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METHOD FOR MAKING VERY LOW VT
METAL-GATE/HIGH-K CMOSFETS USING
SELF-ALIGNED LOW TEMPERATURE
SHALLOW JUNCTIONS

BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] The invention relates to a method for making very
low threshold voltage (V,) metal-gate/high-x CMOSFETs.
More particularly, the invention relates to a method for mak-
ing very Low V, [Ir—HIf]/HfLaO CMOS using self-aligned
low temperature shallow junctions with gate-first process
compatible with VLSI fabrication process.

[0003] 2. Description of the Related Art

[0004] The undesired high V, at small equivalent-oxide
thickness (EOT) is the major technology challenge for metal-
gate/high-k CMOSFETs, while the detailed mechanisms are
still not clear yet [1]*-[6]* (please refer to table 1 for detail
prior arts [1]*-[6]* listed in Summary of the Invention). One
method to address this issue is to compensate the high V, by
using proper dual metal-gates, which have an effective work-
function (¢, ) lower than the target 4.1 eV for n-MOS, and
higher than the needed 5.2 eV for p-MOS. Although low-
temperature-formed fully-silicidation (FUSI) of Lanthanide-
silicide (Yb,S1) [2]* and TaC gates work well for n-MOS, the
choice of an appropriate metal gate for p-MOS is especially
difficult. This is because only Pt and Ir in the Periodic Table
have a required work-function greater than the target 5.2 eV
[2]*, but Pt is difficult to be etched by RIE. Previously. it is
showed that Ir;S/HfLaON p-MOS [1]* has the needed high
9o 0f 5.08 €V and low V, of ~0.1 V at 1.6 nm EOT, even
afterion implant activation ofa 1000° C. RTA. Unfortunately,
further scaling EOT to 1.2 nm, reduces flat-band voltage (V)
of these devices to produce an undesirable high V,. Since this
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approach was not successful, a fundamental understanding of
the high V, and V, roll-off is necessary, when BOT is scaled.

SUMMARY OF THE INVENTION

[0005] To overcome the drawbacks of the prior arts, this
invention proposes a method to overcome these prior art’s
challenges. In this invention, at small 1.2 nm EOT, the self-
aligned and gate-first [I—H{]/HfLaO p- and n-MOS showed
ptoper 9, ,,0f 5.3 and 4.1 eV, low V, of +0.05 and 0.03 V,
together with high mobility of 90 and 243 ¢cm?/Vs and good
85° C. reliability of small bias-temperature-instability (BTT).
This good device performance was achieved by using a low-
temperature (<900° C.) ultra-shallow junction (USJ) process,
which lowers the interface reaction exponentially compared
with a conventional 1000° C. RTA needed for ion-implanta-
tion dopant activation. The process temperature can even
decrease to 650° C. for n-MOSFET using Ni/Sb SPD, where
good device performances of low V, 0f 0.14 V and mobility of
209 cm?/Vs are still obtained. Besides, the measured USJ
depth (X ) was only 9.5~20 nm for p*/n case. The X;, for n*/p
was 23~35 nm, better than that fora 1 keV As* implant [7]*
at the same sheet resistance (R,). This is due to a reduction of
defect-assisted diffusion arising from ion implant damage.
These results compare well with previous work [1]*-[6]*, and
display a lower V, and smaller EOT, with a self-aligned USJ
and gate-first process that is compatible with VLSI. This
method included depositing Hf.aO using PVD [1]#, a post-
deposition anneal, and TaN/Ir and TaN/Hf deposition. After
gate patterning, self-aligned 5 nm Ga or 10-nm-Ni/5-nm-Ga
(with top 100 nm SiO, capping layer) was deposited for
p-MOS, followed by 550~900° C. RTA solid-phase diffusion
(SPD). For n-MOS, self-aligned H;PO,, was spun deposited,
transformed to P,O at 200° C. and SPD at 850~900° C. RTA.
Such wet Hy,PO, spray and doping processes are used for
commercial Si solar cell manufacture. Alternatively, the
source-drain contact for n-MOS can be formed by 10-nm-Ni/
5-nm-Sb SPD at lower temperature of 600~700° C. RTA.
Finally, source-drain metal contacts were added. For com-
parison, [Ir;Si—Hf Si]/HfLaON CMOS using B* and As*
implant and 1000° C. RTA were also fabricated.

TABLE 1

Comparison of device integrity data for various metal-gate/high-k n-

and p-MOSFETs. Both this invention and Prior Arts are listed.

Mobility
Metal-Gate EOT @,.p(eV)  V.(V) Process (cm?/Vs)
High-k pn nm pn p/n Temp. p/n
This I/Hf 1.2 5.3/4.1  +0.05/0.03 <900° C. 90/243
invention SPD
HfLaO
This —/Hf 1.3 —/0.14 650° C. SPD —/209
invention
HfLaO
This Ir, SYHE,Si 1.2 5.0/43  -0.25/0,19 1000° C, 86/214
invention
HfLaON
HLaON [1]*  Ir;SUTaN 1.6 5.084.28 -0.1/0.18 1000° C. 84/217
HfAION [2]*  Ir,SV/Yb,Si 1.7 4.9/415 -0.29/0.1 950° C./FUSI 80/180
HfTaO [3]* —/TaN 1.6 —i4.6 —/— 1000° C. —/354
HfSION [4]*  Nia;Sip/ 1.5 ~4.8~45 -04/0.5 FUSI ~70/~240
Nisi
HISION[5]*  NiSiGe/— 1.3 —— -0.5/— FUSI 70/—
HfSION[6]*  NizSi/NiSi, 1.7 4.8/44  -0.69/0.47 FUSI 65/230

*Detail of Prior Arts: (wherein [7] will be addressed in the Detailed Description of the pre-
ferred Embodiment)
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BRIEF DESCRIPTION OF THE DRAWINGS

[0013] FIG. 1. C-V of metal-gate/HfLaON CMOS after
1000° C. RTA. The IV roll-off with EOT scaling indicates
the importance of the interface.

[0014] FIG. 2. The IV, increase can arise from top and
bottom interface. The charged oxide vacancies in non-sto-
ichiometric SiO, and HfO,_ can modify V4, andincrease [V, |.
[0015] FIG. 3. R, of Ga and Ni/Ga, formed by Solid Phase
Diffusion (SPD), as a function of RTA temperature.

[0016] FIG.4.J-Vofp*/njunction formed by SiO,/Ga SPD
at 900° C. RTA, and a control B* implantation at a 1000° C.
RTA.

[0017] FIG. 5.]-V of p*/n junction for SiO,/Ni/Ga SPD at
550~850° C. RTA. Leakage and n factors were comparable
with the Ga 900° C. SPD but formed at a lower temperature.
[0018] FIG. 6. SIMS profile of Ga and Ni/Ga-silicide, with
ultra shallow junctions of 9.5 or 20 nm at SPD of 900° C. or
700° C. RTA. The X, is defined at 10" em™ in [7].

[0019] FIG. 7. Variation R, of HyPO, spin SPD and As*
implant with RTA condition. Data for the 1 keV As* implant
and 1020° C. RTA are from [7].
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[0020] FIG. 8. J-V of n*/p junctions made by H,PO, spin
SPD at850and 875° C. RTA. The leakage and n are similar to
those for the As* implant and 1000° C. RTA case.

[0021] FIG. 9. Phosphorus SIMS profile for H,PO, spin
SPD,with X, 0£23 and 35 nm, for 850 and 875° C. RTAs. The
X, data from [7] are included for comparison.

[0022] FIG. 10. R, Ni/Ga, formed by SPD, as a function of
RTA temperature.

[0023] FIG.11.]J-V of n*/p junction formed by SiO,/Ni/Sb
SPD as a function of RTA temperature.

[0024] FIG. 12. Grazing incident XRD spectra of HfLaO
after 600° C. and 900° C. 30 sec RTA. Amorphous structure
w/o crystallization is still preserved and is important for BTI.
[0025] FIG. 13. C-V of HfLaO p-MOS with TaN/Ir and
TaN gates, after 850 and 900° C. RTAs. V;, is 0.7 V higher
than for Ir,Si/H{LaON after a 1000° C. RTA (FIG. 1).
[0026] FIG. 14. J-V of HfLaO p-MOS with TaN/Ir gate
after 850° C. or 1000° C. RTA. Low leakage current occurs
for a 850° C. RTA but fails at 1000° C. because of metal
diffusion.

[0027] FIG. 15. C-V of HfLaO n-MOS with TaN/Hf and
TaN gates after 875 and 900° C. RTAs. Data from a quantum-
mechanical C-V simulation are included.

[0028] FIG. 16. J-V of HfLaO n-MOS with TaN/Hf and
TaN gates, after 875 and 900° C. RTAs.

[0029] FIG. 17. C-V of HfLaO n-MOS with TaN/Hf gate
using SiO,/Ni/Sb SPD.

[0030] FIG. 18. J-V of HfLaO n-MOS with TaN/Hf gate
using Si0,/Ni/Sh SPD.

[0031] FIG. 19. Gate leakage current density for HfL.aO at
1.2 nm EOT, compared with SiO,and HfLaON [1].

[0032] FIG.20.V,-EOT for Ir, TaN and Hf gates. Effective
work-functions are 5.3, 4.3 and 4.1 eV.

[0033] FIG. 21.1,-V, of self-aligned and gate-first p- and
n-MOSFETs.

[0034] FIG. 22. 1,-V, of self-aligned & gate-first p- and
n-MOSFETs, compared with dual gated [Ir,Si—Hf Si)/
HfLaON CMOS (1000° C. RTA).

[0035] FIG. 23. Hole and electron mobility of self-aligned
gate-first CMOSFETs compared with [Ir;Si—Hf Si]/
HfLaON CMOS (1000° C. RTA).

[0036] FIG.24.1,-V of self-aligned and gate-first TaN/Hf/
HfL.aO n-MOSFET using SiO,/Ni/Sb SPD.

[0037] FIG.25.1,-V, of self-aligned and gate-first TaN/H{/
HfLaO n-MOSFET using SiO,/Ni/Sb SPD.

[0038] FIG. 26. Electron mobility of self-aligned and gate-
first TaN/Hf/HfLaO n-MOSFET using SiO,/Ni/Sb SPD.
[0039] FIG. 27. The AV, shift for dval-gated HfLaO
CMOSFETs stressed at 85° C. and 10 MV/cm for 1 hour.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

[0040] For the best understanding of this invention, please
refer to the following detailed description of the preferred
embodiments and the accompanying drawings.

[0041] This invention proposes a method for making very
low V, metal-gate/high-k CMOSFETs using self-aligned low
temperature shallow junctions. The metal-gate/high-x
CMOSFETs process included depositing high-k HfLaO
using PVD [1]*, a post-deposition anneal, and TaN/Ir and
TaN/Hf deposition. After gate patterning, self-aligned 5 nm
Ga or 10-nm-Ni/5-nm-Ga (with top 100 nm SiO, capping
layer) was deposited for p-MOS, followed by 550~900° C.
RTA solid-phase diffusion (SPD). For n-MOS, self-aligned
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H,PO, was spun deposited, transformed to P,O5 at 200° C.
and SPD at 850~900° C. RTA. Such wet H;PO, spray and
doping processes are used for commercial Si solar cell manu-
facture. Alternatively, similar to p-MOS case, the source-
drain contact of n-MOS can also be formed by Ni/Sb SPD at
600~700° C. Finally, source-drain metal contacts were
added. For comparison, [Ir;Si—Hf Sil/HfLaON CMOSs
using B* and As™ implant and 1000° C. RTA were also fab-
ricated [1]*.

A Vg, Roll-Off at Scaled EOT:

[0042] FIG. 1 shows the C-V characteristics of HfLaON
CMOS after a 1000° C. RTA, where EOT of 1.6 and 1.2 nm
are determined using a quantum-mechanical C-V simulation.
AlowV , is obtained for n-MOS using an Hf, Si gateat 1.2 nm
EOT; however, the V, is reduced for the Ir,Si/HILaON
p-MOS. Since the same Ir,Si metal-gate was used for the
HiLaON, the unwanted lower V ,, at thinner EOT may be
attributed to the higher oxide charge density as described by
the V;, equation in FIG. 2. These charges arise from inevitable
charged vacancy and dangling bonds in non-stoichiometric
oxides (x<2) from interface reaction and inter-diffusion:

, M
Si o+ Hfo, —— S0, +

A
(x<2)

HfOZ-x

Such reactions are possible at high temperature owing to the
similar bond enthalpies of 800 and 802 kJ/mol for respective
Si0, and HIO, [2]*. Also at thinner EOT, only thin interfacial
Si0; 1s permissible to meet the required high « value for low
leakage current. Since the interfacial chemical reactions fol-
low Arrhenius temperature dependence, we aimed to develop
a low temperature process to reduce such effects.

B. Low Temperature Shallow Junctions:

[0043] FIGS. 3-6 show the R, J-V and SIMS of p*/n junc-
tions for different cases. Adding Ni to Ga SPD improves the
R, through Ni—Ga co-diffusion and silicide formation while
maintaining good p*/n characteristics with an ideality factor
(n) of 1.36. AUSJ X of 9.5 and 20 nm was measured by SIMS
for the Ga and Ni/Ga cases. FIGS. 7-9 show the R, J-V and
SIMS of n*/p junctions. The self-aligned H,PO, spin process
has n of 1.4, and small leakage and a low R;. A USJ X; 0of 23
or 35 nm was measured by SIMS after 850 or 875° C. RTA—
this 1s better than that for a 1 keV As™ implant and spike RTA
atthesameR [7]*. Thisis dueto the free from defect-assisted
diffusion caused by As* implant damage. The process tem-
perature for n-MOS can even decrease to 650° C. RTA using
the Ni/Sb SPD similar to p-MOS case, where low R of 126
ohm/sq and n of 1.5 are shown in FIGS. 10 and 11 of n*/p
junctions, respectively. of n™/p junctions. This =900° C. pro-
cess temperature is important for HfLaO in preserving its
amorphous structure at 900° C. (as shown in FIG. 12) without
using the nitrided HfLaON, which reduces the possible pin-
ning at metal-gate/high-K interface. The amorphous structure
of HfLaO at 900° C. is better than crystallized HfO, for
achieving good BTI, by avoiding charge trapping at poly-
HfO, grain boundaries [1]*-[3]*.

C. Device Characteristics.

[0044] FIGS. 13-16 are the C-V and J-V characteristics of
TaN/Ir and TaN/Hf on HfLaO devices. At 1.2 nm EOT, the
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gate leakage current was only 2.4x107* and 1.8x10~* A/cm®
at +1 V Still low gate leakage current can be obtained even at
very low 650° C. SPD for n-MOS at 1.3 nm EOT (FIGS.
17-18). FIG. 19 shows the J-EQOT plot, where much better
leakage current than SiO, is obtained at 1.2 nm EOT. Reduc-
ing the RTA temperature to <900° C. is vital for choosing
proper ¢,,, . -pure metal gate electrode, since Ir/HflLaO failed
after 1000° C. RTA due to Ir diffusion through the high-k
dielectric [2]*.

[0045] Note that the Vg of TaN/It/HfLL.aO at 850° C. is 0.7
V larger than TaN/Ir;Si/HfLaON at 1000° C. in FIG. 1. To
understand this large improvement, inventors have plotted the
V4-BOT in FIG. 20 and proper ¢, ,0f 5.3 and 4.1 eV are
obtained for p- and n-MOS. The ¢, -at top Ir interface is
only 0.3 eV higher than Ir;Si (5.0 eV) and insufficient to
explain the large 0.7V 'V, roll-off. Since similar high-k was
used, the undesired V ;, lowering is attributed to the charges in
non-stoichiometric oxides in eq. (1)}—these being created
during the higher 1000° C. RTA for the Ir;Si/HfL.aON case.
Such oxide vacancies can be predicted theoretically, and can
create lower energy traps within the HfO,. This may be one of
the reasons for pinning the ¢,, .5 to Si midgap via lower
energy barrier trap-assisted conduction. This interface reac-
tion reduces exponentially when reducing the process tem-
perature to <900° C. for the [yHfLaO devices.

[0046] Thel,V, 1V, and u B characteristics of [Ir—
Hf)/HfLaO p- and n-MOSFETs are shown in FIGS. 21-23,
respectively. Good transistor characteristics, low V, of +0.05
and 0.03 V and high mobility of 90 and 243 cm*/Vs are
measured. The improved mobility, compared with 1000° C.
RTA HfLaON CMOS, is consistent with lower charged
vacancies associated with interfacial reactions in eq. (1).
FIGS. 24-26 show the [ -V, 1,-V, and p-E characteristics
of 650° C. SPD formed n-MOSFETs. Low V, 0f 0.14 V and
high mobility of 209 cm?/Vs are still achievable even at 650°
C.SPD.

[0047] The gate reliability is shown in the BTT data of FIG.
27, where a small AV <32 mV occurs for CMOS stressed at
10 MV/em and 85° C. for 1 hr. Such good BTI reliability is
due to the amorphous structure of HfL.aO under =900° C.
process temperature, which prevents BTI degradation by car-
rier-trapping in poly grain boundaries of HfO, case. Table 1
compares various metal-gate/high-x CMOS data [1]*-[6]*.
The merits of self-aligned [Ir—Hf]/HfL.aO p- and n-MOS
with SPD USJ are proper ¢, .-0f 5.3 and 4.1 eV, low V, of
+0.05 and 0.03 V, high mobility of 90 and 243 ¢cm*/Vs, and
small BTI<32 mV (85° C., 10 MV/em & 1 hr). Further
decreasing SPD temperature to 650° C. still reaches good
device characteristics of n-MOSFETs with low V,0f 0.14V
and high mobility of 209 cm*/Vs.

[0048] In Conclusion, this invention have shown that the
interfacial reactions are key factors for V, roll-off that then
yields an undesired high V, for highly-scaled EOT. The pto-
posed ultra-shallow junction process, performed at =900° C.,
produced appropriate ¢, . values, small leakage and low
threshold voltages for [I—Hf]/Hf.aO CMOS devices.
[0049] Although a preferred embodiment of the invention
has been described for purposes of illustration, it is under-
stood that various changes and modifications to the described
embodiment can be carried out without departing from the
scope of the invention as disclosed in the appended claims.
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What is claimed is:

1. A method for making very low V, metal-gate/high-k
CMOSFETs using self-aligned low temperature shallow
junctions, characterized in that the method uses a low-tem-
perature shallow junction process to lower the interface reac-
tion of CMOSFETs under fabrication processes, which tem-
perature is lower than 900° C.

2. A method for making very low V, metal-gate/high-K
CMOSFETs using self-aligned low temperature shallow
Junctions, includes the steps of:

A. Applying high-k gate dielectric deposition, post-depo-

sition anneal, and dual metal-gates deposition;

B. Applying gate patterning, wherein self-aligned Ga or
Ni/Ga with top capping layer was deposited for p-MOS,
followed by 550~900° C. RTA solid-phase diffusion
(SPD);
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C. For n-MOS, self-aligned H,PO, was spun deposited,
transformed to P,O5 at 200° C. and SPD at 850~900° C.
RTA. Alternatively similar to p-MOS case, Ni/Sb with
top capping layer was deposited, followed by 600~700°
C.RTA SPD.

3. The method for making very low V, metal-gate/high-K
CMOSFETs using self-aligned low temperature shallow
Junctions according to claim 2, wherein wet H;PO, spray and
doping processes are further used when the said method is
been used for commercial Si solar cell manufacture process.

4. The method for making very low V, metal-gate/high-k
CMOSFETs using self-aligned low temperature shallow
Jjunctions according to claim 1, wherein the process tempera-
ture is between 600 to 900° C.
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