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Free-Vibration Analysis and Material Constants Identification
of Laminated Composite Sandwich Plates

C. R. Lee1; T. Y. Kam2; and S. J. Sun3

Abstract: Free vibration of symmetrically laminated composite sandwich plates with elastic edge restraints is studied via the Rayleigh–
Ritz approach. The proposed Rayleigh–Ritz method is constructed on the basis of the layer-wise linear displacement theory. The accuracy
of the method in predicting natural frequencies of composite sandwich plates with different boundary conditions is verified by the results
reported in the literature or the experimental data obtained in this study. The proposed method is then applied to the material constant
identification of free composite sandwich plates using the first six theoretical natural frequencies of the plates. In the identification process,
trial material constants are used in the present method to predict the theoretical natural frequencies, a frequency discrepancy function is
established to measure the sum of the squared differences between the experimental and theoretical natural frequencies, and a stochastic
global minimization algorithm is used to search for the best estimates of the material constants by making the frequency discrepancy
function a global minimum. Applications of the material constant identification technique are demonstrated by means of several examples.
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Introduction

Recently, fiber-reinforced composite sandwich plates have been
widely used in the aerospace, automobile, and ship building in-
dustries to fabricate high-performance structures. In general, at-
tainment of actual behavioral predictions of composite sandwich
plates depends on the correctness of the mathematical modeling
and elastic constants of the plates. As is well known, composite
structures fabricated using different methods or curing processes
may possess different mechanical properties, and because of this,
the material properties determined from the standard specimens
tested in the laboratory, in general, may deviate from those of
actual laminated composite structures. Since attainment of actual
material constants is vital to integrity assessment of structures,
determination of the mechanical properties of structures, espe-
cially composite plate structures, has thus become an important
topic of research in recent years. For instance, Deobald and
Gibson �1988� used a Rayleigh–Ritz/modal analysis technique to
determine the elastic constants of composite plates with different
boundary conditions. Castagnède et al. �1990� determined the
elastic constants of thick composite plates via a quantitative ul-
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trasonic approach. Fallstrom and Jonsson �1991� determined the
material constants of anisotropic plates from the frequencies and
mode shapes measured by a real-time television-holography sys-
tem. Several researchers developed methods to identify structural
stiffness matrices or the element bending stiffness of beam struc-
tures using measured natural frequencies and mode shapes
�Berman and Nagy 1983; Kam and Lee 1994; Kam and Liu
1998�. Wang and Kam �2001� developed a two-stage nondestruc-
tive evaluation method in which strains and/or displacements ob-
tained from static testing of laminated composite plates clamped
at the edges are used to identify the elastic constants of the plates.
Recently, a number of researchers have used experimental natural
frequencies to identify the elastic constants of laminated compos-
ite plates with free boundary conditions �Moussu and Nivoit
1993; Sol et al. 1997; Qian et al. 1997; Hwang and Chang 2000�.
For instance, Moussu and Nivoit �1993� used the method of su-
perposition to determine the elastic constants of free orthotropic
plates from measured natural frequencies. Sol et al. �1997� used
the method of Bayesian estimation to study the identification of
elastic constants from experimental natural frequencies of free
rectangular orthotropic plates.

The free vibration of sandwich plates with regular boundary
conditions such as simply supported or clamped edges has been
studied by many researchers, and different methods have also
been proposed to determine the modal characteristics of such
plates �Ueng 1966; Watanabe et al. 1993; Masoud and Pierre
1999; Nayak et al. 2002�. Regarding material constant identifica-
tion of sandwich plates, although it is an important topic of re-
search, there has been only limit work devoted to this area. For
instance, Thwaites and Clark �1995� used elastic waves to detect
and identify core damage and skin delamination of honeycomb
sandwich plates. Saito et al. �1997� presented a method estab-
lished on the basis of Timoshenko beam theory to deal with pa-
rameter identification of aluminum honeycomb sandwich panels.
If realistic mechanical behaviors of laminated composite sand-
wich plates are to be predicted, more attention should be drawn to

the area of material constant identification of plates and the capa-
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bility of nondestructive evaluation techniques used in this area
should be explored in depth.

In this paper, a method is established for free vibration analy-
sis of symmetrically laminated composite sandwich plates re-
strained by flexible edge supports. A number of examples are
given to demonstrate the accuracy of the present method in pre-
dicting the natural frequencies of symmetrically laminated com-
posite sandwich plates with different boundary conditions. The
present method is then applied to the material constant identifica-
tion of laminated composite sandwich plates via the mixed
numerical/experimental approach. The theoretical natural fre-
quencies of a free laminated composite sandwich plate predicted
by the present method using trial material constants, together with
the measured natural frequencies of the plate, are used to con-
struct the frequency discrepancy function, which measures the
sum of the squared differences between the experimental and the-
oretical natural frequencies of the plate. The identification of the
material constants of the sandwich plate is then formulated as a
constrained minimization problem in which the material constants
are determined by making the frequency discrepancy function a
global minimum. The capability and efficiency of the identifica-
tion method in estimating accurate material constants of lami-
nated composite sandwich plates with different properties will be
demonstrated by means of a number of examples.

Vibration Analysis of Composite Sandwich Plate

Consider the elastically restrained rectangular symmetrically
laminated composite sandwich plate of area a�b and constant
thickness h composed of two thin, laminated composite face
sheets with thicknesses hf at the top and bottom surfaces of a
relatively thick core layer with thickness hc, as shown in Fig. 1.
The x and y coordinates of the plate are taken in the midplane of
the plate. Herein, the layer-wise linear displacement theory �Mau
1973; Kam and Jan 1995� is used to determine the displacement
field of the sandwich plate. The sandwich plate is divided into
three layer groups in which the core, upper face sheet, and lower
face sheet are numbered as Layer Groups 1, 2, and 3, respectively.
The displacement components of the sandwich plate are assumed
to be of the following forms:

w0�x,y,t� = W�x,y�sin �t, �x
�k��x,y,t� = �x

�k��x,y�sin �t
�1�

�y
�k��x,y,t� = �y

�k��x,y�sin �t, �k = 1–3�

where w0�x ,y , t��vertical deflection at plate midplan; �x
�k��x ,y , t�

�k�

Fig. 1. Flexibly supported composite sandwich plate
and �y �x ,y , t��rotations of cross sections perpendicular to the x
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and y axes, respectively, of the kth layer group; W�deflection
function; �x

�k� and �y
�k��rotation functions; ��angular frequency;

and t�time. In Fig. 2, the displacement field of the core �Layer
Group 1� is given as

u�1��x,y,z,t� = u0�x,y,t� + ��1��x
�1��x,y,t�

v�1��x,y,z,t� = v0�x,y,t� + ��1��y
�1��x,y,t� �2�

w�1��x,y,z,t� = w0�x,y,t�

where u�1� and v�1��in-plane displacements at any point in the x
and y directions, respectively; u0, v0�in-plane displacements at
the midplane; w�1��vertical displacement in the z direction; and
��1��local coordinate in the thickness direction.

Similarly, the displacement fields of the upper face sheet
�Layer Group 2� and lower face sheet �Layer Group 3� are given,
respectively, as

Upper face sheet

u�2��x,y,z,t� = u�1��x,y,
hc

2
,t� + ��2��x

�2��x,y,t�

v�2��x,y,z,t� = v�1��x,y,
hc

2
,t� + ��2��y

�2��x,y,t� �3a�

w�2��x,y,z,t� = w0�x,y,t�

Lower face sheet

u�3��x,y,z,t� = u�1��x,y,
− hc

2
,t� + ��3��x

�3��x,y,t�

v�3��x,y,z,t� = v�1��x,y,
− hc

2
,t� + ��3��y

�3��x,y,t� �3b�

w�3��x,y,z,t� = w0�x,y,t�

where ��k��local coordinate in the kth layer group. It is noted that
for the symmetric sandwich plate, the cross-sectional rotations at
Layer Groups 2 and 3 are the same, i.e., �x

�2��� ,��=�x
�3��� ,�� and

�y
�2��� ,��=�y

�3��� ,��. Furthermore, for small deflection, u0 and v0

are negligible and can be discarded. Therefore, the independent
displacement components reduce from 9 to 5. The strain–
displacement relations for each layer group can be expressed in

Fig. 2. Layer groups of laminated composite sandwich plate
matrix form as
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�
	x

�k�

	y
�k�


xy
�k�


yz
�k�


xz
�k�
� =�

�u�k�

�x

�v�k�

�y

�u�k�

�y
+

�v�k�

�x

�v�k�

�z
+

�w�k�

�y

�u�k�

�z
+

�w�k�

�x

� �4�

where 	, 
�are normal and shear strains, respectively; and super-
script �k� denotes layer group number. The stress–strain relations
for the three layer groups in the global x–y–z coordinate system
can be expressed in the following general form �Swanson 1997�:

�
�xm

�k�

�ym
�k�

�xym
�k�

�yzm
�k�

�xzm
�k�
� = �

Q̄11m
�k� Q̄12m

�k� Q̄16m
�k� 0 0

Q̄12m
�k� Q̄22m

�k� Q̄23m
�k� 0 0

Q̄16m
�k� Q̄26m

�k� Q̄66m
�k� 0 0

0 0 0 Q̄44m
�k� Q̄45m

�k�

0 0 0 Q̄45m
�k� Q̄55m

�k�
��

	xm
�k�

	ym
�k�


xym
�k�


yzm
�k�


xzm
�k� �

�5�

where �, ��normal and shear stresses, respectively; and

Q̄ijm
�k� �transformed lamina stiffness coefficient, which depends on

the material properties and fiber orientation of the mth lamina in
the kth layer group. The relation between the transformed and
untransformed lamina stiffness coefficients is expressed as

Q̄11 = Q11C
4 + 2�Q12 + 2Q66�C2S2 + Q22S

4

Q̄12 = �Q11 + Q22 − 4Q66�C2S2 + Q12�C4 + S4�

Q̄16 = �Q11 − Q12 − 2Q66�C3S + �Q12 − Q22 + 2Q66�CS3

Q̄22 = Q11S
4 + 2�Q12 + 2Q66�C2S2 + Q22C

4

Q̄26 = �Q11 − Q12 − 2Q66�CS3 + �Q12 − Q22 + 2Q66�C3S

Q̄66 = �Q11 + Q22 − 2Q12 − 2Q66�C2S2 + Q66�C4 + S4�

Q̄44 = Q44C
2 + Q55S

2,Q̄45 = �Q55 − Q44�CS

Q̄55 = Q55C
2 + Q44S

2 �6�

with

Q11 =
E1

1 − 
12
21
; Q12 =


12E2

1 − 
12
21
; Q22 =

E2

1 − 
12
21

Q44 = G23; Q55 = G13; Q66 = G12; C = cos �i; S = sin �i

�7�

where Qij�untransformed lamina stiffness coefficient; E1,
E2�Young’s moduli in the fiber and transverse directions, respec-
tively; �ij�Poisson’s ratio for transverse strain in the j direction
when stressed in the i direction; G12�in-plane shear modulus in

the 1–2 plane; G13 and G23�transverse shear moduli in the 1–3
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and 2–3 planes, respectively; and �i�lamina fiber angle of the ith
lamina. Herein, for the thin face sheets, the transverse shear ef-
fects are assumed to be so small that the transverse shear moduli
�G13 and G23� are treated the same as the in-plane shear modulus
�G12�. For the core made of isotropic material, the independent
elastic constants in Eq. �7� are Young’s modulus Ec and Poisson’s
ratio �c. The strain energyUP and kinetic energy T of the plate are
expressed, respectively, as

UP = 	
k=1

3 

V�k�

1

2
��k�T

	�k�dV�k� �8�

and

T = 	
k=1

3
1

2
V�k�
��k��u̇�k�2

+ v̇�k�2
+ ẇ�k�2

�dV�k� �9�

where ��k��material density; V�k��volume;

��k�T
= ��x

�k� ,�y
�k� ,�xy

�k� ,�yz
�k� ,�xz

�k���stress vector;

��k�T
= �	x

�k� ,	y
�k� ,
xy

�k� ,
yz
�k� ,
xz

�k���strain vector, respectively; and
u̇, v̇, and ẇ�velocities in the x ,y, and z directions, respectively.
After substituting the displacement equations and stress–strain re-
lations into Eqs. �8� and �9� and performing the derivatives, the
maximun strain energy UPm and kinetic energy Tm of the plate can
be obtained by letting the terms of sin �t and cos �t be equal to 1.
For the plate restrained by elastic edge supports, additional strain
energy stored in the boundary springs exists. A general form for
evaluating the maximum total strain energy of the flexible re-
straints, UB, is written as

UB =
KL1

2 


0

b

W2dy�
x=0

+
KL2

2 


0

b

W2dy�
x=a

+
KL3

2 


0

a

W2dx�
y=0

+
KL4

2 


0

a

W2dx�
y=b

+ 	
k=1

3 �KR1
�k�

2 


0

b

�x
�k�2

dy�
x=0

+
KR2

�k�

2 


0

b

�x
�k�2

dy�
x=a

+
KR3

�k�

2 


0

a

�y
�k�2

dx�
y=0

+
KR4

�k�

2 


0

a

�y
�k�2

dx�
y=b

� �10�

where KLi�spring constant intensity of the longitudinal spring at
the ith edge; and KRi

�k��spring constant intensity of the torsional
spring at the kth layer group of the ith edge, respectively. The
integrals in the brackets of the above equation are evaluated at the
four edges of the plate. The total maximum strain energy of the
flexibly supported plate is then written as

U = UPm + UB �11�

Based on the Rayleigh–Ritz method, the displacement functions

can be expressed in the following nondimensional form:

33:874-886.
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W��,�� = 	
i=1

I

	
j=1

J

Cij
�1��i

�1����� j
�1����,�x

�k���,��

= 	
m=1

M

	
n=1

N

Cmn
�2k��m

�2k� ����n
�2k����

�12�

�y
�k���,�� = 	

p=1

P

	
q=1

Q

Cpq
�2k+1��p

�2k+1�����q
�2k+1����, �k = 1 − 3�

where Cpq�undetermined displacement coefficient; ����,
�����characteristic functions; � ,��normalized coordinates; and
the superscripts denote displacement coefficients for different
layer groups. Herein, the Legendre’s orthogonal polynomials are
used in Eq. �12� to denote �i and � j. For instance, �i��� is written
as

�1��� = 1

�2��� = �

and for n�3,

�n��� = ��2n − 3�� � �n−1��� − �n − 2� � �n−2����/�n − 1�

�13�

where �= �2x /a�−1 with −1���1, and �= �2y /b�−1 with −1
���1. It is noted that the above orthogonal polynomials �i���
satisfy the orthogonality condition



−1

1

�n����m���d� = �0 if n � m

2/2n − 1 if n = m
�14�

Extremization of the functional �, which is defined as �=U
−Tm with respect to the displacement coefficients Cpq leads to the
following eigenvalue problem

��K� − �2�M���C� = 0 �15�

where �C��vector containing all the displacement coefficients;
�M� and �K��structural mass and stiffness matrices of the sand-
wich plates with elastically restrained edges, respectively. De-
tailed description of the terms in �M� and �K� are given in the
Appendix . If the edge spring constant intensities equal zero, the
sandwich plate will have free boundary conditions. The natural
frequencies of free laminated composite sandwich plates can be
determined from the above equation provided that the material
constants of the plates are available. If the actual material con-
stants of the sandwich plate are unknown, trial material constants
can be used to predict the theoretical natural frequencies of the
plate, which will then be used in the material constant identifica-
tion method as will be described in the following section to de-
termine the actual material constants of the sandwich plates.

Material Constants Identification

Herein, the aforementioned Rayleigh–Ritz method is applied to
the nondestructive evaluation of the elastic constants of laminated
composite sandwich plates. The material constant identification of
laminated composite sandwich plates using the theoretically pre-
dicted and experimentally measured natural frequencies of the
plates is formulated as a minimization problem. In mathematical

form it is stated as

JOUR
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Minimize e�x� = ��*�t��*�

Subject to xi
L � xi � xi

U, �i = 1–6� �16�

where x= �E1 ,E2 ,G12 ,�12 ,Ec ,�c��vector containing the design
variables which presently are material constants of the composite
sandwich plate; �*�n�1 vector containing the differences be-
tween the measured and predicted values of the natural frequen-
cies; e�x��frequency discrepancy function measuring the sum of
the squared differences between the predicted and measured data;
and xi

L, xi
U�lower and upper bounds of the material constants.

The elements in �* are expressed as

�i
* =

�pi − �mi

�mi
, �i = 1 − NF� �17�

where �pi, �mi�predicted and measured values of the natural
frequencies, respectively; and NF�number of natural frequen-
cies. In general, the use of any conventional minimization
technique to solve the identification problem of Eq. �16� may
encounter great difficulty in obtaining the global minimum, i.e.,
the actual material constants. For instance, it has been shown that
the use of the optimization algorithms of IMSL �1991� to solve
Eq. �16� may have a significant converge problem or produce
erroneous results that are found unacceptable. Herein, a multistart
global minimization method together with an appropriate normal-
ization technique for normalizing the design variables is adopted
to solve the above system identification problem. In the proposed
method, the above problem of Eq. �16� is first converted into an
unconstrained minimization problem by creating the following
general augmented Lagrangian as reported in the literature
�Vanderplaats 1984�

�̄�x̃,�,�,rp� = e�x̃� + 	
j=1

7

�� jzj + rpzj
2 + � j� j + rp� j

2� �18�

with

zj = max
gj�x̃j�,
− � j

2rp
�, gj�x̃j� = x̃j − x̃j

U � 0

�19�

� j = max
Hj�x̃j�,
− � j

2rp
�, Hj�x̃j� = x̃j

L − x̃j � 0, �j = 1 − 7�

where � j ,� j ,
p�multipliers; max�*, * � takes on the maximum
value of the numbers in the bracket. The modified design vari-
ables x̃ are defined as

x̃ = 
E1

�1
,
E2

�2
,
G12

�3
,
�12

�4
,
Ec

�5
,
�c

�6
� �20�

where �i�normalization factor. It is noted that the choice of
proper values of the normalization factors can produce appropri-
ate search directions during the minimization process and thus
help expedite the convergence of the solution. A detailed study
has shown that the suitable values of x̃i�i=1, . . . ,6� are better
greater than 0 and less than 10. Furthermore, it is worth pointing
out that the original design variables are used in the Rayleigh–
Ritz method to compute the theoretical natural frequencies for
determining the frequency discrepancy function in Eq. �18�. The

updated formulas for the multipliers � j ,� j, and 
p are

NAL OF ENGINEERING MECHANICS © ASCE / AUGUST 2007 / 877
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� j
n+1 = � j

n + 2rp
nZj

n, � j
n+1 = � j

n + 2rp
n� j

n, �j = 1 − 7�
�21�

rp
n+1 = �
0rp

n if rp
n+1 � rp

max

rp
max if rp

n+1 � rp
max

where the superscript n denotes the iteration number;

0�constant; and rp

max�maximum value of rp. Following the
guideline given in the literature �Vanderplaats 1984�, the param-
eters � j

0, � j
0, rp

0, 
0, rp
max are chosen as

� j
0 = 1.0, � j

0 = 1.0, rp
0 = 0.4, 
0 = 2.5, rp

max = 100

�22�

The constrained minimization problem of Eq. �16� has thus be-
come the solution of the following unconstrained optimization
problem:

Minimize �̄�x̃,�,�,rp� �23�

The above unconstrained optimization problem is to be solved
using the previously proposed multistart global optimization al-
gorithm �Snyman and Fatti 1987�, which has proven to be able to
locate the global minima of unconstrained minimization problems
consisting of multiple local minima. In the adopted optimization
algorithm, the objective function is treated as the potential energy
of a traveling particle and the search trajectories for locating the
global minimum are derived from the equation of motion of the
particle in a conservative force field. The design variables, i.e.,
the material constants that make the potential energy of the par-
ticle, i.e., objective function, the global minimum constitute the
solution of the problem. In the minimization process, a series of
starting points for the design variables of Eq. �20� are selected at
random from the region of interest. The lowest local minimum
along the search trajectory initiated from each starting point is
determined and recorded. A Bayesian argument is then used to
establish the probability of the current overall minimum value of
the objective function being the global minimum, given the num-
ber of starts and the number of times this value has been
achieved. The multistart optimization procedure is terminated
when a target probability, typically, 0.99, has been exceeded.

Experimental Investigation

In the experimental study, a number of laminated composite sand-
wich plates with different cores and face sheets were fabricated
and subjected to impulse vibration testing. The dimensions
�a�b�h� of the laminated composite sandwich plates were
30 cm�30 cm�0.375 cm with core thickness of 0.3 cm �Core
�I�� or 21 cm�21 cm�0.28 cm with core thickness of 0.205 cm
�Core �II��. The face sheets were fabricated using T300/2500
graphite/epoxy �Gr/ep� prepreg tapes produced by Torayca Co.,
Japan. The cores were made of foam �Core �I�� or plastics �Core
�II�� materials. The elastic constants of the Gr/ep face sheets and
cores were first determined experimentally using the standard
specimens in accordance with ASTM Standards D 3039 and D
695 �ASTM 1990�. In the material testing, each elastic constant
was determined using three specimens. The means and coeffi-
cients of variation �COVs� of the elastic constants obtained from
the tests are as follows.
Gr/ep face sheet
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E1 = 146.503 GPa �0.72 % � ,

E2 = 9.223 GPa �1.19 % � ,

G12 = 6.836 GPa �3.16 % � ,

�12 = 0.306 �0.19 % � ,

hf = 0.375 mm �24a�

Core

Core �I�: Ec = 27.65 MPa �3.62 % �, �c = 0.3�0.45 % �, hc = 3 mm

Core �II�: Ec = 3.94 GPa �2.58 % �, �c = 0.38�0.31 % �,

hc = 2.05 mm �24b�

The values in the parentheses in the above equation denote the
COVs of the elastic constants of the materials. The average mass
densities of the core and face sheet of the 30�30 cm sandwich
plates were 49.1 and 1675.4 Kg/m3, respectively, while those of
the 21�21 cm sandwich plates were 1244.1 and 1658.4 Kg/m3,
respectively.

The laminated composite sandwich plate hung by rubber
bands was subjected to the impulsive vibration testing as shown
in Fig. 3. In the vibration testing of the composite sandwich plate,
a hand held impulse hammer �Kistler 9722A500, Kistler Instru-
ment, Amherst, N.Y.� was used to excite the composite sandwich
plate at different points on the plate, a force transducer �Kistler
9904A, Kistler Instrument, Amherst, N.Y.� attached to the ham-
mer’s head to measure the input force, an accelerometer of mass
0.14 g �AP19, APTechnology, Oosterhout, The Netherlands� to
pick up the vibration response data at different locations on the
plate, and a data acquisition and analysis system �B&K 3560C
and B&K Pulse Labshop Version 6.1� to process the vibration
data from which the natural frequencies of the sandwich plates
were extracted. It is noted that for each pair of excitation and
signal pick-up points, the sandwich plate was tested for several
times. Each time when the plate was tested a set of vibration data
was produced for constructing the frequency response spectrum
of the plate from which the lower natural frequencies of the plates
were extracted. A detailed study had shown that the small modal
damping ratios with values less than 2% had negligible effects on
the lower natural frequencies of the plates and the identified ma-

Fig. 3. Impulsive vibration testing of composite sandwich plate
terial constants. Therefore, without affecting the generality of the
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present identification method, when determining the natural fre-
quencies from the frequency response spectra, the frequencies
associated with the peak responses were treated as the natural
frequencies of the plates. For illustration purposes, Fig. 4 shows a
typical frequency response spectrum of the square �30�30 cm�
�03

0 /core�I� /03
0� plate. It is noted that the first six natural frequen-

cies of the plate can be easily identified from the frequency re-
sponse spectrum as shown in Fig. 4. The means of the first six
measured natural frequencies of the free laminated composite
sandwich plates determined from the impulsive vibration testing
of the plates are listed in Table 1. It is noted that the COVs of the
natural frequencies obtained from the tests were less than 0.89%.
For comparison purpose, the theoretical natural frequencies of
the laminated composite sandwich plates determined using the
experimental material constants of Eq. �24b� in the present
Rayleigh–Ritz method are also listed in Table 1. It is noted that
the percentage differences between the experimental and theoret-
ical natural frequencies of the sandwich plates were less than or
equal to 8.12%. In the following system identification study, the
measured natural frequencies of the sandwich plates in Table 1

Table 1. Experimental and Theoretical Natural Frequencies of Free Gr/e

Layup First Second

�0� /90� /0� / core�I� /0� /90� /0�� 115a 294

116.05b 297.85

−0.90%c −1.29%

�03
� / core�I� /03

� � 118 144

115.55 143.50

2.12% 0.35%

�0� /90� /0� / core�II� /0� /90� /0�� 120.7 332.7

128.10 335.70

−5.77% −0.89%

�03
� / core�II� /03

� � 116 150

121.29 148.39

−4.36% 1.09%
aExperimental natural frequency.
bTheoretical natural frequency.
c

Fig. 4. Frequency response spectrum of the square
�00/900 /00 /core�I� /00 /900 /00� plate with free edges
Percentage difference.
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will be used in solving the problem of Eq. �16� to demonstrate the
applications of the proposed method.

Results and Discussions

A number of numerical examples are first given to illustrate the
capability and accuracy of the proposed Raleigh–Ritz method in
determining natural frequencies of laminated composite sandwich
plates with different boundary conditions reported in the literature
or obtained via the use of the finite-element code ANSYS �1997�.
A convergence study has shown that the uses of I=J=M =N= P
=Q=10 for the characteristic functions in Eq. �12� are sufficient
to make the solutions of the sandwich plates to converge. There-
fore, from now on the aforementioned number of terms of the
characteristic functions will be used in the Rayleigh–Ritz method
for the following sandwich plate analyses. The results obtained by
the present method for several free or clamped rectangular lami-
nated composite sandwich plates with different face sheets are
listed in Table 2 in comparison with those available in the litera-
ture or obtained in the finite-element analyses of the plates using
the element type SHELL 91 of ANSYS. It is noted that in ana-
lyzing the sandwich plates with simply supported edges, the nor-
malized translational and rotational spring constant intensities
are set as 1010 and 0, respectively, while those for the plates
with clamped edges are set as 1010 and 106, respectively. It is
noted that when comparing with the finite-element results ob-
tained by Watanabe et al. �1993�, the natural frequencies of the
clamped sandwich plates predicted by the present method are
more accurate than those predicted by the previously proposed
Rayleigh–Ritz method �Masoud and Pierre 1999� in which the
plate deflection and transverse shear forces were represented by
an independent set of functions and the rotary inertia effects were
neglected. For the free sandwich plates, the natural frequencies
produced by the present method closely match those produced by
ANSYS. Next consider the effects of edge spring stiffness on the
natural frequencies of flexibly supported laminated composite
sandwich plates. The material constants of the laminated compos-
ite face sheets and core are given as follows:

wich Plates

Natural frequency �Hz�

Third Fourth Fifth Sixth

343 367 402 531

348.24 359.88 395.80 534.10

−1.51% 1.98% 1.57% −0.58%

250 331 394 424

251.86 360.25 394.67 423.97

−0.74% −8.12% −0.17% 0.01%

410.7 447.7 506.3 738

422.96 451.40 517.92 764.83

−2.90% −0.82% −2.24% −3.51%

279 414.3 529.3 542

287.71 408.08 522.18 548.04

−3.03% 1.52% 1.36% −1.10%
p Sand
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Face sheets: E1/E2 = 15, G12/E2 = 0.6, G23/E2 = 0.1,

�12 = 0.3, E2 = 10 Gpa, � f = 1500 kg/m3

Core: Ec = 10 MPa or 1 GPa, Gc = Ec/�2 + 2�c�,

�c = 0.3, �c = 50 kg/m3

b = 0.3 m, hf = 0.5 mm, hc = 9 mm �25�

The first five natural frequencies of the ��0� /90��S /core�S and
��45� /−45��S /core�S plates supported by edge springs with differ-
ent spring constant intensities are listed in Tables 3 and 4, respec-
tively. It is noted that the stiffness of translational springs, core
property, lamination arrangement of face sheets, and aspect ratio
have more effects on the natural frequencies of the sandwich
plates than the stiffness of rotational springs. For instance,
consider different cases of the ��0� /90��S /core�S plate with
Ec=10 MPa in Table 3. For the plate with the normalized trans-
lational spring constant intensity K=1 and aspect ratio a /b=0.5,
the first normalized natural frequency merely increases 0.21%
from 14.19 to 14.22 when the normalized rotational spring con-
stant intensity R increases from 1 to 106. For the plate with
K=R=1, the first normalized natural frequency has a significant
reduction of 72.87% from 14.19 to 3.85 as the aspect ratio
changes from 0.5 to 2. For the plate with a /b=0.5 and R=1, the
first normalized natural frequency increases 93.8% from 14.19 to
27.5 as K increases from 1 to 1010. The core rigidity also has
significant effects on the natural frequencies of the plate. For
instance, for the plate with K=1010, R=106, and a /b=0.5, the first
normalized natural frequency increases 526.18% from 27.81 to
174.14 as Ec changes from 10 MPa to 1 GPa. Furthermore, such
effects will become more prominent when the mode number in-
creases. For instance, for the same case, comparing to the
526.18% increase for the first mode, there is a 585.6% increase
for the fifth mode. Comparing the results in Table 3 with those in
Table 4, it is also noted that fiber angles of face sheets can affect
the natural frequencies of the sandwich plates. For instance, the

� �

Table 2. Natural Frequencies of Rectangular Laminated Composite Sand

Material Layup
hc

�mm�
Edge

support

I �303
0 /core�S 10 Clamped

�03
0 /core�S

�00/900 /00 /core�S 7

II �04
� / core/04

� � 3 Free

�304
� / core/304

� �

Note: Material I: a=0.45 m; b=0.3 m; hf =0.375 mm; E1=105 GPa;
Gyz=62.1 MPa; and �c=16 kg/m3.

Material II: a=0.3 mm; b=0.3 mm; hf =0.5 mm; E1=150 GPa; E2=1
Gc=38.46 Mpa; and �c=50 kg/m3.
first normalized natural frequency of the ��0 /90 �S /core�S plate is
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150.05% higher than that of the ��45� /−45��S /core�S plate when
K=10, R=1, a /b=0.5, and Ec=10 MPa.

Now a theoretical study of the capability and accuracy of
the present method in identifying material constants of lami-
nated composite sandwich plates is first given. The first six
theoretical natural frequencies of the flexibly supported
�00/900 /00 /core�I� /00 /900 /00� plate in Table 1 are treated as
“measured” natural frequencies in the identification of the mate-
rial constants of the sandwich plate. The upper and lower bounds
of the material constants chosen based on experience are reason-
ably large

0 � E1 � 400 GPa; 0 � E2 � 40 GPa; 0 � G12 � 20 GPa

0 � �12 � 0.5; 0 � Ec � 100 MPa; 0 � �c � 0.5 �26�

The modified design variables of Eq. �20� when obtained via the
use of the following normalization factors are less than 10:

�1 = �5 = 100, �4 = �6 = 1

and

�i = 10 �i = 2,3� �27�

Since the modified design variables are less than 10, the search
for the solution can thus be expedited. In the identification pro-
cess, four starting points are randomly generated and for each
starting point around 18 iterations are required to locate the
lowest local minimum. The starting points, the lowest local
minima for the starting points, numbers of iterations required to
obtain the lowest local minima, and the global minimum are listed
in Table 5. It is noted that the actual material constants have been
identified in an efficient and effective way. Next, consider the
system identification of free square �21 cm�21 cm� �03

� / core/03
� �

and �45� /−45� /45� / core/45� /−45� /45�� plates with faces made of
Gr/ep or glass/epoxy �Gl/ep� materials. The actual properties of

Plates with Different Boundary Conditions

Natural frequency �Hz�

Method First Second Third

Present 709 1,163 1,448

asoud and Pierre �1999� 778 1,293 1,599

atanabe et al. �1993� 732 1,197 1,477

Present 733 1,268 1,405

asoud and Pierre �1999� 752 1,312 1,527

atanabe et al. �1993� 716 1,240 1,414

Present 694 1,110 1,384

asoud and Pierre �1999� 716 1,167 1,497

atanabe et al. �1993� 693 1,119 1,412

Present 125.43 166.41 292.61

ANSYS �1997� 124.75 166.15 290.10

Present 132.23 182.83 290.96

ANSYS �1997� 131.59 182.32 288.64

74 GPa; G12=4.56 GPa; �12=0.327; � f =1,600 kg/m3; Gxz=103 MPa;

; G12=6 GPa; G23=2 GPa; �12=0.3; � f =1550 kg/m3; Ec=100 MPa;
wich

M

W

M

W

M

W

E2=8.

0 GPa
the Gr/ep and Gl/ep sandwich plates are as follows:
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Gr/ep sandwich plate

E1 = 131 GPa, E2 = 11.2 GPa, G12 = 6.55 GPa, �12 = 0.28

�28a�

� f = 1,550 kg/m3, hf = 0.375 mm, �c = 500 kg/m3,

hc = 2 mm

Gl/ep sandwich plate

E1 = 38.6 GPa, E2 = 8.27 GPa, G12 = 4.14 GPa, �12 = 0.26

� f = 1,800 kg/m3, hf = 0.375 mm, �c = 500 kg/m3,

hc = 2 mm �28b�

Table 3. Normalized Natural Frequencies of Flexibly Supported
��0� /90��S /core�S Plates with Different Aspect Ratios and Core Materials

Normalized natural frequency �a

Ec K R a /b First Second Third Fourth Fifth

10 MPa 1 1 0.5 14.19 17.07 25.82 29.77 31.83

1 5.28 10.82 10.86 15.3 22.19

2 3.85 4.93 10.2 10.28 11.26

106 0.5 14.22 17.87 26.22 30.51 32.49

1 5.3 12.13 12.19 16.56 22.66

2 3.86 5.88 11.01 11.59 12.51

10 1 0.5 24.48 28.59 35.36 43.4 48.16

1 12.02 18.95 19.14 24.35 28.12

2 8.81 10.02 13.57 17.06 17.94

106 0.5 24.69 28.81 35.59 43.81 48.31

1 12.24 19.21 19.55 24.59 28.31

2 9 10.56 14.07 17.35 18.25

1010 1 0.5 27.5 33.84 42.68 52.68 54.59

1 15.66 25.14 25.92 32.58 36.12

2 11.92 15.32 20.06 22.99 24.94

106 0.5 27.81 34.08 42.78 52.8 54.74

1 16.16 25.28 26.12 32.6 36.23

2 12.47 15.64 20.31 23.1 25.01

1 GPa 1 1 0.5 16.05 22.33 58.54 68.48 72.47

1 5.52 16.47 16.52 28.18 70.5

2 4.02 5.89 16.02 18.62 19.62

106 0.5 16.12 31.26 98.7 99.93 107.76

1 5.53 27.3 27.36 41.77 97.53

2 4.03 8.02 26.83 27.08 29.22

10 1 0.5 47.69 52.57 87.55 95.58 102.77

1 16.63 27.47 27.5 38.68 74.56

2 12.12 13.44 23.27 24.94 26.89

106 0.5 49.45 57.45 109.85 119.94 127.05

1 17.2 33.96 34 47.85 99.61

2 12.54 14.63 29.5 31.84 33.81

1010 1 0.5 122.43 162.3 240.53 323.65 341.12

1 49.4 112.78 112.9 155.87 207.5

2 35.28 46.83 72.31 105.47 109.37

106 0.5 174.14 213.37 284.02 358.4 375.3

1 77.85 144.05 144.16 190.98 234.97

2 56.64 68.79 93.97 130.28 132.55
a�=�b2�� fH /D11; H=2hf +hc; and D11�bending stiffness in the x
direction. K=KL1�a3 /D11=KL2�a3 /D11=KL3�b3 /D22=KL4�b3 /D22;
R=RL1�a /D11=RL2�a /D11=RL3�b /D22=RL4�b /D22.
The actual natural frequencies of the Gr/ep and Gl/ep sandwich
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plates with different core properties are listed in Table 6. Again,
the first six actual natural frequencies, which are treated as the
“measured” natural frequencies, are used in the present method to
identify the material constants of the Gl/ep sandwich plates. The
bounds of the material constants chosen to be reasonably large are
as the following:

0 � E1 � 400 GPa; 0 � E2 � 40 GPa;

0 � G12 � 20 GPa; 0 � �12 � 0.5

Table 4. Normalized Natural Frequencies of Flexibly Supported
��45� /−45��S /core�S Plates with Different Aspect Ratios and Core
Materials

Normalized natural frequency �a

Ec K R a /b First Second Third Fourth Fifth

10 MPa 1 1 0.5 4.25 7.35 9.91 13.66 17.79

1 2.28 3.73 6.38 8.61 9.09

2 13.52 15.77 22.99 28.62 30.16

106 0.5 4.26 9.01 10.95 14.4 18.94

1 2.29 4.67 8.2 9.61 9.92

2 21.84 24 29.23 36.51 44.17

10 1 0.5 9.79 13.7 17.18 20.33 21.64

1 6.04 7.59 11.14 11.28 12.86

2 22.03 24.29 29.86 37.26 44.29

106 0.5 9.99 14.29 17.4 20.65 22.22

1 6.23 8 11.68 11.79 13.33

2 24.57 30.02 37.86 46.68 49.38

1010 1 0.5 13.61 21.77 23.23 28.91 31.6

1 9.95 13.35 17.8 19.63 21.71

2 24.97 30.11 38.06 46.83 49.5

106 0.5 14.24 22.04 23.45 29.13 31.82

1 10.75 13.82 18.12 19.89 21.98

2 4.25 7.35 9.91 13.66 17.79

1 GPa 1 1 0.5 15.72 17.9 40.14 57.35 75.19

1 4.47 9.66 15.86 27.63 41.47

2 2.38 4.83 9.05 14.93 18.95

106 0.5 15.78 20.85 54.79 95.78 107.67

1 4.48 14.51 26.46 38.84 54.59

2 2.39 7.09 14.36 20.28 26.07

10 1 0.5 46.42 48.29 61.66 94.01 96.99

1 13.46 18.16 25.47 34.17 45.25

2 7.19 9.23 14.13 18.47 21.02

106 0.5 48.15 50.56 71.61 116.11 120.2

1 13.91 20.71 31.87 42.98 56.75

2 7.44 10.44 17.36 22.58 27.23

1010 1 0.5 119.18 145.44 190.75 252.28 306.61

1 44.34 79.74 111.89 127.85 150.35

2 24.12 40.63 66.43 66.69 81.7

106 0.5 159.11 181.32 222.14 279.95 331.72

1 64.37 101.08 135.07 150.4 173.39

2 36.13 53.83 81.22 84.21 99.27
a�=�b2�� fH /D11; H=2hf +hc; and D11 is bending stiffness in the x
direction. K=KL1�a3 /D11=KL2�a3 /D11=KL3�b3 /D22=KL4�b3 /D22;
R=RL1�a /D11=RL2�a /D11=RL3�b /D22=RL4�b /D22.
0 � Ec � 100 MPa; 0 � �c � 0.5 for Ec = 10 MPa
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Table 5. Identified Elastic Constants of the Gr/ep �00/900 /00 /core�I� /00 /900 /00� Sandwich Plate with Free Edges Using Actual Natural Frequencies

System parameter

Starting point
number Stage

E1

�GPa�
E2

�GPa�
G12

�GPa� �12

Ec

�MPa� �c

Number
of iterations

1 Initial 286.5625 37.4817 12.5915 0.1994 24.1326 0.4875 17

Final 146.5030 9.2230 6.8360 0.3060 27.6500 0.3000

2 Initial 96.1479 21.0436 19.8511 0.4634 78.2327 0.3255 16

Final 146.5030 9.2230 6.8360 0.3060 27.6500 0.3000

3 Initial 197.2084 10.8297 7.7575 0.1176 79.4014 0.4949 18

Final 146.5030 9.2230 6.8360 0.3060 27.6500 0.3000

4 Initial 75.4331 0.4824 13.7528 0.1648 36.9631 0.2519 21

Final 146.5030 9.2230 6.8360 0.3060 27.6500 0.3000

Global minimum 146.5030 9.2230 6.8360 0.3060 27.65 0.3000 Probability

�0%� �0%� �0%� �0%� �0%� �0%� �0%� 0.9921
Values in parentheses denote percentage difference between identified and actual data.
Table 6. Actual Natural Frequencies of Free Gr/ep and Gl/ep Sandwich Plates

Natural frequency �Hz�

Material Layup
Core Ec

�Mpa� First Second Third Fourth Fifth Sixth

Gr/ep �03
� / core/03

� � 10 114.1928 162.6302 234.8167 290.6084 314.7152 341.8780

2,000 149.0150 200.6343 362.4224 550.6015 617.0932 684.6992

�45� /−45� /45� / core/45� /−45� /45�� 10 174.2297 183.6306 252.9345 287.4444 297.7229 406.9070

2,000 247.7889 317.7901 468.3839 694.9438 715.9061 1,005.9287

Gl/ep �03
� / core/03

� � 10 96.5056 145.0586 209.7339 234.8041 264.8337 316.9234

2,000 124.8429 176.6204 308.3220 361.4576 434.5461 491.9069

�45� /−45� /45� / core/45� /−45� /45�� 10 131.1276 153.3775 200.8882 244.4192 254.4609 358.5897

2,000 183.4542 186.9897 278.6001 417.4645 445.1689 647.3830
Table 7. System Identification of Gr/ep and Gl/ep Sandwich Plates Using Actual Natural Frequencies

System parameter

Material Layup

Core
Ec

�MPa�

Number
of starting

points

Average
number of
iteration

E1

�GPa�
E2

�GPa�
G12

�GPa� �12

Ec

�MPa� �c

Gr/ep �03
� / core/03

� � 10 6 21 131.0
�0%�

11.2
�0%�

6.55
�0%�

0.28
�0%�

10.0285
�0.29%�

0.3017
�0.57%�

2,000 6 20 131.0
�0%�

11.2
�0%�

6.55
�0%�

0.28
�0%�

2000
�0%�

0.3
�0%�

�45� /−45� /45� / core 45� /−45� /45�� 10 4 19 131.0
�0%�

11.1998
�1.79e-3%�

6.55
�0%�

0.28
�0%�

10.0585
�0.29%�

0.3017
�0.73%�

2,000 7 24 130.998
�−1.53e-3% �

11.1973
�−0.024% �

6.5500
�0%�

0.2798
�0.07%�

2002.28
�0.114%�

0.3015
�0.5%�

Gl/ep �03
� / core/03

� � 10 7 15 38.6
�0%�

8.27
�0%�

4.14
�0%�

0.26
�0%�

10.01
�0.1%�

0.3014
�0.47%�

2,000 6 14 38.6
�0%�

8.27
�0%�

4.14
�0%�

0.26
�0%�

2000
�0%�

0.3
�0%�

�45� /−45� /45� / core 45� /−45� /45�� 10 6 17 38.6
�0%�

8.27
�0%�

4.14
�0%�

0.26
�0%�

10
�0%�

0.3001
�0.03%�

2,000 10 14 38.6
�0%�

8.27
�0%�

4.14
�0%�

0.26
�0%�

2000
�0%�

0.3
�0%�
Note: Values in the parentheses denote percentage difference between identified and actual data.
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0 � Ec � 10,000 MPa; 0 � �c � 0.5 for Ec = 2,000 MPa

�29�

The modified design variables of the Gl/ep sandwich plates when
obtained via the use of the following normalization factors are
less than 10:

�1 = 100, �4 = �6 = 1, �i = 10, �i = 2,3�

and

�5 = 100 for Ec = 10 MPa

�5 = 10,000 for Ec = 2,000 MPa �30�

The numbers of starting points and the average numbers of itera-
tions required to obtain the global minima for the cases are listed
in Table 7. Again, for all the cases under consideration, the actual
material constants of the sandwich plates can be determined in an
efficient and effective way.

Finally, the present method is applied to the identification of
material constants of the Gr/ep composite sandwich plates that
have been tested. The first six measured natural frequencies of the
�00/900 /00 /core�I� /00 /900 /00� sandwich plate in Table 1 are
used as an example to illustrate the system identification process
of the present method. Table 8 lists the randomly generated start-
ing points, the lowest local minima obtained for the starting
points, the numbers of iterations required to get the lowest local
minima, and the global minimum. It is noted that very good esti-
mates of the material constants with percentage differences less

Table 8. Identified Material Constants of the Gr/ep �00/900 /00 /core�I� /

Starting point
number Stage

E1

�GPa�
E2

�GPa�

1 Initial 167.897 4.942

Final 140.946 8.514

2 Initial 45.092 6.529

Final 140.947 8.514

3 Initial 320.411 14.503

Final 140.946 8.514

4 Initial 172.861 27.980

Final 140.947 8.514

Global
minimum

140.946
�−3.79% �

8.514
�−7.69% �

Note: Values in the parentheses denote percentage difference between
E2=9.223 GPa; G12=6.836 GPa; �12=0.306; and Core�I�: Ec=27.65 MPa

Table 9. Identified Material Constants of Different Laminated Composit

Layup
Number of

starting points
Average number

of iteration

�03
� / core�I� /03

� � 4 13 1
�

�0� /90� /0� / core�II� /0� /90� /0�� 6 17 1
�

�03
� / core�II� /03

� � 4 24 1
�−

Notes: Values in the parentheses denote percentage difference between

E2=9.223 GPa; G12=6.836 GPa; �12=0.306; Core�I�: Ec=27.65 MPa; �c=0.3; C
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than or equal to 7.85% have been obtained for the
�00/900 /00 /core�I� /00 /900 /00� sandwich plate. For the other
sandwich plates, the numbers of starting points, the average num-
bers of iterations, the identified system parameters, and the per-
centage differences between the actual and identified system
parameters are listed in Table 9. In view of the identified system
parameters listed in Table 9, it is noted that the percentage differ-
ences between the actual and identified material constants for the
sandwich plates are less than or equal to 12.9%. In general,
among any set of the identified material constants, only one of the
material constants may have relatively large percentage difference
while those of the other identified material constants are small.
Though for engineering applications, percentage differences of
material constants less than 15% have always found to be accept-
able, more in-depth investigation should be pursued to improve
the accuracy of the identified material constants in the future.
Further study has shown that the use of over six natural frequen-
cies in the identification process will produce similar results. Fi-
nally, it is worth pointing out that the differences between the
identified and actual material constants of the plates that have
been tested in this study may be due to a number of uncertain
factors �Lauwagie et al. 2006�, including, for instance, the effects
of accelerometer mass on the plate vibration and existence of
noise in the measurement data of tensile and vibration tests. Re-
garding the effects induced by accelerometer mass, the use of
noncontact probes to measure plate vibration responses can elimi-
nate the adverse effects of accelerometer mass imposed on plate
vibration. On the other hand, the effects of the measurement noise

/00� Sandwich Plate Using Experimental Natural Frequencies

em parameter

2

a� �12

Ec

�MPa� �c

Number of
iterations

1 0.400 1.318 0.304 14

7 0.300 29.821 0.300

3 0.266 17.779 0.126 11

7 0.300 29.821 0.300

3 0.158 93.779 0.243 13

7 0.300 29.821 0.300

0 0.499 30.321 0.101 12

7 0.300 29.821 0.300

7
% �

0.300
�−1.96% �

29.821
�7.85%�

0.300
�0%�

Probability
0.9921

ed and measured data. Measured elastic constants: E1=146.503 GPa;
.3.

wich Plates Using Experimental Natural Frequencies

System parameter

E2

�GPa�
G12

�GPa� �12

Ec

�MPa� �c

�
8.884

�−3.68% �
6.942

�1.55%�
0.3

�−1.96% �
26.343

�−4.73% �
0.3

�0%�

�
9.462

�2.59%�
6.057

�−11.40% �
0.3004

�−1.85% �
3,529.123

�−10.43% �
0.3706

�−2.48% �

�
8.553

�−7.26% �
5.954

�−12.90% �
0.2920

�−4.58% �
3942.755
�0.07%�

0.3748
�−1.39% �

fied and measured data. Measured elastic constants: E1=146.503 GPa;
00/900

Syst

G1

�GP

2.08

6.51

7.89

6.51

4.62

6.51

6.51

6.51

6.51
�−4.67

identifi
e Sand

E1

�GPa�

55.075
5.85%

48.571
1.41%

45.716
0.55%

identi

ore�II�: Ec=3.94 GPa; �c=0.38.
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on the identified system parameters and the sources of the noise
should be studied in detail so that the measurement noise incurred
in the vibration testing of the plates can be suppressed or the
detrimental effects of the measurement noise be minimized or
even eliminated.

Conclusions

A method has been presented for free vibration analysis of
laminated composite sandwich plates with different boundary
conditions. Several examples have been given to demonstrate the
accuracy of the proposed method. The present method has been
used in the material constants identification of laminated compos-
ite sandwich plates via a vibration testing approach. The identifi-
cation process has included the extraction of natural frequencies
from vibration test data, the utilization of the present method for
predicting the theoretical natural frequencies of the laminated
composite sandwich plates using trial values of the material con-
stants, the construction of the frequency discrepancy function that
measures the sum of the differences between the experimental
and theoretical predictions of the system natural frequencies, and
the use of a multistart global minimization method to identify the
elastic constants by making the frequency discrepancy function
the global minimum. Both numerical and experimental investiga-
tions have been conducted to demonstrate the capability, effec-
tiveness, accuracy, and applications of the material constant
identification procedure. In the theoretical study, it has been
shown that the identification procedure can identify the actual
material constants of free laminated composite sandwich plates
made of different laminated composite materials using the first six
� � ip� jq� ip� jq�

884 / JOURNAL OF ENGINEERING MECHANICS © ASCE / AUGUST 2007
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natural frequencies in an efficient and effective way. In the ex-
perimental investigation, several Gr/ep �00/900 /00 /core�I� /
00 /900 /00�, �03/core�I� /03

0�, �00/900 /00 /core�II� /00 /900 /00�, and
�03/core�II� /03

0� sandwich plates with different core materials
have been subjected to impulsive vibration testing to measure the
lower natural frequencies of the plates. The uses of the first six
measured natural frequencies in the identification procedure can
also produce estimates of the material constants with acceptable
accuracy. The largest percentage difference between the actual
and identified material constant obtained in this study is 12.90%
for the face-layer in-plane shear modulus G12 while small per-
centage differences have been obtained for the other material con-
stants. The possible factors that may cause error in identifying the
material constants and ways for improving the accuracy of the
identified material constants have been discussed. The present
identification procedure has the potential to be used as a prelimi-
nary technique for quick material constant evaluation.
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Appendix. Elements of System Matrices K and M
of Symmetrically Laminated Composite Sandwich
Plates with Free Edges

The eigenvalue problem of Eq. �15� is rewritten as
��
K11 K12 K13 K14 K15

K22 K23 K24 K25

K33 K34 K35

symmetric K44 K45

K55
� − �2�

M11 0 0 0 0

M22 0 M24 0

M33 0 M35

symmetric M44 0

M55
���

Cij
�1�

Cmn
�2�

Cpq
�3�

Cm�n�
�4�

Cp�q�
�5�
� =

0

0

0

0

0

�31�
where

�K11�ijij = 4 � ��A44
c + 2A44

f �E
iī

00
Fjj̄

11
/b2 + �A55

c + 2A55
f �E

iī

11
Fjj̄

00
/a2

+ �A45
c + 2A45

f ��E
iī

01
Fjj̄

10
+ E

iī

10
Fjj̄

01�/�ab��

+ 2 � �Fjj̄
00�KL1�i�− 1��ī�− 1� + KL2�i�1��ī�1��/a

+ E
iī

00�KL3� j�− 1�� j̄�− 1� + KL4� j�1�� j̄�1��/b�

�K12�ijmn = 2 � �A45
c Eim

00Fjn
10/b + A55

c Eim
10Fjn

00/a�

�K13�ijpq = 2 � �A44
c Eip

00Fjq
10/b + A45

c Eip
10Fjq

00/a�

�K14�ijm�n� = 4 � �A45
f Eim�

00 Fjn�
10 /b + A55

f Eim�
10 Fjn�

00 /a�

�K15�ijp q = 4 � �A44
f E00 F10 /b + A45

f E10 F00 /a�
�K22�mnmn = A55
c Emm̄

00 Fnn̄
00 + �4D11

c + 2A11
f � hc

2� � Emm̄
11 Fnn̄

00/a2

+ �4D13
c + 2A13

f � hc
2��Emm̄

01 Fnn̄
10 + Emm̄

10 Fnn̄
01�/�ab�

+ �4D33
c + 2A33

f � hc
2� � Emm̄

00 Fnn̄
11/b2 + 2 � Fnn̄

00

� �KR1�m�− 1��m̄�− 1� + KR2�m�1��m̄�1��/a

�K23�mnpq = A45
c Emp

00 Fnq
00 + �4D13

c + 2A13
f � hc

2�Emp
11 Fnq

00/a2

+ ��4D12
c + 2A12

f � hc
2�Emp

10 Fnq
01 + �4D33

c + 2A33
f � hc

2�

�Emp
01 Fnq

10�/�ab� + �4D23
c + 2A23

f � hc
2�Emp

00 Fnq
11/b2

�K24�mnm�n� = 4hc � �B11
f Emm�

11 Fnn�
00 /a2 + B33

f Emm�
00 Fnn�

11 /b2

+ B13
f �E10 F01 + E01 F10 �/�ab��
mm� nn� mm� nn�
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�K25�mnp�q� = 4hc � �B13
f Emp�

11 Fnq�
00 /a2 + B23

f Emp�
00 Fnq�

11 /b2

+ �B12
f Emp�

10 Fnq�
01 + B33

f Emp�
01 Fnq�

10 �/�ab��

�K33�pqpq = A44
c Epp̄

00Fqq̄
00 + �4D33

c + 2A33
f � hc

2�Epp̄
11Fqq̄

00/a2

+ �4D22
c + 2A22

f � hc
2�Epp̄

00Fqq̄
11/b2 + �4D23

c + 2A23
f � hc

2�

��Epp̄
10Fqq̄

01 + Epp̄
01Fqq̄

10�/�ab� + 2

� Epp̄
00�KR3�q�− 1��q̄�− 1� + KR4�q�1��q̄�1��/b

�K34�pqm�n� = 4hc � �B13
f Epm�

11 Fqn�
00 /a2 + B23

f Epm�
00 Fqn�

11 /b2

+ �B33
f Epm�

10 Fqn�
01 + B12

f Epm�
01 Fqn�

10 �/�ab��

�K35�pqp�q� = 4hc � �B33
f Epp�

11 Fqq�
00 /a2 + B22

f Epp�
00 Fqq�

11 /b2

+ B23
f �Epp�

10 Fqq�
01 + Epp�

01 Fqq�
10 �/�ab��

�K44�m�n�m̄�n̄� = 2 � �A55
f Emm̄�

00 Fnn̄�
00 + 4

� �D11
f Emm̄�

11 Fnn̄�
00 /a2 + D33

f Emm̄�
00 Fnn̄�

11 /b2

+ D13
f �Emm̄�

10 Fnn̄�
01 + Emm̄�

01 Fnn̄�
10 �/�ab�� + 2

� Fn�n̄�
00 �KR1�m��− 1��m̄��− 1�

+ KR2�m��1��m̄��1��/a�

�K45�m�n�p�q� = 2 � �A45
f Em�p�

00 Fn�q�
00 + 4

� �D13
f Em�p�

11 Fn�q�
00 /a2 + D23

f Em�p�
00 Fn�q�

11 /b2

+ �D12
f Em�p�

10 Fn�q�
01 + D33

f Em�p�
01 Fn�q�

10 �/�ab���

�K55�p�q�p̄�q̄� = 2 � �A44
f Ep�p̄�

00 Fq�q̄�
00 + 4

� �D33
f Ep�p̄�

11 Fq�q̄�
00 /a2 + D22

f Ep�p̄�
00 Fq�q̄�

11 /b2

+ D23
f �Ep�p̄�

10 Fq�q̄�
01 + Ep�p̄�

01 Fq�q̄�
10 �/�ab�� + 2

� Epp̄�
00 �KR3�q��− 1��q̄��− 1� + KR4�q��1��q̄��1��/b�

�M11�ijī j̄ = ��chc + 2� fhf�Eiī

00
Fjj̄

00

�M22�mnm̄n̄ = ��chc
3/12 + � fhc

2hf/2�Emm̄
00 Fnn̄

00

�M24�mnm�n� = 2 � � fhchf
2 � Emm�

00 Fnn�
00 /4

�M33�pqpq = ��chc
3/12 + � fhc

2hf/2�Epp̄
00Fqq̄

00

�M35�pqp�q� = 2 � � fhchf
2 � Epp�

00 Fqq�
00 /4

�M44�m�n�m̄�n̄� = 2 � � fhf
3 � Em�m̄�

00 Fnn̄�
00 /3

�M55�p�q�p̄�q̄� = 2 � � fhf
3 � Ep�p̄�

00 Fqq̄�
00 /3

r,s = 0,1;i, j, ī, j̄,i�, j�, ī�, j̄� = 1,2,3, ¯ I,J;

m,n,m̄, n̄,m�,n�,m̄�, n̄� = 1,2,3, ¯ M,N

p,q, p̄, q̄,p�,q�, p̄�, q̄� = 1,2,3, ¯ P,Q �32�
with
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Eim
rs =


−1

1 
dr�i���
d�r

ds�m���
d�s �d�;

Fjn
rs =


−1

1 
dr� j���
d�r

ds�n���
d�s �d� �33�

and the components of in-plane stiffness Aij
c =Aij

�1�, Aij
f =Aij

�2�=Aij
�3�;

bending-stretching coupling stiffness Bij
c =Bij

�1�=0, Bij
f =Bij

�2�

=−Bij
�3�; and bending stiffness Dij

c =Dij
�1�, Dij

f =Dij
�2�=Dij

�3�.
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