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ABSTRACT: We present here a study of the wave propagation in a
two-dimensionally (2D) periodic structure. The scattering of a plane
wave by a 2D periodic structure is analyzed as a multilayer boundary-
value problem. Specific examples are given to show quantitatively the
stopband behaviors, in particular, a composite structure with different
lattice patterns in cascade is shown to achieve the broad and omnidirec-
tion behavior of stop band. © 2007 Wiley Periodicals, Inc. Microwave
Opt Technol Lett 49: 1914-1917, 2007; Published online in Wiley In-
terScience (www.interscience.wiley.com). DOI 10.1002/mop.22569
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1. INTRODUCTION

The development of artificial materials by constructing lattice
structure has gained considerable attention in recent years; in
particular, the stop band phenomenon associated with the lattice
structures has found many applications. For example, an antenna
substrate etched with 2D periodic holes has been utilized to sup-
press the surface waves introduced by printed antenna [1]. The 2D
periodic layers in conjunction with planar structures have been
investigated for both optical and microwave applications; one
example is a high impedance surface that will not support a surface
wave in any direction [2]. A 2D periodic array of dielectric rods in
a uniform surrounding has been shown to exhibit many interesting
phenomena, such as spontaneous emission and localization of
electromagnetic energy. Such periodic arrays of dielectric materi-
als were employed as a novel waveguide to mold the flow of
electromagnetic energy [3] or as a novel cavity to store energy.
The basic concept of this class of applications can be traced back
to the early work of Larsen and Oliner [4] who had used one-
dimensional (1D) periodic slabs to form waveguide walls that are
operated in their stop band or below cutoff condition.

The structure under study is a 2D periodic rectangular dielectric
rods array immersed in a uniform surrounding, such as air. Where
the 2D periodic array is composed of N one dimensionally periodic
layers of infinite horizontal plane, which is stacked with equal
spacing between two neighboring ones. Each periodic layer is
composed of an infinite number of rectangular dielectric rods of
infinite length. In addition, we can have by displacing every
second row by a fractional part of the period to form any 2D lattice
pattern.

As to the numerical analysis of the periodic structures, many
authors have employed diverse method to analyze such problem,
for example, the finite-difference method and finite-difference
time-domain (FDTD) method have utilized to calculate the fields
and the dispersion curves of guide mode [5]. For the scattering of
the stack of 1D periodic layer, Peng has employed rigorous mode
matching method and cascade of transmission-line network
method to deal with the 1D grating with irregular shape [6]. In this
research, since 2D periodic structure could be considered as cas-
cade of 1D periodic layers and uniform layers, we can employ the
same method to carry out the calculations. The Floquet-type so-
lutions are constructed with the results shown in the form of
dispersions for an unbound media, while the scattering of plane
wave by 2D periodic structure of finite thickness is analyzed as a
multilayer boundary-value problem to verify the dispersion char-
acteristics.

The purpose of this article is to provide a theoretical basis for
the analysis of 2D periodic structure, so that the benchmark results
can be established for verifying those obtained from experiments,
or obtained by simple, approximate analysis. Specific examples are
given to show quantitatively the stop band behaviors; in particular,
a composite structure with difference lattice pattern in cascade is
shown to achieve the broad and omnidirectional behavior of stop
band.

Figure 1 shows a stack of N identical periodic layers of infinite
extent on the horizontal plane, which are stacked with equal
spacing between two neighboring ones. Each periodic layer is
composed of an infinite number of rectangular dielectric rods of
infinite length. When the number of the periodic layers in the stack
is increased indefinitely, the structure can be viewed as an un-
bounded 2D periodic media. Therefore, we may infer the propa-
gation characteristics of the 2D periodic medium by the scattering
characteristics of a stack of sufficiently large number of 1D peri-
odic layers. With the coordinate system attached, the dielectric
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Figure 1 Geometric configuration of 2D periodic array

rods in each layer has the width a, and distance between two
neighboring rods is a—a,, so that the periodic of the layer is a. To
simplify, a,/a will be referred to as the aspect ratio of the 1D
periodic layer. The thickness of the 1D periodic layer is b, and the
separation between two neighboring ones is b—b,. In general, we
assume that between two neighboring layers, there is a position
shift of the distance s in lateral direction, so that we may investi-
gate the effect of a large class of array patterns on propagation
characteristics of a 2D periodic medium by adjusting the parameter
s in our analysis. For example, we have a square array pattern for
s = 0 and a triangular pattern for s = 0.5. It is noted that for an
arbitrary value of s, b is not necessarily the periodic in y-direction;
actually, the structure has a period (s* + b?)"? along the direction
at the angle 6 = sin—1 (s/b) from the y-axis. Even through, the
ratio b,/b will be referred to as the aspect ratio in y-direction.

Referring to Figure 1, the 2D periodic structure consists of N
1D periodic layers and scattering of plane wave by such a structure
can be easily analyzed as a rigorous multilayer boundary-value
problem. The formulation of such a type of boundary-value prob-
lems can be carried out for any value of s and it is convenient for
the analysis of the effect array pattern on the propagation charac-
teristics of the 2D periodic medium. For simplicity, this will be
referred to as the scattering approach.

As it will be explained in the following paragraphs, the scat-
tering of plane-wave by a stack of 1D periodic layer may be
analyzed in terms of that by a single 1D periodic layer. The
scattering of plane-wave by a single 1D periodic layer has been
well developed [6]. The formulation of the boundary-value prob-
lem is generally valid for any periodic profile, as long as the
characteristic solutions of the periodic media can be constructed.
For succinctness, the input—output relation for a 1D periodic layer
is outlined below while the detail derivation can be consulted from
the Ref. 6.The results are expressed in the form of input impedance
and transfer matrices and will be used, as a building block, repeat-
edly for the analysis of plane-wave scattering by a stack of peri-
odic layers, as will be done in the following paragraphs.

Dielectric function of infinite 2D periodic medic can be ex-
panded using Fourier series as

L 2m L 2m ,
Be) = D S, euppae e m
P q

where a and b are the period in x and y directions. Because of the
spatial periodically in x and y, a set of Fourier components or space
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harmonic is generated everywhere in the structure; the propagation
constant of the mth space harmonic in the x-direction and nth space
harmonic in the y-direction are given by

21
kxm:kx-i-m?form: o, —2,—-1,0,12,... (2a)

21
=k, +n——forn= ..

k b

,—2,—-1,0,1,2,. .. (2b)

yn

The general electric and magnetic field in the 2D periodic
medium can be expressed as the super position of the complete set
of space harmonics, each appearing as a plane wave, as given by

PY(x,3,2) = D) D, e e Iony 3)

m n

Substituting (1) and (3) into Maxwell’s equation leads to Helmotz
wave equation. This equation is a standard eigenvalue problem.
For each specific k, the frequency for the eigenmode is the eigen-
value of the equation. Using symmetry properties, we only calcu-
late k—w relation in irreducible zone, and compare the results with
the scattering characteristics. The scattering characteristics are
calculated utilizing the method illustrated below.

For a 1D periodic layer, it is vertically uniform and character-
ized by relative dielectric constant

g(x) =e(x+a) 4)

where a is the period. Because of the spatial periodically in x, a set
of Fourier components or space harmonic is generated everywhere
in the structure; the propagation constant of the mth space har-
monic in the x-direction is given in (2a). Based on the Floque’s
theorem, the general field solutions can be expressed as a super-
position of the complete set of space harmonics. The general
electric and magnetic field solutions in 1D periodic medium can be
written as [6]

E(y) = Olexp( — jKy)c + exp(jKy)d] (6)
H/(y) = Plexp( — jKy)c — exp(jKy)d] (7

where the matrices P and Q are the coupling matrices and the
element of them are dependent on the structural parameters as well
the incident condition. K is the diagonal matrix with the propaga-
tion constant along y-direction, k,, as the nth diagonal elements.
By imposing the boundary condition at the interface between
periodic and uniform layers, we could obtain the input—output
relations of the periodic layer. The detail mathematical derivations
can be found in Ref. 6 and we only list the result for reference.

Z,=Q1+T)1—-T)"'P" (8a)
I, = exp( — jKn)Louexp( — jKi) (8b)
Lo = (ZouP + Q(ZouP — Q)" (8¢

T = (Z.P + Q(Z,P - Q" (8d)

where ¢ is the thickness of 1D periodic layer, Z_, and Z;, are the
output impedance matrices looking downward from the lower- and
upper- surfaces of such 1D periodic layer, respectively. Whereas T
is the transfer matrix, which defines the transformation relation of
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electric fields between the input and output interfaces. It is noted
that the uniform layer can be considered as the limiting case of 1D
periodic layer with vanishing of the periodic variations. In view of
this, the input—output relation of uniform layer will remain almost
the same form but with slight modification and could be consulted
in the reference.

Underlying the output condition of the 2D periodic structures,
we could successively employ the input—output relation of 1D
periodic layer and uniform layer from the bottom- and top-layer.
Thus we can obtain the input impedance matrix Z,, for looking
downward from the top surface of the structure. The tangential
electric and magnetic field vectors at the reference plane y = 0 are
related by

E(0) = Z;,H/(0) ©)

On the other hand, the dielectric constant of a 2D periodic
medium can be represented by a double Fourier series, and so are
the electromagnetic fields, known as the Floquet type solutions.
The Maxwell equations will then yield a set of homogenous linear
equations that provides a rigorous basis for the analysis of wave
propagation in the 2D periodic medium. The condition for exis-
tence of nontrivial solutions of the homogeneous linear equations
leads to the vanishing of the coefficient matrix and this defines the
dispersion relation of the medium. For simplify, this will be
referred to as Floquet approach.

We have examined a number of 2D periodic structures with
different structure parameters and different array patterns by both
approaches, as illustrated below.

Figure 2 shows band structure of 2D periodic array with trian-
gular lattice pattern and the aspect ratios: a,/a = 0.5, b,/b = 0.5.
The relative dielectric constant of dielectric rods and surrounding
media are 11.4 and 1.0. The first four complete stop bands are
marked by A, B, C, and D. Throughout this work, all structures are
illuminated by TE plane wave.

To investigate the refection of plane wave by a 2D periodic
dielectric array, contours of constant reflection coefficient are
plotted against the normalized frequency, a/A and the incident
angle. Figure 3 shows the contours of constant reflection coeffi-
cient for the case of 16 1D periodic layers with the same lattice
pattern, aspect ratios and dielectric constant in Figure 2. The

wave vector

Figure 2 Dispersion relation for 2D periodic medium with dielectric
constant 11.4 and the aspect ratio a,/a = 0.5, by/b = 0.5,a = b
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Figure 3 Contours of constant reflection coefficient for the 2D periodic
structures with dielectric constant 11.4, 16 1D periodic layers and the
aspect ratio a,/a = 0.5, b;/b = 0.5, a = b

reflection coefficient is plotted in gray-scale color map according
to the level specified by the color bar on the right side of the figure.
The region drawn in white color represents that the reflection
coefficient is very close to unity. As expected, there exist four
stopbands, as also marked by A, B, C and D. Compare band
structure with contours of constant reflection coefficient, and we
can find that the stop bands agree with those of the infinite
medium.

In the following cases, the relative dielectric constant of the
dielectric rods and surrounding media are 11.4 and 1.0. As shown in
the Figure 3, the first structure yields the total reflection band in the
normalized frequency range between 0.22 and 0.53, except for the
normalized frequency between 0.32 and 0.41. By a proper choice of
the parameters such as aspect ratios a,/a = 0.4, b,/b = 0.2 make the
second one have total reflection between these two frequencies as
shown in Figure 4. Thus, the stop band of two structures can com-
pensate each other. As the Figure 5 indicates, the composite structure

1 20 30 40 50 & 70 80
Incident Angle (degree)

Figure 4 Contours of constant reflection coefficient for the 2D periodic
structures with dielectric constant 11.4, 16 1D periodic layers and the
aspect ratio a;/a = 0.4, b,/b = 0.2,a = b
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Figure 5 Contours of constant reflection coefficient for composite 2D
periodic structure with 32 1D periodic layers

composed of above two structures exhibits perfectly omnidirectional
total reflection band where the normalized frequency is between 0.22
and 0.53, and this band is the union of above two structures.
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ABSTRACT: This article derives simple computer-aided design (CAD)
Sformulas of the components of Silicon, based radio frequency integrated
circuits (Si-RFIC) by synthetic asymptote. The formulas include, those
for microstripline, patch capacitor, and spiral inductor. With “boot-
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strapping”, one can obtain, CAD formulas of the components from sim-
ple to more complicated and practical. These formulas are, simple, accu-
rate, with good physical insights, and few arbitrary constants. Compared
with numerical, methods, the average errors are less than 2%. © 2007
Wiley Periodicals, Inc. Microwave Opt Technol Lett 49: 1917-1921, 2007,
Published online in Wiley InterScience (www.interscience.wiley.com).
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1. INTRODUCTION

Radio Frequency Integrated Circuits (RFIC) are widely used in
wireless communication, remote, sensing, navigation, etc. The
modeling of practical components and circuits of RFIC becomes
more, and more important. The main methods for the analysis and
design of RFIC components and circuits, are based on electromag-
netic (EM) formulation, such as: moment method (MoM) [1],
finite element, method (FEM) [2], finite-difference time-domain
(FDTD) [3], etc. Refer to these numerical methods, many com-
mercial softwares are developed and widely used for full-wave
analyses of RFIC, components and circuits.

As a novel modeling technique, synthetic asymptote has been
used for obtaining simple CAD, formulas in recent years, such as
the series papers [4-10]. Simply, the synthetic asymptote is, con-
structed from regular asymptotes (exact or nearly exact) at the two
limits of a parameter. With one, or two intermediate match points
from numerical solution, the maximum error say, 10%, in the,
middle of the parameter range can be reduced to 3% or less. The
formulas derived by synthetic, asymptote technique are simple,
accurate, and give good physical insight.

The formulas in [4-10] are obtained for lossless substrate of one
layer. For two layer lossless, grounded substrates, we also derived
simple CAD formulas of patch capacitor, microstrip line, and
square spiral inductor [11-13].

As an extension of our previous work, this article considers
more practical components of silicon based RFIC (Si-RFIC). In
practical design of Si-RFIC, the lossy substrate silicon (Si) may
affect the performance of the components and then total circuits.
By synthetic asymptote and bootstrapping, the CAD formulas of
microstrip line, patch capacitor, and square inductor of Si-RFIC
are obtained in this article. Compared with numerical results, the
average errors are less than 2%.

2. CAD FORMULA OF MICROSTRIP LINE OF Si-RFIC

The formula for a microstrip line of Si-RFIC has been obtained in
[14]. In this article, however, we only give a brief description of
the formula. And in the following two sections, the formulas for
patch capacitor and spiral inductors are derived by the same
technique used in this section.

Figure 1 shows the structure of a microstrip line of Si-RFIC
with the width W. The top layer is SiO, and the bottom layer is Si.
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Figure 1 A microstrip line on grounded lossy substrate of two layers
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