US 20100050184A1

asy United States
a2 Patent Application Publication (o) Pub. No.: US 2010/0050184 A1
Lin et al. (43) Pub. Date: Feb. 25, 2010
(54) MULTITASKING PROCESSOR AND TASK (30) Foreign Application Priority Data
SWITCHING METHOD THEREOF
Aug. 21,2008 (TW) v 97131980
(75) Inventors: Tay-Jyi Lin, Kaohsiung County Publication Classification
(TW); Pao-Jui Huang, Changhua
OB Wt T i (1) Imnt.CL
County (TW); Chih-Wei Liu, GOGF 9/46 (2006.01)
Hsinchu City (TW); Shin-Kai
Chen. Kachsiung C TW: GO6F 13/24 (2006.01)
hen, Kachsiung County (TW); GOGF 9/315 (2006.01)
BTang-Shlun Wang, Keelung City GO6F 930 (2006.01)
(TW) (52) US.CL .. 718/107, 712/228; 710/267; 712/E09.034;
712/E09.023
Correspondence Address:
JIANQ CHYUN INTELLECTUAL PROPERTY (57) ABSTRACT
OFFICE N o
7 FLOOR-1, NO. 100, ROOSEVELT ROAD, SEC- A multlt'flskmg processor a.nd a task swnch.mg methodtherf:of
are provided. The task switching method includes following
TION 2 task el
TAIPEI 100 (TV steps. A first task is executed by the multitasking processor,
(TW) wherein the first task contains a plurality of switching-point
) instructions. Aninterrupt event occurs. Accordingly, the mul-
(73) Assignees: INDUSTRIAL TECHNOLOGY titasking processor temporarily stops executing the first task
RESEARCH INSTITUTE, and starts to execute a second task. The multitasking proces-
Hsinchu (TW); NATIONAL sor executes a handling process of the interrupt event and sets
CHIAO TUNG UNIVERSITY,

Hsinchu City (TW)

a switching flag. After finishing the handling process of the
interrupt event, the multitasking processor does not perform
task switching but continues to execute the first task, and the

(21) Appl. No.: 12/354,753 multitasking processor only performs task switching to
execute the second task when it reaches a switching-point
(22) Filed: Jan. 15, 2009 instruction in the first task.
350
AN& Switching flag
]
S B il
Instruction | | i_____# ﬂ: | | r/ |
feching 1> Decoder |1 Fyeeution| | | |Live regiter toble| | |
stage L : 1| stoge | |
S : : Re%lster i : S : Data memory :
| uni |
| | | |
WL w4
R W
320

300

Patent Application Publication Feb. 25,2010 Sheet 1 of 7 US 2010/0050184 A1

<An interrupt >f31o1

event occurs

Preserve registers required JS102
by an interrupt handler

5103
Perform an interrupt handling process va

| Restore the registers preserved | ~S120 | & boh it - ~S10
for the interrupt handler

Continue to 312 Execute a new | ,~S111
execute the task task

FIG. 1 (PRIOR ART)

Patent Application Publication

Feb. 25,2010 Sheet 2 of 7

US 2010/0050184 A1

task switching f""">! Restore registers | First tosk |

T101 [k I02
} Not perform |
| First task ifhtilgprmolﬂnhlémptm
Perform task!

TH

1103

switching > Context switch

Second task |

|
1
|
-1
|

T12

s
1

ey

NN

FIG. 1A (PRIOR ART)

Patent Application Publication Feb. 25,2010 Sheet 3 of 7 US 2010/0050184 A1
™ :

An interrupt

event occurs

Preserve registers required | ,—S210
by an interrupt handler

l

Perform an interrupt handling process

5213
Set a switching flag S

Restore the registers preserved | 9214
for the interrupt handler

Continue to execute | /~ S219
the first task

FIG. 2A

Patent Application Publication

Feb. 25,2010 Sheet 4 of 7

(Execute a switch—point instructiorD

S221

No Switching

flag is already
set

T IeS ————— —

| |
Context : 5922
| Back up registers

| switch |5 e ;Eresegrved ‘ﬁl

5223
Clear the switching flag —/r

Restore the execution
context of the second task |
|

Execute a
first task

Switch to execute | /~ 5229
the second task

FIG. 2B

US 2010/0050184 A1

Patent Application Publication Feb. 25,2010 Sheet 5 of 7 US 2010/0050184 A1

Number of registers to be preserved

|
]
]
} , 204
| |
| I
| |

))

211 212 213 214

N

—

o
L
e

Execution order of the first tas;

FIG. 2C

1201 1202 1203 1204

i i Not perform i i

| | fosk switching ! |

| - e First task |
P ook Tl o e ot el ol Fist (s ¥ St port

| | | | instruction

i —————— i+—————i);g;f—o—"-n--t(;s-k——--->!Context switch| Second task]

| Ty ! switching | Ty |

)
=~ <1 &>
|

FIG. 2D

Patent Application Publication Feb. 25,2010 Sheet 6 of 7 US 2010/0050184 A1

330
AN& Switching flag
]
: 321 : : 342 :
Instruction : i____—% ﬂ: : : ‘/ :
fetching ; > Decoder — ; Execution : Live register table :
stage o . |1 | stage | |
S : I Re%lster i : S : Data memory :
| uni |
0 1L TS) s g Yo
! J | | 34 |
/ 322 340
320

300

FIG. 3

Patent Application Publication Feb. 25,2010 Sheet 7 of 7 US 2010/0050184 A1

343_1
. . . \f -
Live register list 1 3439

e
) Live register list 2 Ia 3433
.~ |Live register list 3

343
Live register st n -/ -

A2

FIG. 3A

US 2010/0050184 A1l

MULTITASKING PROCESSOR AND TASK
SWITCHING METHOD THEREOF

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application claims the priority benefit of Tai-
wan application serialno. 97131980, filed Aug. 21, 2008. The
entirety of the above-mentioned patent application is hereby
incorporated by reference herein and made a part of specifi-
cation.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] The present invention generally relates to a multi-
tasking processor and a task switching method thereof.
[0004] 2. Description of Related Art

[0005] The standards of communications and multimedia
have been constantly updated along with the rapid develop-
ment of technologies. Accordingly, programmable proces-
sors have gradually replaced the conventional application
specific integrated circuits (ASIC) and integrated into differ-
ent embedded systems. In the new generation of communi-
cations and multimedia applications, the calculation com-
plexity of multitasking processors tends to be increased in
order to provide higher quality images with lower bit rate. In
order to meet the requirement of real-time processing (simul-
taneously executing multiple applications and instantly
responding to user’s requests, etc) in these communications
and multimedia applications, the programmable processors
are implemented by adopting the dynamic real-time manage-
ment capability of the operating systems or micro kernels
through time-slicing multitasking.

[0006] In a time-slicing multitasking environment, a pro-
grammable processorhas to switch the operations (or tasks) it
executes frequently. Each time when the programmable pro-
cessor switches tasks, it has to carry out a context switch to
save the state (including information of registers and other
tasks) of the current task into a stack. Presently, the develop-
ment of programmable processors tends to increase the num-
ber of registers and the word length of each register in order to
increase the calculation capability of the programmable pro-
cessors through data-level parallelism (DLP) and the single
instruction multiple data (SIMD) technique.

[0007] The micro kernel adopted by most products in the
market is a preemptive micro kernel for performing the
dynamic real-time management. FIG. 1 is a flowchart illus-
trating a task switching method for a preemptive micro kernel
of a conventional multitasking processor. When an interrupt
event occurs (step S101), the micro kernel controls the mul-
titasking processor to temporarily stop all the tasks. Then, in
step S102, the contents of those registers required by the
interrupt handler are saved (backed up) into a stack. In step
S103, a handling process of the interrupt event is performed,
and the micro kernel controls the multitasking processor to
store stack points and then reschedule all the tasks (including
the currently executed task, tasks in a waiting list, and load-
ing-terminated tasks). In step S104, whether there is any task
having a higher priority than the currently executed task is
determined according to the task rescheduling result. If there
is suchatask, acomplete context switch is performed to allow
the multitasking processor to load the task having the higher
priority first (step S110). Herein the context switch includes
backing up all the execution context of the original task (the

Feb. 25, 2010

contents of the registers) into the stack and then restoring all
the execution context of the new task back into the registers.
The new task can be executed (step S111) after the context
switch is done. If there is no task having a higher priority, the
register contents backed up in step S102 are restored back into
the registers (step S120) to continue executing the originally
executed task (step S121).

[0008] FIG. 1A is a timing diagram of FIG. 1 according to
the conventional technique. The abscissa in FIG. 1A indicates
the time t. In FIG. 1, the preemptive latency time is time T,
and time T ,. Referring to FIG. 1A, the multitasking proces-
sor executes a first task before time T101. After an interrupt
event occurs at time T101, the multitasking processor tempo-
rarily stops executing the first task and performs a handling
process of the interrupt event (including interrupt handling
and task rescheduling) during the period between time T101
and time T102, wherein the task rescheduling reschedules all
the tasks in the waiting list.

[0009] After the tasks are rescheduled (i.e., after time
T102), if the originally executed first task has the highest
priority, the multitasking processor continues to execute the
first task, while if a task (a second task) has a higher priority
than the original task (the first task), the multitasking proces-
sor switches tasks to execute the second task and performs
context switch during the period between time T102 and time
T103. During the context switch, the multitasking processor
backs up the execution context of the first task (contents of all
the registers) into the stack and then loads the execution
context of the second task into the registers. Obviously, the
time required by the context switch is determined according
to the number of registers and the word length of each register.
The current trend for developing programmable multitasking
processor tends to increase the time required by context
switch (i.e., the period between time T102 and time T103). In
FIG. 1A, time T, is a preemption latency time which repre-
sents the duration from the occurrence of the interrupt event
to the complete of the context switch. The multitasking pro-
cessor starts to execute the second task after the context
switch is completed (i.e., at time T103).

[0010] The preemption latency time (T1) is a very impor-
tant factor in a real-time processing system. Ina conventional
preemptive micro kernel, all the registers (including both
used and unused registers), including invalid registers, are
backed up when a context switch is performed.

SUMMARY OF THE INVENTION

[0011] The present invention provides a multitasking pro-
cessor including a processing unit and a switching flag,
wherein the multitasking processor is capable of receiving
two or more task assignments. The processing unit executes
an instruction set containing a switching-point instruction,
wherein the instruction set of the multitasking processor com-
prises a switching-point instruction, and the switching-point
instruction is an interrupt event handling instruction corre-
sponding to the switching flag. The processing unit executes
a first task having at least one switching-point instruction.
When an interrupt event occurs, the processing unit carries
out a handling process of the interrupt event to determine
whether perform task switching and sets the switching flag
according to the determination result. After that, the process-
ing unit continues to execute the first task until it reaches the
switching-point instruction. Then, the processing unit checks
the switching flag.

US 2010/0050184 A1l

[0012] Thepresent invention also provides a task switching
method for a multitasking processor. The task switching
method includes following steps. First, a first task is executed
by the multitasking processor. Herein it is assumed that a
particular event indicates that the multitasking processor
should switch tasks to execute a second task. When this event
occurs, the multitasking processor temporarily stops per-
forming the task switching and continues to execute the first
task. When the multitasking processor reaches a switching-
point instruction in the first task, the multitasking processor
switches the tasks to execute the second task.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The accompanying drawings are included to pro-
vide a further understanding of the invention, and are incor-
porated in and constitute a part of this specification. The
drawings illustrate embodiments of the invention and,
together with the description, serve to explain the principles
of the invention.

[0014] FIG. 1 is a flowchart illustrating a task switching
method for a preemptive micro kernel of a conventional mul-
titasking processor.

[0015] FIG. 1A is a timing diagram of FIG. 1 according to
a conventional technique.

[0016] FIG.2A is a flowchart illustrating an interrupt event
handling process in a task switching method for a multitask-
ing processor according to an embodiment of the present
invention.

[0017] FIG.2Bisaflowchart of atask switching method for
a multitasking processor according to an embodiment of the
present invention.

[0018] FIG.2C is a diagram illustrating the dispositions of
switching-point instructions according to an embodiment of
the present invention.

[0019] FIG. 2D is a timing diagram of a task switching
method for a multitasking processor according to an embodi-
ment of the present invention.

[0020] FIG. 3 is a block diagram of a multitasking proces-
sor according to an embodiment of the present invention.
[0021] FIG. 3A is a diagram of a live register table in FIG.
3 according to an embodiment of the present invention.

DESCRIPTION OF THE EMBODIMENTS

[0022] Reference will now be made in detail to the present
preferred embodiments of the invention, examples of which
are illustrated in the accompanying drawings. Wherever pos-
sible, the same reference numbers are used in the drawings
and the description to refer to the same or like parts.

[0023] As described above, the current design of multitask-
ing processor tends to increase the number of registers and the
word length of each register. Accordingly, when a conven-
tional preemptive micro kernel executes multiple tasks
through time-slicing multitasking, too much time is spent for
backing up all the registers when a task switching is carried
out. Thereby, the present invention provides a multitasking
processor and a task switching method thereof, wherein a
switching-point instruction and a switching flag are adopted.
The following embodiments dispose the switching-point
instructions at positions in a first task which consume less
system resource, the multitasking processor (or the embed-
ded system) can perform task switching (or context switch-
ing) at where less system resource is consumed and accord-
ingly relatively less time is spent on the task switching.

Feb. 25, 2010

[0024] How the multitasking processor in the present
invention switches its tasks when an event (for example, an
interrupt event) occurs will be described with reference to
embodiments of the present invention. The aforementioned
event indicates that the multitasking processor should per-
form a “task switch” to switch from the execution of a first
task to the execution of a second task.

[0025] When the interrupt event occurs, in the present
embodiment, the multitasking processor temporarily stops
performing the task switching and continues to execute the
current task (the first task). The multitasking processor only
switches the tasks to execute a new task (the second task)
when it reaches a switching point in the first task. The switch-
ing point may be a point in the first task which consumes less
system resource when the task switching is performed (e.g.,
less registers are to be preserved). In addition, the switching
point may also be a task switching point in the first task which
is set for meeting real-time requirements. The switching point
can be implemented or inserted through any method by those
having ordinary knowledge in the art. For example, a switch-
ing-point instruction may be disposed at a position in the first
task which consumes less system resource for the task switch-
ing to mark the position of the switching point and trigger the
“task switch” of the multitasking processor. When the multi-
tasking processor reaches the switching point in the first task
and needs to switch the tasks, less registers are to be preserved
for backing up the switched context. Thus, in the embodi-
ment, the time and power consumed for switching tasks can
be reduced, and the hardware cost (for example, the capacity
of the stack) for the multitasking processor to switch between
multiple tasks can be reduced.

[0026] It should be noted that in the present embodiment
and following embodiments of the present invention, the
event (or the interrupt event) which can trigger the “task
switch” can be any type of event. For example, the event may
be a software interrupt event or a hardware interrupt event
occurring inside or outside the multitasking processor. Or, the
event may also be a timer event occurring periodically. Below,
another embodiment of the present invention will be
described in detail to explain how the event in the present
embodiment is implemented.

[0027] FIG.2A s a flowchart illustrating an interrupt event
handling process in a task switching method for a multitask-
ing processor according to an embodiment of the present
invention. FIG. 2B is a flowchart of a task switching method
for a multitasking processor according to an embodiment of
the present invention. FIG. 2C is a diagram illustrating the
dispositions of switching-point instructions according to an
embodiment of the present invention. FIG. 2D is a timing
diagram of a task switching method for a multitasking pro-
cessor according to an embodiment of the present invention.
The abscissa in FIG. 2D indicates the time t.

[0028] Referring to FIG. 2D, the multitasking processor
loads and executes a first task before time T201, wherein the
first task contains at least one switching-point instruction.
The multitasking processor continues to execute the first task
if no interrupt event occurs and no switching-point instruction
is executed. Referring to both FIG. 2A and FIG. 2D, assuming
an interrupt event occurs at time T201 when the first task is
executed, the multitasking processor temporarily stops
executing the first task and backs up the contents of some
registers required by a handling process of the interrupt event
(step S210). Next, the handling process of the interrupt event
is performed (step S211) and all the tasks (including the

US 2010/0050184 A1l

currently executed task, tasks in a waiting list, and the task
triggering the interrupt event) are rescheduled.

[0029] If the result of the task rescheduling operation indi-
cates that the first task has the highest priority (step S212) to
be executed, step S214 is directly executed to restore the
registers preserved for the handling process of the interrupt
event without setting the switching flag. Next, the multitask-
ing processor continues to execute the first task after time
T202 (step S215). Contrarily, if the result of the task resched-
uling operation indicates that the first task does not have the
highest priority (step S212), which means there is a task
having higher priority (here the task having the highest pri-
ority is assumed to be a second task), the multitasking pro-
cessor sets the switching flag (step S213) after step S212 is
executed. Thereafter, the registers preserved for the handling
process of the interrupt event are restored at time T202 (step
S214). After that, assuming that no interrupt event occurs and
no switching-point instruction in the first task is executed
before time T203, the multitasking processor does not per-
form the task switching and continues to execute the first task
(step S215) until it reaches a switching-point instruction in
the first task (i.e., at time T203 in FIG. 2D).

[0030] Referring to FIG. 2B and FIG. 2D, when the multi-
tasking processor executes the switching-point instruction,
the multitasking processor determines whether the context
switching (task switching) is performed or not according to
the switching flag in step S221. If the multitasking processor
does not perform step S213, namely, the switching flag is not
set, the multitasking processor continues to execute the first
task (step S215). Contrarily, if the multitasking processor has
set the switching flag in step S213, the multitasking processor
performs a context switch after step S221 and then starts to
execute the second task. In other words, when the multitask-
ing processor reaches the switching-point instruction, if the
result of the task rescheduling in the handling process of the
interrupt event indicates that the multitasking processor needs
to perform task switching, the multitasking processor
executes the second task after it performs the context switch.
In the present embodiment, the context switch includes steps
S222, 8223, and S224. In step S222, the multitasking proces-
sor records a stack point and stores the execution context of
the first task into the stack to backup the task execution
context. After the backup, the multitasking processor clears
the switching flag (step S223) and then loads the execution
context of the second task (step S224). The multitasking
processor completes the context switch after foregoing opera-
tions, and after time T204, the multitasking processor starts to
execute the second task (step S225). Meanwhile, the first task
is suspended until the next interrupt event occurs or the sec-
ond task is ended.

[0031] The switching-point instruction in the first task may
be located at a position which consumes less system resource,
namely, the position requires less registers to be preserved
when the multitasking processor performs the task switching.
Referring to FIG. 2C, the abscissa indicates the execution
order of the first task, and the ordinate indicates the number of
registers to be preserved when the multitasking processor
performs task switching. Generally speaking, the curve in
FIG. 2C can be obtained through state analysis by using a
programming language compiler. Before disposing switch-
ing-point instructions, the program designer can perform
static analysis to the program code 210 of the first task by
using the compiler so as to obtain the usage of registers by the
program code. The registers which will be used are the reg-

Feb. 25, 2010

isters to be preserved when the multitasking processor per-
forms task switching. Next, the compiler can dispose the
switching-point instructions at positions in the program code
which require the least registers to be preserved (for example,
dispose the switching-point instruction 214 at the position
204) according to the result of the static analysis and tests
whether the requirement of preemption latency time is met. If
the requirement of the preemption latency time is not met, the
compiler loosens the limit on the usage of system resources
and further analyzes a target section in the program code
which contains insufficient switching-point instructions.
Then, the compiler disposes the switching-point instruction
atanoptimal substitute point in the target section, wherein the
optimal substitute point is the place in the target section which
requires the least registers to be preserved when the multi-
tasking processor switches tasks. As shown in FIG. 2C, the
switching-point instructions 211, 212, and 213 are respec-
tively disposed at the positions 201, 202, and 203. Foregoing
operations are repeated until the preemption latency time
between adjacent two switching-point instructions in the pro-
gram code of the first task won’t be too long. In order to avoid
disposing too many switching-point instructions in the pro-
gram code and accordingly reducing the performance of the
first task, eventually the program code is analyzed, and two
switching-point instructions having a too short preemption
latency time are combined to ensure that there won’t be too
many switching-point instructions in the compiled first task
and the switching-point instructions 211~214 are respec-
tively disposed at the positions 201~204 in the target section
which require the least number of registers to be preserved.

[0032] The switching-point instruction disposition method
described above is the first disposition method. Besides, a
second switching-point instruction disposition method will
be described below. In this second method, first, a switching-
point instruction is respectively disposed at the end of each
sub program (sub task) in the first task. Because only the
operation result of a sub program is kept to be sent to a main
program or a next sub program when the sub program is
ended, the least number of registers (i.e., system resources)
are to be preserved. Next, whether the dispositions of two
switching-point instructions meet the restriction in the pre-
emption latency time is tested, and additional switching-point
instructions are disposed at optimal substitute points accord-
ing to the testing result. The testing method used here is the
same as that in foregoing disposition method therefore will
not be described herein.

[0033] However, the end of a sub program may not require
the least number of registers to be preserved. Thus, foregoing
method can be altered to meet the restriction on the preemp-
tion latency time. The third method for disposing switching-
point instructions is to perform static analysis to each sub
program and dispose the switching-point instruction at a posi-
tion which requires the least number of registers to be pre-
served, wherein the position may not be at the end of the sub
program. Then, a latency time test is performed to the entire
program to determine whether the disposed positions of the
switching-point instructions and the density thereof meet the
restriction on the latency time. If the disposed positions of the
switching-point instructions and the density thereof do not
meet the restriction on latency time, switching-point instruc-
tions are further disposed through the method described
above. In another embodiment of the present invention, the
switching-point instructions may also be disposed through a
combined method of foregoing first, second, and third meth-

US 2010/0050184 A1l

ods or other suitable methods. For example, the switching-
point instructions may also be task switching points disposed
in the first task for meeting real-time requirements.

[0034] As described above in foregoing embodiments, ifan
interrupt event occurs when a multitasking processor pro-
vided by the present invention executes a first task, the mul-
titasking processor pauses the execution of the first task and
executes a handling process of the interrupt event. Thereby,
the fast processing capability of interrupt event is kept in the
present invention.

[0035] As described in foregoing embodiments, because
the switching-point instructions are disposed at positions in
the first task which consume less system resource, the multi-
tasking processor provided by the present invention can per-
form task switching at where less system resource is con-
sumed and accordingly relatively less time is spent on the task
switching.

[0036] FIG. 3 is a block diagram of a multitasking proces-
sor 300 according to an embodiment of the present invention.
Referring to FIG. 3, the multitasking processor 300 includes
a processing unit and a switching flag 350. The processing
unit executes an instruction set containing a switching-point
instruction, wherein the switching-point instruction is a spe-
cific processor instruction. The processing unit executes a
first task having at least one switching-point instruction cor-
responding to interrupt event handling. When an interrupt
event occurs, the processing unit performs a handling process
of the interrupt event to determine whether a task switching is
to be performed and sets the switching flag according to the
determination result. After that, the processing unit continues
10 execute the first task until it reaches the switching-point
instruction in the first task. Then the processing unit checks
the switching flag. If the switching flag indicates that the
processing unit determines to perform the task switching
when the processing unit performs the handling process of the
interrupt event, the processing unit switches the tasks to
execute the second task. If the switching flag indicates that the
processing unit determines not to perform the task switching
when the processing unit performs the handling process of the
interrupt event, the processing unit continues to execute the
first task.

[0037] The processing unit can be implemented through
any method by those skilled in the art. For example, the
processing unit in FIG. 3 includes an instruction fetching
stage 310, an instruction decoding stage 320, an execution
stage 330, a data access stage 340, and an AND gate AND1.
To simply the figure, not all the components or signal paths
(for example, control/set signal path) are illustrated in FIG. 3.
The instruction fetching stage 310 sequentially obtains
instructions from the program code of a task and sends the
instructions to the instruction decoding stage 320 to be
decoded. After that, the decoded instructions are sent to the
execution stage 330 to be executed.

[0038] The instruction decoding stage 320 includes a
decoder 321 and a register unit 322. The decoder 321 decodes
the instructions to allow the execution stage 330 to operate
according to the instructions. According to the decoding
result of the decoder 321, the operands are sent from the
register unit 322 to the execution stage 330 to be calculated.
After that, the execution stage 330 writes the calculation
result back to the register unit 322 or back into a data memory
341 through the data access stage 340 according to the decod-
ing result of the decoder 321.

Feb. 25, 2010

[0039] In the present embodiment, first, the instruction
fetching stage 310 sequentially obtain each instruction in the
program code of the first task, wherein a plurality of switch-
ing-point instructions have been disposed in the program
code of the first task, and the method for disposing these
switching-point instructions can be referred to FIG. 2C and
the related description thereof therefore will not be described
herein. The instruction obtained by the instruction fetching
stage 310 is decoded by the decoder 321 and then sent to the
execution stage 330 to be executed.

[0040] Inthepresentembodiment, the multitasking proces-
sor has to back up different execution context when the mul-
titasking processor performs task switching at each switching
point in the first task. In the present embodiment, an exclusive
live register list is established corresponding to each switch-
ing-point instruction for recording the registers to be backed
up when the multitasking processor switches tasks. Each
switching-point instruction contains an address, and this
address points to the live register list corresponding to the
switching-point instruction. All the live register lists are
recorded in a live register table 342.

[0041] In the present embodiment, the live register table
342 is disposed in the data memory 341. The live register table
342 can be implemented through any method by those skilled
in the art. FIG. 3A is a diagram of the live register table 342
according to an embodiment of the present invention. Refer-
ring to FIG. 3A, because the execution context to be preserved
at each switching point is different, a plurality of live register
lists 343 (for example, the live register lists 343_1~343_»in
FIG. 3A) has to be established for recording the information
of registers to be preserved for each switching-point instruc-
tion. For example, in FIG. 2C, the information of registers to
be preserved for the switching-point instruction 211 is
recorded in the live register list 343_1 in FIG. 3A, the infor-
mation of registers to be preserved for the switching-point
instruction 212 is recorded in the live register list 342_2 in
FIG. 3A, and so on. Taking the live register list 343_3 as an
example, the live register list 343_3 records the registers to be
backed up (0 means not to be recorded and 1 to be recorded)
when the multitasking processor performs task switching and
the switching-point instruction 213 is reached (i.e., at the
position 203 in FIG. 2C). For example, if the content of the
live register list 343_3 is “011 .. .”, which means the content
ofthe register R0 in the register unit 320 is not to be stored, the
content of the register R1 is to be stored, the content of the
register R2 is to be stored, and so on. As shown in FIG. 34, all
the live register lists 343_1~343_ » are recorded in the live
register table 342, wherein the width m (i.e., the number of
registers in the system) and the length n (i.e., the number of
switching-point instructions) of the live register table 342 can
be determined according to the system environment and the
actual design.

[0042] Asdescribedabove, referring to FIG. 3 and F1G. 3A,
the instruction fetching stage 310 sequentially obtains
instructions in the program code of the first task and sends the
instructions to the decoder 321 to be decoded. When the
execution stage 330 receives a decoded instruction, the
execution stage 330 performs different operation according to
the instruction. The register unit 322 includes a plurality of
registers for recording the execution context of the multitask-
ing processor 300. As described in foregoing embodiment, if
an interrupt event occurs at time T201 when the multitasking
processor 300 executes the first task (in the present embodi-
ment, the interrupt event is occurred for triggering a second

US 2010/0050184 A1l

task), the execution stage 330 executes a handling process of
the interrupt event. In the handling process of the interrupt
event, the execution stage 330 temporarily stops the execu-
tion of the first task and backs up data in some registers in the
register unit 322 into the stack (or the data memory 341) to
preserve the registers required by the handling process of the
interrupt event. Then, the execution stage 330 reschedules all
the tasks (step S211). Foregoing handling process of the
interrupt event and the task rescheduling process can be
implemented through any technique by those skilled in the
art. For example, the interrupt handling process and the task
rescheduling process can be implemented through conven-
tional techniques.

[0043] After the task rescheduling is performed, the multi-
tasking processor 300 checks whether the first task has the
highest priority (step S212). If the first task does not have the
highest priority, the multitasking processor 300 sets the
switching flag 350 (step S213); otherwise, if the first task has
the highest priority, the multitasking processor 300 resets or
clears the switching flag 350. Foregoing process can be
referred to FIG. 2A and the related description thereof. Fore-
going steps S211, S212, and S213 can be executed by the
instruction decoding stage 320, the execution stage 330, or
other control circuits (not shown) in the multitasking proces-
sor 300.

[0044] Regardless of whether the switching flag is set, the
multitasking processor restores the registers preserved for the
interrupt handling process (step S214) after the execution
stage 330 completes the task rescheduling. After the data is
recovered in the register unit 322, the execution stage 330
continues to execute the first task. In other words, after the
handling process of the interrupt event is completed, the
multitasking processor 300 does not perform task switching
but continues to execute the first task until it reaches a switch-
ing-point instruction in the first task.

[0045] When the instruction fetching stage 310 sends the
switching-point instruction in the first task to the decoder 321
(i.e., at time T203 in FIG. 2D), the decoder 321 issues a task
switching signal to the AND gate ANDI. Ifthe switching flag
3501s not set yet (i.e., the switching flag 350 is logic “0”), the
task switching signal issued by the decoder 321 is blocked by
the AND gate AND1 therefore cannot reach the instruction
fetching stage 310. If the switching flag 350 is already set
(i.e., the switching flag 350 is logic “17), the task switching
signal issued by the decoder 321 reaches the instruction fetch-
ing stage 310 through the AND gate ANDI. Then, the instruc-
tion fetching stage 310 determines whether to obtain the next
instruction from the program code of the first task or obtain a
task switching program instruction to execute the second task
according to the task switching signal.

[0046] Thus, when the instruction decoding stage 320
executes the switching-point instruction, the multitasking
processor 300 continues to execute the first task if the switch-
ing flag 350 is not set. Contrarily, when the instruction decod-
ing stage 320 executes the switching-point instruction, the
multitasking processor 300 performs context switch (during
the period between time T203 and time T204 in FIG. 2D) to
execute the second task if the switching flag 350 is already set.
During the context switch, the multitasking processor 300
finds the live register list corresponding to the switching-
point instruction (here it is assumed to be the live register list
343_3) from the live register table 342 according to the cur-
rently executed switching-point instruction. The multitasking
processor 300 backs up the live registers in the register unit

Feb. 25, 2010

322 according to the content of the live register list corre-
sponding to the switching-point instruction and stores the
content of these registers into the stack (or the data memory
341). Accordingly, the execution context of the first task in the
multitasking processor 300 at time T203 can be backed up
(step S222). After that, the multitasking processor 300 clears
the switching flag (step S223) and then loads the execution
context of the second task (step S224), so as to complete the
task switching. Foregoing steps S222, S223, S224, and other
operations can be accomplished by the instruction decoding
stage 320, the execution stage 330, or other control circuits
(not shown) in the multitasking processor 300, and different
designs may be adopted according to different requirements.
[0047] After the task switching is completed, the instruc-
tion fetching stage 310 starts to obtain instructions sequen-
tially from the program code of the second task so that the
multitasking processor 300 can start to execute the second
task. This process can be referred to FIG. 2B and the related
description thereof therefore will not be described herein.
[0048] In the embodiment described above, after the mul-
titasking processor completes the handling process of an
interrupt event, the multitasking processor does not perform
any task switching but continues to execute the first task until
it reaches a switching-point instruction in the first task. Since
all the switching-point instructions are disposed at positions
in the first task which consume less system resource (i.e., less
registers are to be preserved), when the multitasking proces-
sor reaches the switching-point instruction in the first task and
needs to switch the tasks, less registers are to be preserved for
backing up the switched context. Even though the perfor-
mance of the system is slightly affected by disposing the
switching-point instructions, the execution time of the entire
program won’t be affected too much. Thus, in the present
embodiment, the time and power consumed for switching
tasks can be reduced, and the hardware cost (for example, the
capacity of the stack) for the multitasking processor to switch
between multiple tasks can be reduced.
[0049] It should be noted that the switching flag mentioned
in foregoing embodiments can be built in the register unit or
additionally set in the multitasking processor. Herein the
meaning of “built in the register unit” is that in the present
invention, the switching flag may also be accomplished by
using the registers and memory space not used by the multi-
tasking processor. Moreover, even though in the embodiment
described above, the live register list required by each switch-
ing-point instruction is placed in the live register table 342,
the implementation thereof is not limited thereto. For
example, in another embodiment of the present invention, the
live register lists may be encoded into the corresponding
switching-point instructions so that the live register lists can
be obtained by the instruction fetching stage 310 along with
the switching-point instructions and accordingly itis not nec-
essary to obtain the live register list 343 from the data memory
341 additionally.
[0050] It will be apparent to those skilled in the art that
various modifications and variations can be made to the struc-
ture of the present invention without departing from the scope
or spirit of the invention. In view of the foregoing, it is
intended that the present invention cover modifications and
variations of this invention provided they fall within the scope
of the following claims and their equivalents.

What is claimed is:

1. A multitasking processor, capable of receiving two or
more task assignments, the multitasking processor compris-
ing:

US 2010/0050184 A1l

a switching flag; and

aprocessing unit, for executing a task formed by an instruc-
tion set of the multitasking processor, wherein the
instruction set of the multitasking processor comprises a
switching-point instruction, and the switching-point
instruction is an interrupt event handling instruction cor-
responding to the switching flag;

wherein the processing unit executes a first task having at

least one of the switching-point instruction; when an
interrupt event occurs, the processing unit performs a
handling process of the interrupt event and determines
whether to perform a task switching, and the processing
unit sets the switching flag according to the determina-
tion result and then continues to execute the first task
until the processing unit reaches the switching-point
instruction in the first task; and the processing unit deter-
mines whether the task switching is performed or not
according to the switching flag when the processing unit
executes the switching-point instruction.

2. The multitasking processor according to claim 1,
wherein if the switching flag is already set, 1.e. the processing
unit determines to perform the task switching when the han-
dling process of the interrupt event is performed, the process-
ing unit performs the task switching to execute a second task
when the processing unit executes the switching-point
instruction; and if the switching flag is not set, i.e. the pro-
cessing unit determines not to perform the task switching
when the handling process of the interrupt event is performed,
the processing unit continuing to execute the first task when
the processing unit executes the switching-point instruction.

3. The multitasking processor according to claim 2 further
comprising:

alive register list, for identifying live registers correspond-

ing to the switching-point instruction, wherein the live
registers are registers to be backed up when the process-
ing unit reaches the switching-point instruction and per-
forms the task switching; and

a live register table, comprising the live register lists cor-

responding to the switching-point instructions in the first
task.

4. The multitasking processor according to claim 3,
wherein the switching-point instruction comprises an address
pointing to the live register list corresponding to the switch-
ing-point instruction; if the processing unit reaches the
switching-point instruction and the switching flag is already
set, the processing unit performs the task switching to execute
the second task, wherein the task switching comprises storing
all live registers according to the live register list correspond-
ing to the switching-point instruction.

5. The multitasking processor according to claim 4,
wherein the live register list and the live register table are
stored in a data memory.

6. The multitasking processor according to claim 4,
wherein the handling process of the interrupt event performed
by the processing unit comprises a task rescheduling; wherein
if the result of the task rescheduling indicates that the pro-
cessing unit needs to switch tasks, the processing unit sets the
switching flag; and if the result of the task rescheduling indi-
cates that the processing unit does not need to switch tasks,
the processing unit resets or clears the switching flag.

7. The multitasking processor according to claim 6,
wherein the task rescheduling comprises comparing priorities
of the first task and the second task.

Feb. 25, 2010

8. The multitasking processor according to claim 1,
wherein the interrupt event comprises a software interrupt
event or a hardware interrupt event occurring inside or outside
the multitasking processor.

9. The multitasking processor according to claim 1,
wherein the interrupt event comprises a timer event occurring
periodically.

10. The multitasking processor according to claim 1,
wherein the switching-point instruction is located at the end
of a sub task in the first task.

11. The multitasking processor according to claim 1,
wherein the switching-point instruction is located at a posi-
tion in the first task which consumes less system resource for
the task switching.

12. The multitasking processor according to claim 1,
wherein the switching-point instruction is located at a task
switching point set for meeting real-time requirements in the
first task.

13. A task switching method for a multitasking processor,
comprising;

executing a first task by using the multitasking processor,

wherein the first task comprises at least one switching
point;

if an interrupt event occurs, continuing to execute the first

task by using the multitasking processor after perform-
ing a handling process of the interrupt event, so as to
determine whether to perform a task switching;

if the result of the handling process of the interrupt event

indicates that the multitasking processor needs to per-
form the task switching, performing the task switching
to execute a second task by using the multitasking pro-
cessor when the multitasking processor reaches the
switching point in the first task; and

if the result of the handling process of the interrupt event

indicates that the multitasking processor does not need
to perform the task switching, continuing to execute the
first task by using the multitasking processor when the
multitasking processor reaches the switching point in
the first task.

14. The task switch method according to claim 13, wherein
the handling process of the interrupt event comprises:

performing a task rescheduling; and

determining whether to perform the task switching accord-

ing to a result of the task rescheduling.

15. The task switch method according to claim 14, wherein
the task rescheduling comprises conparing priorities of the
first task and the second task.

16. The task switch method according to claim 13, wherein
the interrupt event comprises a software interrupt event or a
hardware interrupt event occurring inside or outside the mul-
titasking processor.

17. The task switch method according to claim 13, wherein
the interrupt event comprises a timer event occurring periodi-
cally.

18. The task switch method according to claim 13, wherein
the switching point is located at the end of a sub task in the
first task.

19. The task switch method according to claim 13, wherein
the switching point is located at a position in the first task
which consumes less system resource for the task switching.

20. The task switch method according to claim 13, wherein
the switching point is located at a task switching point set for
meeting real-time requirements in the first task.

US 2010/0050184 A1l

21. A task switching method for a multitasking processor,
comprising:
executing a first task by using a multitasking processor;
an event occurring, wherein the event indicates that the
multitasking processor needs to perform a task switch-
ing to switch from the first task to a second task; and
temporarily postponing the task switching and continuing
to execute the first task by using the multitasking pro-
cessor, and performing the task switching to execute the
second task by using the multitasking processor when
the multitasking processor reaches a switching point in
the first task.
22. The task switch method according to claim 21, wherein
the event is a software interrupt event or a hardware interrupt
event occurring inside or outside the multitasking processor.

Feb. 25, 2010

23. The task switch method according to claim 21, wherein
the event is a timer event occurring periodically.

24. The task switch method according to claim 21, wherein
the switching point is located at the end of a sub task in the
first task.

25. The task switch method according to claim 21, wherein
the switching point is located at a position in the first task
which consumes less system resource for the task switching.

26. The task switch method according to claim 21, wherein
the switching point is located a task switching point set for
meeting real-time requirements in the first task.

L I T

