topology as a 4 � 4 cells wrapped around
mesh topology. Scheme AE [8] is employed as the cache
replacement policy since it outperforms the other replace-
ment policies for transcoding proxies. Each cell provides
one control channel and one download channel with
network bandwidth 10 KByte/sec and 100 KByte/sec,
respectively. Analogous to [8], we assume that there are
4,000 data objects and the sizes follow a lognormal
distribution with a mean of 18 KBytes. The sizes of a control
message (e.g., data request message and acknowledgment
message) and an index item are both set to be 1 KByte. The
access probabilities of data objects are assumed to follow a
Zipf distribution, which is widely adopted as a model for
real Web traces [6]. The parameter of the Zipf distribution is
set to be 1.1 with a reference to the analyses of real Web
traces [6]. Since small objects are much more frequently
accessed than large ones [11], we assume that there is a
negative correlation between the object size and its access
probability [8]. The default capacity of the cache is set to be
“0:01�

P
object size” and the fetch delays of data objects

follow an exponential distribution with mean two seconds
[8]. The values of W1 and W2 (i.e., the QoS requirement) are
set to be six seconds and 15 seconds, respectively.

In the client model, as in [7] and [8], we assume that the
mobile clients are classified into five device profiles, and
the distribution of these five device profiles is modeled as a
device vector of h15%; 20%; 30%; 20%; 15%i. Without loss of
generality, we also assume that all objects could be
transcoded into 10 versions and the sizes of the 10 versions
(from version 1 to version 10) are assumed to be 10 percent,
20 percent, 30 percent, � � � , and 100 percent of the original
object sizes [8]. The viewable version set of each device
profile is shown in Table 4. By a reference to [8], we assume
that a more detailed version can be transcoded into a less
detailed one and the transcoding delay is determined as the
quotient of the object size to the transcoding rate. The
transcoding rate is set to be 30 KBytes/sec [7]. The number
of users in the network is set to be 1,000. The cell residence
time, service holding time, and service establishing time for
each user are set to be exponential distributions with means
of 40 minutes, 15 minutes, and one hour, respectively. We
also assume that the data requests of each user follow a
Possion process with parameter 1

� ¼ 60 seconds. The values
of parameters used are listed in Table 3 for better
readability.

HUANG AND CHEN: A QOS-AWARE AND ENERGY-CONSERVING TRANSCODING PROXY USING ON-DEMAND DATA BROADCASTING 981

TABLE 4
Device Profiles and Viewable Version Sets

TABLE 3
Default System Parameters



5.2 The Effects of Cache Size

In this experiment, we investigate the effect of varied cache
size in average waiting time, average tuning time, SBR,
SDR, and average value of degradation. Fig. 11 shows the
experimental results with the cache size varied. The cache
size is set to be CacheSizeRatio�

P
object size. The value

of CacheSizeRatio ranges from 0.001 to 0.1. As shown in
Fig. 11a, the average waiting time of all schemes decreases
as the value of CacheSizeRatio increases. This is because
the cache with large size is able to effectively reduce the
average waiting time by storing data objects with high
access probabilities.

Consider the average waiting time of scheme ODB and
scheme CS. The average waiting time reduction of scheme
ODB over scheme CS increases from 30 percent to 60 percent
as the value of CacheSizeRatio decreases from 0.1 to 0.001.
Since scheme ODB can effectively reduce the number of
requests from the cache’s perspective by request merge, the
system load of scheme ODB is lighter than that of scheme
CS. Hence, scheme ODB outperforms scheme CS especially
when the cache size is small (i.e., high system load).
Although scheme ODB can minimize average waiting time,
the performance of scheme ODB does not satisfy the system
administrators’ expectation since the average waiting time
is larger than the value of W2.

To fulfill the system administrators’ requirement when
system load is high, scheme ODB-QoS and scheme ODB-
QoS-Index will reduce the quality of the requested data
objects and reject some service registrations and service
handoffs. Reducing the quality of the requested data objects
will increase the probabilities of request merge and, hence,
reduce the number of data requests from the cache’s
perspective. In addition, when the system load is still high,
scheme ODB-QoS and scheme ODB-QoS-Index will block
service registrations to limit the number of users in service.
If blocking service registrations still cannot reduce the
average waiting time to the administrators’ requirement,
the service manager will then reject service handoffs. As
shown in Fig. 11a, the average waiting time of scheme ODB-
QoS and scheme ODB-QoS-Index is still smaller than W2 as
the value of CacheSizeRatio decreases. This result shows
that scheme ODB-QoS and scheme ODB-QoS-Index are able
to control the average waiting time to satisfy the specified
QoS requirement. In addition, since scheme ODB-QoS-
Index inserts index items into the broadcast program, the
average waiting time of scheme ODB-QoS-Index is longer

than that of scheme ODB-QoS. Due to the small size of
index items, the increment on average waiting time of
scheme ODB-QoS-Index over scheme ODB-QoS is quite
small (around 5 percent in this experiment).

Fig. 11b shows the average tuning time of all schemes.
Without employing data indexing, the average tuning time
and the average waiting time of all schemes except scheme
ODB-QoS-Index are the same. In scheme ODB-QoS-Index,
when the current bucket does not contain the desired data
items, mobile clients can go to doze mode to save power
consumption and wake up on the starting point of the next
bucket. Therefore, as shown in Fig. 11b, scheme ODB-QoS-
Index is able to greatly reduce the tuning time (around
93 percent in this experiment), showing the advantage of
data indexing.

Although scheme ODB-QoS and scheme ODB-QoS-Index
outperform scheme ODB and scheme CS, scheme ODB-QoS
and scheme ODB-QoS-Index produce overhead in SBR,
SDR, and the degradation on the quality of received data
items. Fig. 11c and Fig. 11d show the degradation on the
quality of received data items and the produced SBR and
SDR, respectively, of scheme ODB-QoS and scheme lODB-
QoS-Index with the value of CacheSizeRatio varied. The
SBR and SDR produced by scheme CS and scheme ODB are
omitted in this and the following experiments since both
schemes always grant service registrations and service
handoffs (i.e., both SBR and SDR are always zero).

When the cache size is large enough (i .e . ,
CacheSizeRatio � 0:03 in this experiment), most hot data
items are cached and the average waiting time is under the
predetermined threshold. Hence, the average value of
degradation is around 0.6 and the quality of the received
data items is quite good. In the same condition, SDR is
equal to zero and SBR is only a little bit larger than zero.
When the cache size becomes small (CacheSizeRatio ¼ 0:01
in this experiment), the average value of degradation
increases significantly to keep the average waiting time
between the predetermined thresholds. When the cache size
becomes smaller (CacheSizeRatio 	 0:003 in this experi-
ment), only increasing the value of degradation is not able to
effectively relieve the increase of the average waiting time.
Hence, the system will block some service registrations to
keep the average waiting time under the predetermined
threshold. Service registrations are rejected before service
handoffs since users can tolerate a service registration to be
blocked rather than a service handoff to be dropped. When

982 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 8, AUGUST 2007

Fig. 11. The effect of cache size. (a) Average waiting time. (b) Average tuning time. (c) Average degradation. (d) SBR/SDR.



the value of CacheSizeRatio is very small, some service
handoffs are dropped since only blocking service registra-
tions is not able to keep the average waiting time under the
threshold. With the above mechanisms, scheme ODB-QoS
and scheme ODB-QoS-Index are able to keep the average
waiting time in the predetermined range.

5.3 The Effects of the Number of Users

Fig. 12 shows the experimental results with the number of
users varied. The number of users is set from 400 to 1,400.
From Fig. 12a, we observe that when the number of users is
small (400 in this experiment), the system load is light and
the average waiting times of all schemes are close. When the
number of users increases, the average waiting time of
scheme CS and scheme ODB also increases. In addition, the
increment of the average waiting time of scheme CS and
scheme ODB increases as the number of users increases,
especially when the number of users is larger than 1,200.
Since a large number of users implies high arrival frequen-
cies of data requests, the system load becomes heavy and the
average waiting time increases drastically. In this experi-
ment, when the number of users is 1,400, the average waiting
time of scheme CS does not converge as the time advances
since the system load is larger than one. This situation agrees
to the observation in Section 4.2. This experimental result
also shows that the average waiting time reduction of
scheme ODB over scheme CS increases from 47.11 percent to
74.2 percent as the number of users increases from 400 to
1,400. Scheme ODB is more scalable than scheme CS due to
the employment of on-demand data broadcast.

Consider scheme ODB-QoS and scheme ODB-QoS-Index.
When the number of users is small (400 in this experiment),
scheme ODB, scheme ODB-QoS, and scheme ODB-QoS-
Index have similar behavior. This can be explained by the
reason that, when the average waiting time of scheme ODB-
QoS is smaller than W1, scheme ODB-QoS is degenerated to
scheme ODB and guarantees that each user will receive the
best viewable versions of the requested data objects. In
addition, although inserting some index items into the
broadcast program, scheme ODB-QoS-Index is still able to
perform almost as well as scheme ODB-QoS since the size of
index items is much smaller than that of data items. In
addition, as shown in Fig. 12b, employing data indexing is
able to greatly reduce the average tuning time. In this
experiment, the tuning time reduction of scheme ODB-QoS-
Index over scheme ODB-QoS is around 92 percent.

As shown in Fig. 12c, when the number of users
increases to 800, the average value of degradation increases
in order to keep the average waiting time satisfying the QoS
requirement. As shown in Fig. 12d, when the number of
users increases to 1,000, the system blocks some service
registrations to satisfy the QoS requirement (i.e., in the
interval ðW1;W2Þ). Similarly, some service handoffs are
dropped when the number of users is larger than 1,200. By
controlling the quality of received data objects and the
number of users in service, scheme ODB-QoS and scheme
ODB-QoS-Index are able to keep the average waiting time
satisfying the QoS requirement even when the offered
system load is heavy.

5.4 The Effects of Skewness of Access Probabilities

Fig. 13 shows the experimental results with the skewness of
access probabilities varied. The degree of skewness is
measured by the value of the Zipf parameter which is set
from 1 to 1.4 in this experiment. The larger the Zipf
parameter is, the higher the degree of skewness is. As
shown in Fig. 13a, the average waiting time of all schemes
increases as the value of Zipf parameters decreases. It is
because the degree of request locality is high when the
access frequencies is highly skewed (i.e., large Zipf
parameter). Therefore, with the same cache size, the cache
hit ratio is high and is able to effectively reduce the average
access time. Moreover, on-demand data broadcasting-based
schemes (i.e., scheme ODB, scheme ODB-QoS, and scheme
ODB-QoS-Index) outperform scheme CS in average waiting
time since they take advantage of the locality of data
requests by request merge. We also observe that the
increment of the average waiting time of scheme CS and
scheme ODB increases drastically when the value of the
Zipf parameter decreases (i.e., one in this experiment). The
reason is that the effect of cache and request merge
decreases as the degree of skewness decreases. Hence, the
system load becomes heavy when the degree of skewness is
low and, therefore, the increment of the average waiting
time increases. This result conforms to the observation in
Section 4.2. In this experiment, the average waiting time
reduction of scheme ODB over scheme CS ranges from
36.9 percent to 65 percent. In addition, as shown in Fig. 13b,
employing data indexing is able to greatly reduce the
average tuning time. In this experiment, the tuning time
reduction of scheme ODB-QoS-Index over scheme ODB-
QoS is around 90 percent.

HUANG AND CHEN: A QOS-AWARE AND ENERGY-CONSERVING TRANSCODING PROXY USING ON-DEMAND DATA BROADCASTING 983

Fig. 12. The effects of the number of users. (a) Average waiting time. (b) Average tuning time. (c) Average degradation. (d) SBR/SDR.



As shown in Fig. 13c, the average value of degradation is
small when access probabilities are highly skewed. We also
observe from Fig. 13d that, when the skewness of access
frequencies is high (Zipf parameter ¼ 1:4 in this experiment),
scheme ODB-QoS is degenerated to scheme ODB since the
average waiting time of scheme ODB is smaller than W1.
When the access probabilities are not skewed enough, the
system cannot fulfill the QoS requirement and will increase
the value of degradation. When the Zipf parameter is around
1.2, some service registrations are blocked (SBR > 0) to
satisfy the QoS requirement. Moreover, when the Zipf
parameter is smaller than 1.1, some service handoffs are
also dropped. With the above mechanisms, scheme ODB-
QoS and scheme ODB-QoS-Index are able to keep the
average waiting time in the predetermined range.

6 CONCLUSION

We explored in this paper the effect of an on-demand
broadcasting technique in the design of a QoS-aware and
energy-conserving transcoding proxy. We first proposed a
QoS-aware and energy-conserving transcoding proxy ar-
chitecture, QETP, and modeled it as a queuing network. By
analyzing the queuing network, several theoretical results
were derived to formulate the system average waiting time.
We then proposed a version decision policy and a service
admission control scheme to provide QoS in QETP. The
derived results were used to guide the execution of the
proposed version decision policy and service admission
control scheme to fulfill the given QoS requirement. In
addition, we also proposed a data indexing method to
reduce the power consumption of clients. To measure the
performance of QETP, several experiments were con-
ducted. Experimental results showed that the proposed
scheme is more scalable than traditional client-server
systems and can effectively achieve the desired QoS. In
addition, the proposed scheme was able to greatly reduce
power consumption of clients at the cost of a slight increase
in average access time.

APPENDIX A

AVERAGE WAITING TIME ESTIMATION

Although the system average waiting time can be formu-
lated by (6) and Lemmas 1, 2, and 3, not all components can
be directly obtained in practice since Queue 1 and Queue 3

are logical queues. To overcome this problem, we propose
an approximation method for each unavailable parameter
to estimate the system average waiting time.

Consider the queuing network shown in Fig. 5. The input
process of Queue 1 cannot be directly observed by the
transcoding proxy. However, since the control channel (i.e.,
Queue 1) is an M/M/1 queue, the output process of
Queue 1 is identical to the input process2 of the correspond-
ing scheduler. Hence, the input process of Queue 1 can be
observed by the scheduler, and the average waiting time of
the control channel can be obtained by (1). In addition, since
the average and variance of the service time of Queue 2 can
be observed by the scheduler, the average waiting time of
the scheduler can be derived by (2).

To derive the average waiting time of the broadcast

channel (i.e., Queue 3), the cumulative distribution function

of interarrival time of the input process (i.e.,AðtÞ) is required.

However, deriving exact AðtÞ is impractical since AðtÞ is

continuous. Hence, we adopt the following approach to

estimate AðtÞ: Consider the mth execution of scheme ODB-

QoS-Index. The average and the variance of the interarrival

time of Queue 3 between the ðm� 1Þth and mth executions

(i.e., 1
�BCast

and �2
BCast, respectively) can be obtained. We then

partition the interarrival time into the following k intervals:

I1 ¼
1

�BCast
� k� 2

2
� �BCast;

1

�BCast
� k

2
� �BCast

� �
;

� � �

Ik�1
2
¼ 1

�BCast
� 1

2
� �BCast;

1

�BCast
� 3

2
� �BCast

� �
;

Ikþ1
2
¼ 1

�BCast
� 1

2
� �BCast;

1

�BCast
þ 1

2
� �BCast

� �
;

Ikþ3
2
¼ 1

�BCast
þ 1

2
� �BCast;

1

�BCast
þ 3

2
� �BCast

� �
;

� � �

Ik ¼
1

�BCast
þ k� 2

2
� �BCast;

1

�BCast
þ k

2
� �BCast

� �
;

where k is a positive odd number and k > 1. Note that,
although indicating the higher accuracy of the estimation of
AðtÞ, a larger k also implies larger memory consumption. We

984 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 8, AUGUST 2007

Fig. 13. The effects of the Zipf parameters. (a) Average waiting time. (b) Average tuning time. (c) Average degradation. (d) SBR/SDR.

2. This phenomenon results from Assumption 2 in Section 3.1.



also define an array of a½1�; a½2�; � � � ; a½k� and reset them to
zero in each iteration of scheme ODB-QoS-Index. In the time
interval between the mth and ðmþ 1Þth executions, for each
data arrival q, the interarrival time of this arrival is counted.
If the interarrival time of q lies in interval Ii, the value of a½i�
is increased by one. Otherwise, we take the interarrival
time of q as an outlier and do not change the values
of a½1�; a½2�; � � � ; a½k�. Let tp ¼ 1

�BCast
þ ðp� kþ1

2 Þ � �BCast, where
p ¼ 1; 2; � � � ; k and �t ¼ 1

2� �BCast. We take the discrete
distribution with the following probability density function
as the approximation of the distribution of interarrival time.

fðtÞ ¼
a½i�Pk

j¼1
a½j�
� 1

2�t ; if tp ��t 	 t 	 tp þ�t;
where p is an integer and 1 	 p 	 k;

0; otherwise:

8><
>:
Let 1

��
BCast

be the mean of the approximation of

the distribution of interarrival time. We have 1
��
BCast
¼Pk

i¼1 fðtiÞ � ti and, then, (5) can be rewritten as

z ¼
Xk
i¼1

a½i� � e
� 1
��
BCast

tið1�zÞ
: ð7Þ

The value of r0 can be estimated by applying successive
substitution in (7). In addition, since the average size of
incoming data objects can be observed, the �BCast can be
obtained by (3). Finally, the approximated WBCast can be
calculated by (4).

APPENDIX B

CONFIGURATION OF THE VERSION DECISION POLICY

AND THE SERVICE ADMISSION CONTROL SCHEME

Here, we develop an adjusting algorithm to configure the

version decision policy and the service admission control

scheme based on the system state by automatically

adjusting the parameters used in Section 4.2 and 4.3. In

the proposed adjusting algorithm, three positive factors, 	1,

	2, and 	3, where 	1 þ 	2 þ 	3 ¼ 1, are defined to determine

the values of �Ctrl:1 , �Ctrl:2 , �Sche:1 , �Sche:2 , �BCast1 , and �BCast2 . The

values of �Ctrl:1 and �Ctrl:2 are first determined so that the

average waiting time of the control channel is equal to

WCtrl: ¼ 	1 �W1 and WCtrl: ¼ 	1 �W2, respectively. By

substituting 	1 �W1 for WCtrl: in (1), we can solve the

above equation since �Ctrl: is the only unknown variable in

the above equation. Assume that the solution of �Ctrl: is

�Ctrl:1 . Then, we can obtain the value of �Ctrl:1 since

�Ctrl:1 ¼ �Ctrl:1

�Ctrl:
. With a similar approach, �Ctrl:2 and �Ctrl:2 can

also be obtained.

The values of �Sche:1 and �Sche:2 are then determined so that

the average waiting time of the cache is equal to 	2 �W1

and 	2 �W2, respectively. Due to Assumption 2 and the

characteristic of Queue 1 (i.e., an M/M/1 queue), the input

process of Queue 2 is the same as the input process of

Queue 1 (i.e., �Sche: ¼ �Ctrl:). We rewrite (2) by substituting
�Ctrl:
�Sche:

and �Ctrl:1 for �Sche: and �Ctrl;, respectively. Then, the

only unknown variable (i.e., �Sche:) in the rewritten equation

can be solved. Suppose that the solution is �Sche:1 , and we

have �Sche:1 ¼ �Ctrl:
1

�Sche:
1

. Analogously, the value of �Sche:2 can be

obtained by a similar approach.
Finally, the values of �BCast1 and �BCast2 are determined so

that the average waiting time of the cache is equal to 	3 �
W1 and 	3 �W2, respectively. To determine �BCast1 , we first
rewrite (4) by replacing 	3 �W1 with WBCast, and the only
unknown variable r0 can be solved. Since 	3 and W1 are
larger than zero, r0 is smaller than one. If r0 	 �1, it
indicates that the requirement is infeasible since the
required average waiting time of the broadcast channel is
under the lower bound. Then, the value of �BCast1 is set to 0.
Otherwise, when 0 < r0 < 1, we rewrite (7) by replacing the
solved r0, ti þ 
, and ��BCast þ 
 with z, ti, and ��BCast,
respectively. Then, the only unknown variable 
 can be
solved. Finally, we have �BCast1 ¼ ��

BCast
þ


�BCast
. The value of �BCast2

can also be derived by similar approach.
The values of 	1, 	2, and 	3 are determined adaptively

and automatically. When the system starts up, 	1, 	2, and 	3

are initialized to 1
3 . In each execution, they are determined

by 	1 ¼ WCtrl:

WSys:
, 	2 ¼ WCache:

WSys:
, and

	3 ¼
WBCast:

WSys:
¼ 1� 	1 � 	2:

Note that, in scheme ODB-QoS-Index, only the QoS
requirement (i.e., W1 and W2) is required to be specified
by system administrators.

APPENDIX C

SIGNALING PROCEDURES

Before using the transcoding proxy, a mobile user should
register the service in advance by sending a registration
message via a control channel. After the transcoding proxy
receives the registration message, a service admission
control scheme is activated to determine whether to grant
the service registration. If yes, the mobile device will send
the device profile to the proxy and the proxy will record the
user profile and device profile in its profile database.
Otherwise, the service registration is blocked. The rate that
a service registration is blocked is called service blocking rate
(abbreviated as SBR).

After the service registration is granted, the mobile user
can issue data requests to the corresponding transcoding
proxy by the control channel. When receiving a data
request, the transcoding proxy first determines the suitable
version of the requested data object by a version decision
policy and returns an acknowledgment message containing
the decided version information via the control channel to
the mobile user. Then, the transcoding proxy will return the
decided version of the required data object via the
corresponding broadcast channel as soon as possible. After
receiving the acknowledgment message, the mobile device
will tune to the broadcast channel to wait for the
appearance of the decided version of the requested data
object. When the mobile user decides not to use the
transcoding proxy service, the mobile device will send a
deregistration message to terminate the service.

HUANG AND CHEN: A QOS-AWARE AND ENERGY-CONSERVING TRANSCODING PROXY USING ON-DEMAND DATA BROADCASTING 985



Since a mobile user is able to freely move around these

cells, a service handoff will occur. A service admission

control scheme is executed to determine whether the service

handoff is granted. If yes, the mobile user can use the

service as usual. If not, the system will force the mobile user

to terminate the service (the service is said to be dropped).

Since a service admission control scheme is employed, a

service handoff may be rejected. The rate that a service

handoff is forced to terminate is called service dropping rate

(abbreviated as SDR).

APPENDIX D

ALGORITHMIC FORMS OF THE PROPOSED

ALGORITHMS

Version Decision Policy. As a consequence, the algorithmic

form of the version decision policy is as below:

Procedure VersionDecisionðPi;DjÞ
Input: A user requests Dj by a mobile device belonging to

device profile Pi.

Output: A version of Dj.

1: Let curStateAgg: be the current aggregate state of the

scheduler and the broadcast channel.
2: maxDegradation max8PkfBEST ðk; jÞ�WORST ðk; jÞg
3: if ðcurStateAgg: ¼ LIGHTÞ then

4: degradation BEST ði; jÞ /* The system will return

the best viewable version to the user */

5: else if ðcurStateAgg: ¼ HEAVYÞ then

6: degradation WORST ði; jÞ /* The system will

return the worst viewable version to the user */

7: else /* curStateAgg: ¼ FAIR */
8: Determine the substate. /* Suppose the aggregate

state is in the kth substate of FAIR state */

9: degradation dk� maxDegradation
nþ1 e

10: if (rule one can be applied) then

11: Perform step one to determine the version v.

12: else if (rule two can be applied) then

13: Perform step two to determine the version v.

14: else

15: Perform step three to determine the version v.

16: return v

Service Admission Control Scheme. The algorithmic form

of the proposed service admission control scheme is as

below:

Procedure ServiceAdmission

Input: A service registration or a service handoff.

Output: Decision of the incoming service registration or

service handoff.

1: Let curStateCtrl: be the current state of the control

channel.

2: Let curStateAgg: be the current aggregate state of the

scheduler and the broadcast channel.
3: Let similarity be the similarity factor of the owner of

the service registration or the service handoff.

4: if ðcurStateCtrl: ¼ HEAVYÞ then

5: decision REJECT

6: else /* curStateCtrl: ¼ FAIR or curStateCtrl: ¼ LIGHT */

7: Determine the values of ProbBlock and ProbDrop
according to system administrators’ settings.

8: if (service registration) then

9: Set decision to REJECT with probability ProbBlock
and to GRANT with probability ð1� ProbBlockÞ.

10: else /* service handoff */

11: Set decision to REJECT with probability ProbDrop and

to GRANT with probability ð1� ProbDropÞ.
12: if ðdecision ¼¼ REJECTÞ then

13: if ðsimilarity � �Þ then

14: return GRANT

15: else

16: return REJECT

17: else /* decision ¼¼ GRANT */

18: return decision

Broadcast Program Generation Algorithm. The algorithmic

form of the proposed broadcast program generation

algorithm is as below:

Algorithm ProgramGeneration

1: while (true) do

2: bucket BucketGenerationðÞ;
3: while (bucket is not empty) do

4: item the head of bucket;
5: Remove the head of bucket;

6: Broadcast item

7: if (item is a data item) then

8: Mark item as UNLOCKED;

Function BucketGeneration()

1: available budget;
2: budket empty;

3: while (true) do

4: Fetch a data item (denoted as item) from the cache;

5: Mark item as LOCKED;

6: if ðavailable � the summation of the sizes of item and

the corresponding index item) then

7: Append item into bucket;

8: available available� the size of item� the size of
the corresponding index item;

9: else

10: if (bucket is empty) then

11: Append item into bucket;

12: break;

13: Insert the corresponding index items of the data items

in bucket into the head of bucket;

14: return bucket;

ACKNOWLEDGMENTS

This work was supported in part by the National Science

Council of Taiwan, ROC, under contract NSC93-2752-E-002-

006-PAE.

REFERENCES

[1] S. Acharya and S. Muthukrishnan, “Scheduling On-Demand
Broadcasts: New Metrics and Algorithms,” Proc. Fourth ACM/
IEEE Int’l Conf. Mobile Computing and Networking, pp. 43-94, Oct.
1998.

986 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 8, AUGUST 2007



[2] M. Agrawal, A. Manjhi, N. Bansal, and S. Seshan, “Improving
Web Performance in Broadcast-Unicast Networks,” Proc. INFO-
COM, Mar.-Apr. 2003.

[3] D. Aksoy and M.J. Franklin, “Scheduling for Large-Scale On-
Demand Data Broadcasting,” Proc. INFOCOM, pp. 651-659, Mar.
1998.

[4] D. Aksoy, M.J. Franklin, and S. Zdonik, “Data Staging for On-
Demand Broadcast,” Proc. 27th Int’l Conf. Very Large Data Bases,
pp. 571-580, Sept. 2001.

[5] D. Bolier and A. Eliëns, SIM: A C++ Library for Discrete Event
Simulation, http://www.cs.vu.nl/~eliens/sim/, Oct. 1995.

[6] L. Breslau, P. Cao, G. Phillips, and S. Shenker, “Web Caching and
Zipf-Like Distributions: Evidence and Implications,” Proc. IN-
FOCOM, Mar. 1999.

[7] V. Cardellini, P.S. Yu, and Y.-W. Huang, “Collaborative Proxy
System for Distributed Web Content Transcoding,” Proc. Ninth
ACM Int’l Conf. Information and Knowledge Management, Nov. 2000.

[8] C.-Y. Chang and M.-S. Chen, “On Exploring Aggregate Effect for
Efficient Cache Replacement in Transcoding Proxies,” IEEE Trans.
Parallel and Distributed Systems, vol. 14, no. 6, June 2003.

[9] M.-S. Chen, K.-L. Wu, and P.S. Yu, “Optimizing Index Allocation
for Sequential Data Broadcasting in Wireless Mobile Computing,”
IEEE Trans. Knowledge and Data Eng., vol. 15, no. 1, Jan./Feb. 2003.

[10] H.D. Dykeman, M.H. Ammar, and J.W. Wong, “Scheduling
Algorithms for Videotex Systems under Broadcast Delivery,”
Proc. IEEE Int’l Conf. Comm., 1986.

[11] S. Glassman, “A Caching Relay for the World Wide Web,”
Computer Networks and ISDN Systems, vol. 27, 1994.

[12] D. Gross and C.M. Harris, Fundamentals of Queueing Theory, third
ed. John Wiley & Sons, 1998.

[13] R. Han, P. Bhagwat, R. Lamaire, T. Mummert, V. Perret, and J.
Rubas, “Dynamic Adaptation in an Image Transcoding Proxy for
Mobile Web Browsing,” IEEE Personal Comm., vol. 5, no. 6, Dec.
1998.

[14] J.-L. Hsiao, H.-P. Hung, and M.-S. Chen, “Versatile Transcoding
Proxy for Internet Content Adaptation,” IEEE Trans. Multimedia, to
appear.

[15] J.-L. Huang, M.-S. Chen, and H.-P. Hung, “A QoS-Aware
Transcoding Proxy Using On-Demand Data Broadcasting,” Proc.
INFOCOM, Mar. 2004.

[16] J.-L. Huang and W.-C. Peng, “An Energy-Conserved On-Demand
Data Broadcasting System,” Proc. Sixth Int’l Conf. Mobile Data
Management, May 2005.

[17] T. Imielinski, S. Viswanathan, and B.R. Badrinath, “Data on Air:
Organization and Access,” IEEE Trans. Knowledge and Data Eng.,
vol. 9, no. 3, pp. 353-372, May/June 1997.

[18] S. Lee, D.P. Carney, and S. Zdonik, “Index Hint for On-Demand
Broadcasting,” Proc. 19th IEEE Int’l Conf. Data Eng., Mar. 2003.

[19] W.-C. Lee, Q.L. Hu, and D.L. Lee, “A Study on Channel Allocation
for Data Dissemination in Mobile Computing Environments,”
ACM/Kluwer Mobile Networks and Applications, vol. 4, no. 5,
pp. 117-129, May 1999.

[20] W.Y. Lum and F.C.M. Lau, “A Context-Aware Decision Engine for
Content Adaptation,” IEEE Pervasive Computing, vol. 1, no. 3, July-
Sept. 2002.

[21] W.Y. Lum and F.C.M. Lau, “On Balancing between Transcoding
Overhead and Spatial Consumption in Content Adaptation,” Proc.
Eighth ACM Int’l Conf. Mobile Computing and Networking, Sept.
2002.

[22] W.-C. Peng and M.-S. Chen, “Efficient Channel Allocation Tree
Generation for Data Broadcasting in a Mobile Computing
Environment,” ACM/Kluwer Wireless Networks, vol. 9, no. 2,
pp. 117-129, 2003.

[23] C. Poellabauer and K. Schwan, “Energy-Aware Media Transcod-
ing in Wireless Systems,” Proc. Second IEEE Int’l Conf. Pervasive
Computing and Comm., Mar. 2004.

[24] T. Simunic, S. Boyd, and P. Glynn, “Managing Power Consump-
tion in Networks on Chips,” IEEE Trans. Very Large Scale
Integration Systems, vol. 12, no. 1, pp. 96-107, Jan. 2004.

[25] J.R. Smith, R. Mohan, and C.-S. Li, “Content-Based Transcoding
on Images in the Internet,” Proc. IEEE Int’l Conf. Image Processing,
Oct. 1998.

[26] M.A. Viredaz, L.S. Brakmo, and W.R. Hamburgen, “Energy
Management on Handheld Devices,” ACM Queue, vol. 1, no. 7,
pp. 44-52, Oct. 2003.

[27] Y. Wu and G. Cao, “Stretch-Optimal Scheduling for On-Demand
Data Broadcasts,” Proc. 10th IEEE Int’l Conf. Computer Comm. and
Networks, 2001.

[28] J. Xu, W.-C. Lee, and X. Tang, “Exponential Index: A Parameter-
ized Distributed Indexing Scheme for Data on Air,” Proc. Second
ACM/USENIX Int’l Conf. Mobile Systems, June 2004.

[29] J. Xu, X. Tang, and W.-C. Lee, “Time-Critical On-Demand Data
Broadcast: Algorithms, Analysis, and Performance Evaluation,”
IEEE Trans. Parallel and Distributed Systems, vol. 17, 2006.

[30] J.L. Xu, B. Zheng, W.-C. Lee, and D.K. Lee, “Energy Efficient Index
for Querying Location-Dependent Data in Mobile Broadcast
Environments,” Proc. 19th Int’l Conf. Data Eng., Mar. 2003.

Jiun-Long Huang received the BS and MS
degrees from the Computer Science and In-
formation Engineering Department at National
Chiao Tung University in 1997 and 1999,
respectively, and the PhD degree from the
Electrical Engineering Department at National
Taiwan University in 2003. Currently, he is an
assistant proferssor in the Computer Science
Department at National Chiao Tung University.
His research interests include mobile computing,

wireless networks, and data mining.

Ming-Syan Chen received the BS degree in
electrical engineering from National Taiwan
University, Taipei, Taiwan, and the MS and
PhD degrees in computer, information, and
control engineering from the University of
Michigan, Ann Arbor, in 1985 and 1988, respec-
tively. Dr. Chen is now a professor jointly
appointed by the Electrical Engineering Depart-
ment, the Computer Science and Information
Engineering Department, and also GICE at

National Taiwan University. He was a research staff member at the
IBM Thomas J. Watson Research Center, Yorktown Heights, New York,
from 1988 to 1996. His research interests include database systems,
data mining, mobile computing systems, and multimedia networking,
and he has published more than 220 papers in these areas. In addition
to serving as a program committee member for many conferences,
Dr. Chen served as an associate editor of the IEEE Transactions on
Knowledge and Data Engineering (TKDE) from 1997 to 2001, is
currently on the editorial board of the Very Large Data Base Journal,
Knowledge and Information Systems Journal, and International Journal
of Electrical Engineering, and was a distinguished visitor of the IEEE
Computer Society for Asia-Pacific from 1998 to 2000 and 2005 to 2007
(invited twice). He served as the international vice chair for INFOCOM
2005, program chair of PAKDD 2002, program cochair of MDM 2003,
program vice-chair of IEEE ICDE 2008, CEC/EEE 2006, ICDE 2006,
ICDCS 2005, ICPP 2003, and VLDB 2002, and as program chair or
cochair for many other conferences. He was a keynote speaker on Web
data mining at the International Computer Congress in Hong Kong,
1999, a tutorial speaker on Web data mining at DASFAA 1999, and on
parallel databases at the 11th IEEE ICDE in 1995 and also as a guest
coeditor for TKDE on a special issue on data mining in December 1996.
He holds or has applied for 18 US patents and seven ROC patents in the
areas of data mining, Web applications, interactive video playout, video
server design, and concurrency and coherency control protocols. He is a
recipient of the NSC (National Science Council) Distinguished Research
Award, Pan Wen Yuan Distinguished Research Award, Teco Award,
and K.-T. Li Research Penetration Award for his research work, and also
the IBM Outstanding Innovation Award for his contribution to a major
database product. He has also received numerous awards for his
research, teaching, inventions, and patent applications. Dr. Chen is a
member of the IEEE Computer Society and a fellow of the IEEE and
the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

HUANG AND CHEN: A QOS-AWARE AND ENERGY-CONSERVING TRANSCODING PROXY USING ON-DEMAND DATA BROADCASTING 987



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


