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[1] This paper presents the leaky wave phenomena associated with a waveguide structure
that consists of a conductor-back dielectric slab covered with a superstrate made up of a
two-dimensionally (2-D) electromagnetic band gap (EBG) structure. A guided wave has
its energy bounced back and forth between the metallic ground plane and the EBG
structure that is taken as a frequency-selective reflection mirror. Because of the finite
thickness of the 2-D EBG superstrate, the guided wave will leak or radiate some of its
energy into the air region above the waveguide structure to become a leaky wave. By the
mode-matching method and the transverse resonance technique, the overall waveguide
structure is formulated as a rigorous electromagnetic boundary value problem to yield an
exact dispersion relation of the waveguide so that the complex propagation constant of a
guided mode can be accurately determined, including the phase and attenuation constants.
Additionally, the electric field distribution inside the waveguide and the far-field
radiation pattern were also calculated to demonstrate the leaky wave phenomena of this
waveguide from a microscopic point of view. On the basis of the excitation of leaky
waves, the phenomenology concerning a class of directive antennas with EBG structure as
superstrate was clarified in this research.
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1. Introduction

[2] Electromagnetic band gap (EBG) structures were
found to have a rich variety of interesting applications in
optical and microwave communities in recent years
[Maystre, 1994; Nicorovici and McPhedran, 1994;Mekis
et al., 1999; El-Kady et al., 1999]. For instance, the two-
dimensionally (2-D) dielectric photonic crystal was
employed as a reflection mirror in integrated optics.
The metallic periodic structures were utilized in printed
circuit board for the suppression of surface wave in order
to mitigate the electromagnetic interference problem.
[3] Because of the property of Bragg reflection in a

periodic structure, the electromagnetic band gap structure
can be employed as a frequency-selective reflection
mirror (so-called Bragg mirror). The dielectric parabolic
reflector made up of photonic band gap material was

employed to reflect and focus the electromagnetic waves
[Thèvenot et al., 1999, Leger et al., 2005], such that a
high-gain antenna was achieved. An exceptionally direc-
tional antenna that was formed by a hybrid combination
of a monopole radiation source and a cavity built around
a dielectric layer-by-layer three-dimensional photonic
crystal was implemented [Temelkuran et al., 2000,
Biswas et al., 2001]. Two-dimensionally photonic crystal
slabs were employed to design a highly directive light
sources [Fehrembach et al., 2001]. A high-gain, low-loss
and low-sidelobe antenna made of a woodpile three-
dimensional EBG material and a metallic ground plane
was developed [Weily et al., 2005]. In addition to the
dielectric EBG structure, the metallic EBG structure was
also employed to design waveguides or directional
antennas [Poilasne et al., 1997, 2000; Boutayeb et al.,
2003; Capolino et al., 2005a, 2005b; Yang and Jackson,
2000]. With a dipole source placed inside the MPBG
(metallic photonic band gap structure) that has some of
the metallic wires removed, a directional radiation pat-
tern was obtained [Poilasne et al., 1997, 2000; Boutayeb
et al., 2003]. It should be noted that in addition to the
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antenna applications, the full-wave analysis for the 1-D
or 2-D MPBG structure excited by a line source was
conducted in general [Capolino et al., 2005b; Yang and
Jackson, 2000]. An efficient semianalytical algorithm
using the array scanning method for the evaluation of the
field and mode excitation by a line source embedded in a
2-D metallic EBG waveguide was investigated [Capolino
et al., 2005a].
[4] Another application of the electromagnetic band

gap superstrates is the design of spatial angular filters for
sharpening the radiation pattern of an antenna [Thèvenot
et al., 1999; Zhao et al., 2003]. Specifically, the property
of localized frequency windows within the stop band,
which was due to the irregular components being
inserted in the periodic structure, was employed to
design an antenna cover for improving the directivity
of an antenna [Lee et al., 2005]. The basic concept of this
class of applications can be traced back to the work of
Jackson et al. [1993, 2005] who had used the narrow-
beam structure, consisting of dielectric layers of alter-
nating thickness and material constant (1-D periodic
layers) stacked over a ground plane, to design a leaky
wave antenna. Recently, the radiation characteristics of a
2-D periodic leaky wave antenna made up of a periodic
array of metal patches (or slots) on a grounded substrate
were investigated [Zhao et al., 2005a, 2005b] with
general formulas for the design of 2-D leaky wave
antennas [Zhao et al., 2004, 2005c].
[5] In this paper, we replaced the superstrate made up

of 1-D periodic layer [Jackson et al., 1993] by a 2-D
periodic structure to observe its leaky wave phenomena.
Since the two-dimensionally periodic structure has the
stop band in two dimensions to reflect the incident wave
from an arbitrary incident angle, it should have different
leaky wave characteristics compared to those in 1-D
periodic case. The structure under consideration can be
viewed as a conductor-back dielectric slab with 2-D
EBG superstrate made of an array of rectangular
dielectric rods immersed in a uniform dielectric medi-
um. Here, the 2-D EBG can be regarded as a finite
stack of 1-D periodic layers that are stacked with equal
spacing between two neighboring ones. Each periodic
layer contains an infinite number of rectangular dielec-
tric rods of infinite length. Alternatively, the structure
can be considered as a waveguide with walls made
from a 2-D EBG structure and a metal ground plane,
respectively. Moreover, because of the frequency-
selective reflection characteristic for the 2-D EBG
structure, this waveguide shall be a frequency-selective
guiding structure accordingly.
[6] Concerning the theoretical analysis, we shall

employ the transverse resonance technique to obtain
the dispersion relation of the source-free fields supported
by the structure; thus the first step is to study the

scattering characteristics of the structure under consider-
ation. The scattering characteristics of such a structure
can be easily analyzed as a multilayer boundary value
problem. Here, we take the building block approach,
such that the 2-D EBG structure can be regarded as a
stack of unit cells, each consisting of a 1-D periodic layer
in junction with a uniform one. By the rigorous mode-
matching method, the input-output relation of a unit cell
and the field distributions therein can be determined in a
straightforward manner. Once cascading the input-output
relation of each unit cell and the conductor-back dielec-
tric guiding layer, the reflection characteristic of the
overall structure is determined accordingly. Notably,
the present method offers a flexible approach to the
analysis of 1-D periodic layer with arbitrary profile by
utilizing the staircase approximation to model it as a
stack of cascaded 1-D periodic layers with different sizes
of dielectric rods. In the absence of any incident wave
(source-free condition), the existence of a nontrivial
solution defines the condition of resonance in the trans-
verse direction of the waveguide; namely, this determines
the dispersion characteristics of the waveguide.
[7] On the basis of the exact approach described

above, we have developed a computer program and
carried out extensive numerical calculations to identify
and explain the physical phenomena associated with the
type of waveguides with 2-D EBG superstrate (or wave-
guide wall) of finite thickness. First of all, the band
structure of the 2-D EBG was calculated to identify the
stop band regions, wherein the 2-D EBG superstrate
serves as a reflection mirror to reflect the incident wave.
Secondly, the simply parallel-plate waveguide model
was employed to enable the approximate dispersion
curve to fall into the stop band region. Thus the initial
value of the guiding layer thickness was obtained.
Finally, by performing the rigorous calculation for the
dispersion relation of the waveguide, we can have the
exact dispersion curve. If the dispersion curve does not
locate in the stop band region, we can fine tune the
guiding layer thickness and repeat the above process
until the requirement is met.
[8] Because of the finite thickness of the 2-D EBG

superstrate, the reflectivity, in fact, is not perfect even it
was operated in the stop band region. Accordingly, the
power leaks from the waveguide through the 2-D EBG
superstrate into free space. The structure therefore
becomes a leaky wave antenna. To demonstrate its leaky
wave phenomena, the variations on the phase and
attenuation constants against frequency were investigated
for the conditions with different thicknesses (unit cell
numbers) of the 2-D EBG superstrate. In addition, the
eigenvectors associated with the dispersion roots, which
represent the mode field patterns, were also calculated to
demonstrate the far-field radiation (leaky wave) pattern
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and the decaying electric field distribution in the guiding
layer, as well. Besides, the characteristics of the radiation
main beam angle and bandwidth were examined by the
normalized phase and attenuation constants both. These
results establish consistently the distinctive character-
istics of the waveguide with 2-D EBG superstrate of
finite thickness from different viewpoints. In short, the
purpose of this research is to systematically and
physically explain the phenomenology related to a
class of directive antennas, which takes the EBG
structure as a superstrate, on the basis of the excitation
of leaky waves.

2. Description of the Problem

[9] Figure 1 depicted the structure under consideration,
which consists of a conductor-back dielectric slab (or
guiding layer) covered with a 2-D EBG superstrate.
The 2-D EBG structure has a finite thickness along the
z direction, while it extends infinitely along the x and
y directions. The 2-D EBG superstrate is made up of
rectangular dielectric cylinders array embedded in a
uniform host medium. The relative dielectric constants
of the cylinder and the host medium are ed and es,

respectively. The widths of the rectangular dielectric
cylinder along the x and z axes are wx and wz, respec-
tively. The periods along the x and z direction are
respectively designated as dx and dz. The guiding layer
has the relative dielectric constant eg and thickness h.

3. Method of Analysis

[10] As mentioned earlier, the transverse resonance
technique was employed in the theoretical analysis to
formulate the dispersion relation of the waveguide. The
scattering analysis for the overall structure must be
formulated first. Since the scattering of plane wave by
a stack of 1-D periodic layers has been well developed as
a rigorous boundary value problem [Collin, 1991; Peng
et al., 1975; Tamir and Zhang, 1996; Hwang and Peng,
2003; Petersson and Jin, 2005], the derivation of the
input-output relation for a 1-D periodic layer is briefly
outlined here while the details could be referred to the
literature [Tamir and Zhang, 1996; Hwang and Peng,
2003]. Specifically, the results in the form of input
impedance and transfer matrices will be used as the
building block to analyze the plane wave scattering by
the stack of periodic layers [Hall et al., 1988; Peng et al.,
1975; Tamir and Zhang, 1996; Hwang and Peng, 2003].

Figure 1. Structure configuration of the leaky wave antenna incorporating a 2-D EBG superstrate.
The guiding layer was sandwiched between a metallic ground plane and the 2-D EBG superstrate.
The 2-D EBG structure comprises 2-D rectangular dielectric cylinder arrays immersed in a uniform
dielectric medium.
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3.1. Input-Output Relation of a 1-D
Periodic Layer

[11] The 1-D periodic layer is assumed to be vertically
uniform and is characterized by a relative dielectric
constant that is periodic along the x direction, given as

e xð Þ ¼ e xþ dxð Þ; ð1Þ

where dx is the period along the x direction. Because of
the spatial periodicity, a set of Fourier components or
space harmonics is generated everywhere in the
structure; the propagation constant of the nth space
harmonic in the x direction is given by

kxn ¼ kx þ n
2p
dx

; for n ¼ . . . ;�2;�1; 0; 1; 2; . . . ;

ð2Þ

where kx is the fundamental wave number along the
x direction. On the basis of Floquet’s theorem, the
general field solutions can be expressed as a super-
position of the complete set of space harmonics. With
respect to the z direction, the tangential electric and
magnetic field solutions in 1-D periodic medium can be
written, for the transverse electric (TE) mode, as

Ey x; zð Þ ¼
X1
n¼�1

X1
m¼�1

�Qmn e�jkzmzcm þ e jkzmzdm
� �

e�jkxnx

ð3aÞ

Hx x; zð Þ ¼
X1
n¼�1

X1
m¼�1

Pmn e�jkzmzcm � e jkzmzdm
� �

e�jkxnx;

ð3bÞ

where kzm is the propagation constant along the z direction
of the mth mode and is determined [Peng et al., 1975;
Tamir and Zhang, 1996] from the dispersion relation of
the periodic medium for a given kxn, the propagation
constant of the nth space harmonic as defined in
equation (2). Once kzm is obtained, the Fourier amplitudes,
Pmn and Qmn can then be determined in a straightforward
manner. Parameters cm and dm are, respectively, the
amplitudes of the forward and backward propagating
waves of the mth mode in the 1-D periodic layer.
[12] After collecting the modal amplitude of each

space harmonic in (3a) and (3b) and filling in the voltage
and current column vectors, we have the two vectors
written as follows:

V zð Þ ¼ Q exp �jkzzð Þcþ exp þ jkzzð Þdf g ð4aÞ

I zð Þ ¼ P exp �jkzzð Þc� exp þ jkzzð Þdf g; ð4bÞ

where V (z) and I(z) are column vectors, each containing
the Fourier components of the electric and magnetic
fields in its entry, respectively. The matrix P and Q are
full matrices with their (m, n)th element defined in
equations (3a) and (3b), and kz is a diagonal matrix with
the propagation constant of the mth space harmonic
along the z direction, kzm, as its mth diagonal element. If
we denote the output impedance as Zl, the voltage and
current at the output satisfy the condition

V z ¼ tð Þ ¼ ZlI z ¼ tð Þ: ð5Þ

Substitution of (5) into (4a) and (4b), we can determine
the relation between the amplitude vectors c and d, as

d ¼ Gc ; ð6Þ

where G is the reflection matrix at the output end, as
defined by

G ¼ e�jkztGle
�jkzt ð7Þ

G ¼ ZlPþQð Þ�1
ZlP�Qð Þ: ð8Þ

Substituting (6), (7) and (8) into (4a) and (4b), we can
derive the input impedance matrix, Zin, at the input
interface, z = 0, which is given below:

V z ¼ 0ð Þ ¼ ZinI z ¼ 0ð Þ ð9aÞ

Zin ¼ Q Iþ Gð Þ I� Gð Þ�1
P�1: ð9bÞ

After some matrix operations, we can determine the
relationship of the voltage vector between the input and
output interfaces, which is named as the voltage transfer
matrix, given as follows:

V z ¼ tð Þ ¼ TV z ¼ 0ð Þ ð10aÞ

with the shorthand notation

T ¼ Q Iþ Gl½ 
 exp � jkztð Þ Iþ Gð Þ�1
Q�1: ð10bÞ

Besides, the uniform layer can be regarded as the
limiting case of 1-D periodic layer with vanishing
periodic variation. The voltage and current vectors of
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the waves in a uniform layer are similar to those in (4a)
and (4b), while the matrix P is simply an identity matrix
and Q is a diagonal matrix with each element
representing the characteristic impedance of each space
harmonic in the uniform medium. Parameter kz is a
diagonal matrix, whose element represents the propaga-
tion constant of each space harmonic. The nth element of
the matrix kz and Q are written below:

k ið Þ
z;n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2oei � kx þ n2p=dxð Þ2

q
ð11aÞ

Qn ¼ Z að Þ
n ¼ wmo=k

ið Þ
z;n; ð11bÞ

where the index denotes the ith uniform dielectric layer
having relative dielectric constant ei. Thus the input-
output relation of uniform layer will be simply a diagonal
matrix and can be derived without difficulty.

3.2. Scattering Characteristics of the Waveguide
Structure

[13] With the input-output relation and transfer matrix
for a single 1-D periodic layer described above, we may
employ successively, from the bottom to the top layer, the
input-output relation of a unit cell that consists of a 1-D
periodic layer in junction with a uniform one. The
termination condition at the bottom surface of the 2-D
EBG is a diagonal matrix given below:

Zl ¼ diag znf gn¼�1;...;þ1 ð12aÞ

with zn ¼ j
wmoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2oeg � k2xn
p tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2oeg � k2xn

q
h; ð12bÞ

where n is the index of the space harmonic running from
negative to positive infinity. Each diagonal element, in
(12), represents the input impedance of a uniform
transmission line with a shorted circuit at the output end.
[14] With the procedure described above, we can now

obtain the input impedance matrix looking downward
from the top interface of the structure, Zdn, that is, the
relationship between the voltage and current vectors at
the reference plane, at z = 0 given by

V 0ð Þ ¼ ZdnI 0ð Þ; ð13Þ

where V(0) and I(0) are infinite column vectors whose
entries includes the modal amplitudes of the voltage and
current in the incident region, such as air. In terms of the

superposition of the incident and reflected waves, these
column vectors may be written in the following form:

V 0ð Þ ¼ Za aþ bð Þ ð14aÞ

I 0ð Þ ¼ a� b ð14bÞ

Za ¼ diag Z að Þ
n

n o
n¼�1;...;þ1

ð14cÞ

Z að Þ
n ¼ wmo=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2o � kx þ n2p=dxð Þ2

q
; ð14dÞ

where the vector a and b represent the amplitudes of
incident and reflected plane waves in air region,
respectively. Za is a diagonal matrix with its diagonal
element representing the characteristic impedance of each
space harmonic along the z direction. Substitution of the
boundary condition in (14) into (13), the reflection matrix
between the incident and reflected waves, at the input
interface of the overall structure, is written as follows.

b ¼ Gaa ð15aÞ

Ga ¼ Zdn þ Zað Þ�1
Zdn � Zað Þ; ð15bÞ

where Ga is the reflection matrix of the overall structure.
Thus the reflected amplitudes of all the space harmonics
are now completely determined. We then obtain the
voltage and current waves over the input surface by (14a)
and (14b). Furthermore, we can successively employ the
transfer matrix of a unit cell, 10(b), from the top to bottom
layer to obtain the electric and magnetic fields everywhere
within the structure under consideration.

3.3. Guiding Characteristics of the Waveguide:
Source-Free Solutions

[15] In the absence of any incident wave, a = 0, and the
existence of nontrivial solutions requires the condition:

det Zdn kx; koð Þ þ Za kx; koð Þ½ 
 ¼ 0; ð16Þ

which is known as the transverse resonance condition,
and defines the dispersion relation of the waveguide.
Notably, (16) depends on the structure parameters,
propagation constant along the x direction, kx, and the
free-space wave number (or frequency). For a fixed
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frequency, we can obtain kx, which is generally a
complex number with the real and imaginary parts
representing the phase and attenuation constants along
the waveguide axis (x axis). Such a determinantal
equation of infinite order must be truncated to a finite
one for numerical analysis. We have implemented a
computer code on the basis of the exact formulation
described above to determine the dispersion root of the
waveguide. Extensive results have systematically
obtained for various structural parameters, in order to
identify the wave propagation phenomena and their
physical implications.

3.4. Band Structure of a Two-Dimensionally
Periodic Medium

[16] Although the 2-D EBG superstrate is finite in its
thickness, the stop band behavior can be understood by
the band structure of the corresponding infinite 2-D
EBG. This can be achieved by imposing the periodic
boundary (or Bloch) condition along the z axis; that is, a
wave traveling through a period dz along the z direction
experiences a phase delay, exp(�jkzdz), satisfies the
equation

V zþ dzð Þ ¼ e�jkzdzV zð Þ: ð17aÞ

Equation (17a) can be further converted into an
eigenvalue problem with the eigenvalues representing
the z direction propagation constants in an infinitely 2-D
periodic medium, as given in (17b).

TEBG wzð Þ � Tu dz � wzð ÞV zð Þ ¼ e�jkzdzV zð Þ; ð17bÞ

where the matrices TEBG and Tu respectively denote the
transfer matrix through 1-D periodic layer and uniform
layer. Therefore we could determine the relationship
among the three parameters: kx, kz and ko, of which any
desired parameter may be determined for a given set of
the two parameters. For example, if the incident
condition is specified for the component of kx under a
certain frequency of operation, we can determine the
value of kz by solving the eigenvalue in (17b). With ko
fixed, the relationship between kx and kz is referred to as
the phase relation; on the other hand, with kx fixed,
relationship between ko and kz defines as the dispersion
relation. In general, kz is a complex number; its real and
imaginary parts represent the phase and attenuation
constants of the wave propagating along the z direction.
On the other hand, we can also have the value of kx for a
given incident condition kz, by exchanging the variable x
with z. Through the rigorous analysis presented so far,

we have derived the phase relation of the waves
propagating in such a class of 2-D periodic medium.

4. Design Criterion for Choosing the

Structure Parameters: Band Structure

Calculation for the 2-D EBG

Superstrate in Infinite Extent

[17] Before embarking on an elaborate numerical anal-
ysis; in particular for the dispersion relation of the
waveguide, it is necessary to understand the reflection
characteristics in conjunction with the 2-D EBG super-
strate since it acts as a reflection mirror. We first assumed
that the 2-D EBG structure extends infinitely along the z
direction. By solving the eigenvalue problem in (17b),
we could determine the phase relation of the waves
propagating in the 2-D EBG medium. This phase relation
defines the relation among ko, kx and kz (here we
assumed ky = 0). For example, when the parameters ko
and kx are given, the propagation constant along the
z direction, kz could be determined. If the kz is a real
number, the wave is propagating along the z direction. On
the contrary, it experiences reflection along the z direction
if the parameter kz is a complex number. Consequently,
the band structure (or phase relation) for the 2-D EBG
medium was established to allocate the frequency range
of the stop bands.
[18] The structure parameters employed in the follow-

ing numerical calculations were given below. The rela-
tive dielectric constants of the dielectric rod and the
surrounding medium are ed = 10.2 and es = 1.03. The
guiding layer and uniform surrounding medium shares
the same relative dielectric constant es = eg = 1.03. The
square dielectric rod has the width wx = wz = 0.5dx.
The period along the x direction was designated as dx.
The period along the z axis is set to dz = dx.
[19] Figure 2 shows the band structure for the 2-D

EBG of infinite extent. The normalized propagation
constant (kz/ko) is plotted against the normalized phase
constant (kx/ko) under the condition of ky = 0. Those
curves with real kz/ko are marked with black dots;
therefore the apparently black regions represent the
passbands, wherein the wave is propagating along the
z direction. Consequently, the remaining regions in
white color represent the stop bands, wherein the wave
experience reflection. Notably, in the first white zone
between two dash lines, the 2-D EBG medium has a
complete stop band for the normalized phase constant,
kx/ko, ranging from zero to unity. Within this complete
stop band, the 2-D EBG structure is able to reflect the
incident waves with arbitrary incident angles. Such a 2-D
EBG medium, along with the metallic ground plane,
allows the wave to bounce back and forth and propagate
along the x direction in the guiding layer. Therefore the
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waveguide is extremely similar to a parallel-plate
waveguide. It is instructive to consider first the
approximation of the dispersion relation by that of a
‘‘reference’’ parallel-plate waveguide. The dispersion
relation of the nth parallel-plate waveguide mode is
given as

kx=ko ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eg �

nl
2heff

	 
2
s

: ð18aÞ

For example, the cutoff wavelength for the parallel-plate
waveguide mode with n = 1 is given below:

l n¼1ð Þ
c ¼ 2heff

ffiffiffiffiffi
eg

p
; ð18bÞ

where the parameter heff is the effective width of the
parallel-plate waveguide. Conceivably, the effective
width, heff, should be greater than that of the guiding
layer thickness h, because the incident wave, in fact,
penetrates into the 2-D EBG superstrate, resulting in the
so-called Goos-Hanchen shift. Although the actual width
of the waveguide may differ from h, we could use it as an
initial value to approximately figure out the cutoff
frequency. Since the waveguide must be operated in the
frequency range where the 2-D EBG wall is working in

the stop band, we chose dx/lc
(n=1) = 0.25 to allow the

cutoff frequency to fall within the complete stop band, as
indicated in Figure 2. Therefore the initial design
parameter for the guiding layer thickness was designated

Figure 2. Band structure (phase relation) for a 2-D EBG structure of infinite extent with TE
polarization.

Figure 3. Convergence test for the number of space
harmonics employed in calculating the dispersion roots.
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as h = 2dx/
ffiffiffiffiffiegp
. The h approaches 2dx because eg is near

unity.

5. Numerical Results and Discussion

5.1. Convergence Test for the Number of Space
Harmonics Employed

[20] Before carrying out extensive numerical calcula-
tions, we had performed the convergence test for the
dispersion root against the number of space harmonics
employed to ensure the accuracy of our computer sim-
ulations. Figure 3 depicts the variation of dispersion
roots, including the normalized phase (bx/ko) and
attenuation (ax/ko) constants, against the number of
space harmonics employed, ranging from 3 to 101 with
the normalized frequency dx/l = 0.25. The space
harmonics includes vertically evanescent modes and
the criterion for choosing the number of space harmonics
follows the rule given by Tamir and Zhang [1996]. It is
evident that the normalized phase and attenuation
constants rapidly converge to certain values as the
number of space harmonics exceeds 19. Throughout this
paper, the remaining numerical simulation examples
were carried out using 19 space harmonics.

5.2. Dispersion Relation of the Waveguide

[21] Figure 4 illustrates the variation on the dispersion
characteristics, including the normalized phase and at-
tenuation constants, against the normalized frequency for
various thicknesses of the 2-D EBG superstrate (or
numbers of 1-D periodic layers). The curves corresponding
to the axis on the left represent the normalized phase
constant (bx/ko), while those corresponding to axis on the
right are the normalized attenuation constant (ax/ko).
From Figure 4, we can observe that the normalized phase
and attenuation constants have drastic changes as the
normalized frequency is near dx/l = 0.245. Below this
frequency, the normalized attenuation increases rapidly,
while the phase constant decreases to a small value. For
easy comparison, we plotted the phase constant distribu-
tion for a ‘‘reference’’ metallic parallel-plate waveguide
with width h. The phase constant distribution is plotted
in Figure 4 by a solid line marked with circles. The
normalized cutoff frequency of this reference waveguide
is dx/lc = 0.2463. It is noted that the dispersion curves of
the 2-D EBG waveguide follow closely that of the
‘‘reference’’ parallel-plate waveguide, except for a slight
shift in its position. We may infer that it is due to the
Goos-Hanchen shift as described previously.
[22] Moreover, above the normalized frequency dx/l =

0.245, the attenuation constant started to decrease until
dx/l ffi 0.32. Recalling the band structure in Figure 2, the
2-D EBG structure was operated in the complete stop
band as the normalized frequency falls into the region in
the vicinity of dx/l ffi 0.3. This consistently confirms the
calculation for the band structure and the dispersion
relation of the waveguide. Besides, the increase in the

Figure 4. Variation of the dispersion roots, including
the normalized phase and attenuation constants, of the
waveguide against normalized frequency with the width
of guiding layer h = 2dx; the number of 1-D periodic
structure (2-D EBG waveguide wall) was changed from
one to five.

Figure 5. Contour plot of the tangential electric field
strength (Ey) within the guiding layer (0 � z � h). The
number of the 1-D periodic structure is three, and the
structure parameters are the same as the previous case.
The normalized frequency is dx/l = 0.38.
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number of 1-D periodic layers definitely enhance the
reflectivity of 2-D EBG wall, leading to the decrease in
the attenuation constant, as indicated in Figure 4.

5.3. Tangential Electric Field Distribution
Along the Waveguide

[23] From the previous example, we know that the
dispersion curve of the leaky waveguide is extremely
similar to that of a metallic parallel-plate waveguide. In
this example, we plotted the contour map for the strength
of the tangential electric field component Ey(x, z), with
the maximum field strength normalized to unity, within
the guiding layer for further inspection of the physical
consequences. As shown in Figure 5, we observe that
the maximum field strength occurs around the center of
the guiding layer, while it is zero at z = h, the plane on the
metal ground plane, owing to the vanishing of tangential
electric field on the metal ground plane (a perfect electric
conductor). The electric field distribution is similar to the
first-order parallel-plate waveguide mode with the field
pattern, such as, Eosin(px/heff). However, the electric
field does not vanish at the boundary between guiding
layer and 2-D EBG superstrate, and this will allow the
waveguide to leaks its energy from the guiding layer
through the finite 2-D EBG superstrate into air region
above structure. It is interesting to note that the field
pattern in the EBG region varies periodically in

accordance to the periodic variation of structure, as
expected.
[24] Moreover, we plotted the strength of the electric

field component Ey(x, z = 0.5h) along the center of the
waveguide, shown in Figure 6. The vertical axis
represents the strength of the electric field, while the
horizontal one is the position along the guide axis,
running from zero to 20dx. The electric field distributions
were calculated on the basis of the eigenvectors
corresponding to the dispersion roots (eigenvalues)
shown in Figure 4. The normalized phase and attenuation
constants of the four dispersion roots are attached in
Figure 6, with the respective normalized frequencies,
dx/l = 0.35, 0.36, 0.37 and 0.38. The filed distributions
interestingly exhibited a decaying standing wave along
guide axis. The first case exhibited the slowest decay
among the four cases because of its smallest attenuation
constant. Conversely, the fourth case had the strongest
attenuation since its attenuation constant is the largest
one among the four cases.

5.4. Leaky Wave Radiation Pattern

[25] From the previous example, we know that
the normalized phase constants along the longitu-
dinal x direction is less than unity (bx/ko < 1), so that a
wave in the air region may propagate in the transverse
direction. Therefore the waveguide with the EBG
superstrate can leak (or radiate) its energy into the air

Figure 6. Distribution of the tangential electric field
strength against the position along the x direction for
various operation conditions.

Figure 7. Radiation pattern for the leaky wave antenna,
with the normalized propagation constants given in the
legend.
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region and becomes a leaky wave structure. To
demonstrate the leaky wave phenomena of the wave-
guide structure under consideration, we calculated the
radiation far-field patterns and plotted them in Figure 7.
The four dispersion roots were again employed to
calculate the electric and magnetic fields (eigenvectors)
on the output surface of the 2-D EBG superstrate. Here,
the antenna length was assumed to be 20dx. On the basis
of the equivalent principle, we could calculate the far-
field radiation pattern by the equivalent electric and
magnetic currents on the outer surface of the 2-D EBG
superstrate. It is noted that in the far-field calculations,
we have neglected the edge condition associated with the
structure of finite length.
[26] As is well known for a leaky wave, its radiation

angle can be predicted by using the formula: q ffi
sin�1(bx/ko), where bx is the phase constant along the
guide axis. Figure 7 shows that the radiation angles of
the main beam for the four cases of propagation
constants are at around 54.21�, 56.96�, 60.60�, and
64.59�, respectively,. These radiation angles agree with
the estimated values from the phase constants, and they
swings as the frequency changes. The beam width
increased in accordance with the increase in the normal-
ized attenuation constant, which confirms the property of

conventional leaky wave antennas. For practical design,
the sidelobe level in the radiation pattern can be reduced
by tapering the 2-D EBG wall at its input and output
ends to reduce the reflection of incident waves at the two
ends. It can be implemented by tapering the aspect ratio
(wx/dx) of the 1-D periodic layers.
[27] The field distribution plotted in Figure 7 is based

on the source-free fields supported by the structure under
consideration, such that the radiation far-field contributed
by the space wave was neglected in our research. It is
noted that other authors [Capolino et al., 2005a]
compared the total field (including space contributions
as well as modal (leaky wave) contributions) with the
modal contribution; they show that the space wave
contribution is negligible. Besides, another theory
[Capolino et al., 2005b] presented can also be applied
to this waveguide case with the same conclusion.

5.5. Dispersion Relations of the Waveguide
With 1-D EBG and 2-D EBG Wall

[28] As we have described in the introduction, the class
of 2-D EBG antennas was evolved from the structure
proposed in the literature [Jackson et al., 1993; Thèvenot
et al., 1999], the conductor-back dielectric slab wave-
guide with alternating homogeneous dielectric layers (or
1-D EBG superstrate) is taken as the top cover of the
dielectric waveguide. The 1-D or 2-D EBG superstrate
utilized here both, in fact, are acted as a reflection mirror
to sustain a parallel-plate-like waveguide. However, the
following example, which deals with the dispersion
relation of the waveguide with 1-D and 2-D EBG
superstrate, to be demonstrated is for understanding the
difference in leaky wave characteristics between the 1-D
and 2-D EBG superstrate.
[29] In Figure 8, the vertical axis on the left corre-

sponds to the normalized phase constant, while that on
the right is for the normalized attenuation constant. The
variations on the phase (and attenuation) constants for
the two cases are similar to each other. For the wave-
guide with 1-D EBG superstrate, when the normalized
frequency is above 0.328, the phase constant enters into
the bound-wave region with the normalized phase con-
stant greater than unity; wherein the field is bound to the
structure and becomes a surface wave with zero attenu-
ation constant (the dielectric media are assumed to be
lossless). Besides, as shown in Figure 8, these two
dispersion curves exhibit cutoff phenomenon. However,
the normalized cutoff frequency for 1-D EBG case is
lower than that of the 2-D EBG case. From the physical
picture of wave phenomenon, it is instructive to know
that the wave is bouncing vertically as the operation
frequency is near the cutoff frequency. Under this situ-
ation, the wave is normally incident into the superstrate.
Since the 1-D EBG superstrate has the higher average
dielectric constant compared with that of the 2-D EBG

Figure 8. Dispersion relations of the waveguide with
1-D EBG and 2-D EBG walls. The waveguide with 2-D
EBG wall has five 1-D periodic layers, and the structure
configuration is the same as described in Figure 3. While
the waveguide with 1-D EBG also contains five unit
cells, the 1-D periodic layer was replaced with a uniform
dielectric layer with relative dielectric constant 10.2.
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superstrate, the 1-D EBG case certainly have stronger
reflection than that of the 2-D EBG case. On the other
hand, as the normalized frequency is increasing, the
incident angle will change gradually from vertical to
horizontal direction. In this case, it may be viewed as
oblique incident into the superstrate. We know that the
reflection coefficient for a wave incident into a 1-D
periodic layer is decreasing as the incident angle is
increasing. Conversely, from the band structure depicted
in Figure 2, the 2-D EBG has a wide stop band for the
incident wave even with large incident angle (or the
value of kx/ko = sinqinc is considerably large). Such that
in Figure 8, it is apparently to see the leaky wave region
(b < ko and a > 0 excluding the below cutoff condition)
for the 2-D EBG superstrate is wider than that of the 1-D
EBG superstrate.

5.6. Tangential Electric Field Pattern Within the
Guiding Layer: 1-D EBG Case

[30] In addition to the calculation of dispersion relation
shown in the previous example, we also compute the
tangential electrical field distribution within the guiding
layer for the leaky wave structure with 1-D EBG super-
strate. The structure parameters are the same as those of the
last example. The normalized frequency and the propaga-
tion constant along the wave-guiding direction are 0.32 and
0.898– j0.01401, respectively. From Figure 8, we
observe that the electric field strength is decaying along
the wave-guiding direction owing to the attenuation
constant. Comparing Figure 8 with Figure 5, it is
interesting to see that the periodic variation in the

electric field distribution along the guide axis disap-
pears, as shown in Figure 9, because of no periodicity
in the x direction.

6. Conclusion

[31] This paper dealt with the guiding characteristics of
a conductor-back dielectric layer covered with a super-
strate made up of 2-D EBG structure. Such a class of
structures has also been widely studied experimentally
and numerically, and employed as a directive antenna
with narrow beam width, known as the Fabry-Perot
cavity (or resonant) antenna. We systematically analyze
this structure by using the rigorous mode-matching
method incorporating the transverse resonance technique
to determine the dispersion relation of the source-free
fields supported by the structure. From the dispersion
characteristics, we know that the guiding characteristic of
this waveguide is extremely similar to that of a parallel-
plate waveguide, when the 2-D EBG structure was
operated in stop band. However, because of the finite
thickness of the 2-D EBG structure, it leaks energy from
the guiding layer through the 2-D EBG structure into the
surrounding medium (air), resulting a high-directivity
radiation pattern (leaky wave). The main contribution
of this research is to clarify the physical insight with
respect to the class of directive antennas based on the
excitation of leaky waves.
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