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Abstract

A new kind of generalized synchronization of two chaotic systems with uncertain parameters is proposed. Based on a pragmatical asymptotical
stability theorem and an assumption of equal probability for ergodic initial conditions, an adaptive control law is derived so that it can be proved
strictly that the common null solution of error dynamics and of parameter dynamics is actually asymptotically stable, i.e. these two identical
systems are in generalized synchronization and the estimated parameters approach the uncertain values. It is called pragmatical generalized
synchronization. Finally, two numerical examples are studied for two Quantum-CNN oscillator chaotic systems to show the effectiveness of the
proposed generalized synchronization strategy with a double Duffing chaotic system as a goal system.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The synchronization phenomenon has the following
feature: the trajectories of the drive and response systems
are identical notwithstanding starting from different initial
conditions. However, slight errors of initial conditions, for
chaotic dynamical systems, will lead to completely different
trajectories [1–4]. Therefore, how controlling two chaotic
systems to be synchronized is an attractive objective [5–8].
Many approaches have been presented for the synchronization
of chaotic systems such as linear and nonlinear feedback
control [9,10]. Most of them are based on the exact knowledge
of the system structure and parameters. But in practice, some
or all of the system parameters are uncertain. Moreover,
these parameters change from time to time. A lot of
works have proceeded to solve this problem by adaptive
synchronization [11,12]. In the current scheme of adaptive
synchronization [13–15], the traditional Lyapunov stability
theorem and Babalat lemma are used to prove that the error
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vector approaches zero as time approaches infinity. But the
question of why the estimated parameters also approach
uncertain values has remained without answer. Based on a
pragmatical asymptotical stability theorem and an assumption
of equal probability for ergodic initial conditions [16,17], the
question is answered.

Among many kinds of synchronizations [18–24], the
generalized synchronization is investigated [25–30]. This
means that there exists a given functional relationship between
the states of the master and that of the slave y = G(x). In this
paper, a special kind of generalized synchronizations

y = G(x) = x + F(t) (1)

is studied, where x , y are the state vectors of the master and
of the slave, respectively. F(t) is a given vector function of
time which may take various forms, either regular or chaotic
functions of time. When F(t) = 0, it reduces to a complete
synchronization [31,32].

As two numerical examples, two identical Quantum Cellular
Neural Network (Quantum-CNN) chaotic systems [33] and a
double Duffing chaotic system are used as the master system,
slave system, and goal system, respectively. The goal system
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gives a chaotic F(t). Quantum-CNN oscillator equations are
derived from a Schrödinger equation taking into account
quantum dot cellular automata structures to which in the
last decade a wide interest has been devoted, with particular
attention towards quantum computing.

This paper is organized as follows. In Section 2, by the
pragmatical asymptotical stability theorem, a new pragmatical
generalized synchronization scheme by adaptive control is
given. In Section 3, adaptive controllers are designed for the
pragmatical generalized synchronization of two Quantum-CNN
chaotic oscillators with a double Duffing chaotic system as a
goal system in two examples. Numerical simulations are also
given in Section 3. Finally, conclusions are drawn in Section 4.

2. Pragmatical generalized synchronization scheme, by
adaptive control

There are two identical nonlinear dynamical systems, and
the master system controls the slave system. The master system
is given by

ẋ = Ax + f (x, B) (2)

where x = [x1, x2, . . . , xn]T
∈ Rn denotes a state vector,

A is an n × n uncertain constant coefficient matrix, f is
a nonlinear vector function, and B is a vector of uncertain
constant coefficients in f .

The slave system is given by

ẏ = Ây + f (y, B̂)+ u(t) (3)

where y = [y1, y2, . . . , yn]
T

∈ Rn denotes a state vector, Â is
an n ×n estimated coefficient matrix, B̂ is a vector of estimated
coefficients in f , and u(t) = [u1(t), u2(t), . . . , un(t)]T

∈ Rn

is a control input vector.
Our goal is to design a controller u(t) so that the state

vector of the slave system (3) asymptotically approaches the
state vector of the master system (2) plus a given chaotic vector
function F(t) = [F1(t), F2(t), . . . , Fn(t)]T. This is a special
kind of generalized synchronization; y is a given function of x :

y = G(x) = x + F(t). (4)

The synchronization can be accomplished when t → ∞;
the limit of the error vector e(t) = [e1, e2, . . . , en]T approaches
zero:

lim
t→∞

e = 0 (5)

where

e = x − y + F(t). (6)

From Eq. (6) we have

ė = ẋ − ẏ + Ḟ(t) (7)

ė = Ax − Ây + f (x, B)− f (y, B̂)+ Ḟ(t)− u(t). (8)

A Lyapunov function V (e, Ãc, B̃c) is chosen as a positive
definite function

V (e, Ãc, B̃c) =
1
2

eTe +
1
2

ÃT
c Ãc +

1
2

B̃T
c B̃c (9)
where Ã = A − Â, B̃ = B − B̂, Ãc and B̃c are two column
matrices whose elements are all the elements of matrix Ã and
of matrix B̃, respectively.

Its derivative along any solution of the differential equation
system consisting of Eq. (8) and update parameter differential
equations for Ãc and B̃c is

V̇ (e, Ãc, B̃c) = eT
[Ax − Ây + B f (x)− B̂ f (y)

+ Ḟ(t)− u(t)] + Ãc
˙̃Ac + B̃c

˙̃Bc (10)

where u(t), ˙̃Ac, and ˙̃Bc are chosen so that V̇ = eTCe,C
is a diagonal negative definite matrix, and V̇ is a negative
semi-definite function of e and parameter differences Ãc and
B̃c. In the current scheme of adaptive synchronization [13–
15], the traditional Lyapunov stability theorem and Babalat
lemma are used to prove that the error vector approaches
zero, as time approaches infinity. But the question of why
the estimated parameters also approach uncertain parameters
remains unanswered. By the pragmatical asymptotical stability
theorem, the question can be answered strictly.

The stability for many problems in real dynamical
systems is actual asymptotical stability, although it may
not be mathematical asymptotical stability. The mathematical
asymptotical stability demands that trajectories from all initial
states in the neighborhood of the zero solution must approach
the origin as t → ∞. If there are only a small part or
even a few of the initial states from which the trajectories
do not approach the origin as t → ∞, the zero solution is
not mathematically asymptotically stable. However, when the
probability of occurrence of an event is zero, it means the event
does not occur actually. If the probability of occurrence of the
event that the trajectories from the initial states are such that
they do not approach zero when t → ∞, is zero, the stability
of the zero solution is actual asymptotical stability though it is
not mathematical asymptotical stability. In order to analyze the
asymptotical stability of the equilibrium point of such systems,
the pragmatical asymptotical stability theorem is used.

Let X and Y be two manifolds of dimensions m and n (m <

n), respectively, and ϕ be a differentiable map from X to Y ;
then ϕ(X) is a subset of Lebesque measure 0 of Y [34]. For an
autonomous system

dx
dt

= f (x1, . . . , xn) (11)

where x = [x1, . . . , xn]
T is a state vector, the function f =

[ f1, . . . , fn]
T is defined on D ⊂ Rn and ‖x‖ ≤ H > 0. Let

x = 0 be an equilibrium point for the system (11). Then

f (0) = 0. (12)

Definition. The equilibrium point for the system (11) is
pragmatically asymptotically stable provided that with initial
points on C which is a subset of Lebesque measure 0 of
D, the behaviors of the corresponding trajectories cannot
be determined, while with initial points on D − C , the
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corresponding trajectories behave as if they agree with
traditional asymptotical stability [16,17].

Theorem. Let V = [x1, . . . , xn]
T

: D → R+ be positive
definite and analytic on D, such that the derivative of V
through Eq. (11), V̇ , is negative semi-definite.

Let X be the m-manifold consisting of the point set for which
∀x 6= 0, V̇ (x) = 0 and D is an n-manifold. If m + 1 <

n, then the equilibrium point of the system is pragmatically
asymptotically stable.

Proof. Since every point of X can be passed by a trajectory
of Eq. (11), which is one dimensional, the collection of these
trajectories, C , is an (m + 1)-manifold [16,17].

If m + 1 < n, then the collection C is a subset of Lebesque
measure 0 of D. By the above definition, the equilibrium point
of the system is pragmatically asymptotically stable. �

If an initial point is ergodicly chosen in D, the probability of
the initial point falling on the collection C is zero. Here, equal
probability is assumed for every point chosen as an initial point
in the neighborhood of the equilibrium point. Hence, the event
that the initial point is chosen from collection C does not occur
actually. Therefore, under the equal probability assumption,
pragmatical asymptotical stability becomes actual asymptotical
stability. When the initial point falls on D − C , V̇ (x) < 0,
the corresponding trajectories behave as if they agree with
traditional asymptotical stability because by the existence and
uniqueness of the solution of the initial-value problem, these
trajectories never meet C .

In Eq. (9) V is a positive definite function of n variables,
i.e. p error state variables and n − p = m differences between
unknown and estimated parameters, while V̇ = eTCe is a
negative semi-definite function of n variables. Since the number
of error state variables is always more than one, p > 1,
m + 1 < n is always satisfied; by the pragmatical asymptotical
stability theorem we have

lim
t→∞

e = 0 (13)

and the estimated parameters approach the uncertain parame-
ters. The pragmatical generalized synchronization is obtained.
Therefore, the equilibrium point of the system is pragmatically
asymptotically stable. Under the equal probability assumption,
it is actually asymptotically stable for both error state variables
and parameter variables.

3. Numerical results of pragmatical generalized chaos
synchronization of two Quantum-CNN oscillators by
adaptive control

Case I. The chaotic states of a goal system, a double Duffing
chaotic system, used as F(t).

For a two-cell Quantum-CNN, the following differential
equations are used [33] as the master system:


d
dt

x1 = −2a1

√
1 − x2

1 sin x2

d
dt

x2 = −ω1(x1 − x3)+ 2a1
x1√

1 − x2
1

cos x2

d
dt

x3 = −2a2

√
1 − x2

3 sin x4

d
dt

x4 = −ω2(x3 − x1)+ 2a2
x3√

1 − x2
3

cos x4

(14)

where x1, x3 are polarizations, x2, x4 are quantum phase
displacements, a1 and a2 are proportional to the inter-dot
energy inside each cell and ω1 and ω2 are parameters that
weigh effects on the cell of the difference of the polarization
of neighboring cells, like the cloning templates in traditional
CNNs. Let a1 = 4.9, a2 = 4.9, ω1 = 3.03, ω2 = 1.83.

A slave system is described by

d
dt

y1 = −2â1

√
1 − y2

1 sin y2

d
dt

y2 = −ω̂1(y1 − y3)+ 2â1
y1√

1 − y2
1

cos y2

d
dt

y3 = −2â2

√
1 − y2

3 sin y4

d
dt

y4 = −ω̂2(y3 − y1)+ 2â2
y3√

1 − y2
3

cos y4.

(15)

In order to lead (y1, y2, y3, y4) to (x1 + F1(t), x2 + F2(t),
x3 + F3(t), x4 + F4(t)), we add u1, u2, u3, and u4 to each
equation of Eq. (15), respectively:

d
dt

y1 = −2â1

√
1 − y2

1 sin y2 + u1

d
dt

y2 = −ω̂1(y1 − y3)+ 2â1
y1√

1 − y2
1

cos y2 + u2

d
dt

y3 = −2â2

√
1 − y2

3 sin y4 + u3

d
dt

y4 = −ω̂2(y3 − y1)+ 2â2
y3√

1 − y2
3

cos y4 + u4.

(16)

Subtracting Eq. (16) from Eq. (14), we obtain an error
dynamics. The initial values of the master system and the
slave system are taken as x1(0) = 0.8, x2(0) = −0.77,
x3(0) = −0.72, x4(0) = 0.57, y1(0) = 0.1, y2(0) = 0.28,
y3(0) = 0.42, and y4(0) = −0.72, respectively.

The goal system for generalized synchronization is a double
Duffing chaotic system

ż1 = z2
ż2 = z1 − z3

1 − δ1z2 + f1 cosψ1t
ż3 = z4
ż4 = z3 − z3

3 − δ2z4 + f2 cosψ2t

(17)

where δ1 = 13.5, δ2 = 12.5, f1 = −24.9, f2 = −33.1,
Ψ1 = 10.9, Ψ2 = 19.9, z1(0) = 0.75, z2(0) = −0.3,
z3(0) = −0.4, and z4(0) = 0.5.
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We have

lim
t→∞

ei = lim
t→∞

(xi − yi + zi ) = 0, i = 1, 2, 3, 4 (18)

where ė = ẋ − ẏ + ż, and

ė1 = −2a1

√
1 − x2

1 sin x2 + 2â1

√
1 − y2

1 sin y2 − u1 + ż1

ė2 = −ω1(x1 − x3)+ ω̂1(y1 − y3)

+ 2a1
x1√

1 − x2
1

cos x2 − 2â1
y1√

1 − y2
1

cos y2 − u2 + ż2

ė3 = −2a2

√
1 − x2

3 sin x4 + 2â2

√
1 − y2

3 sin y4 − u3 + ż3

ė4 = −ω2(x3 − x1)+ ω̂2(y3 − y1)+ 2a2
x3√

1 − x2
3

cos x4

− 2â2
y3√

1 − y2
3

cos y4 − u4 + ż4 (19)

where e1 = x1 − y1 + z1, e2 = x2 − y2 + z2, e3 = x3 − y3 + z3,
and e4 = x4 − y4 + z4.

Choose a Lyapunov function in the form of a positive
definite function:

V (e1, e2, e3, e4, ã1, ã2, ω̃1, ω̃2)

=
1
2
(e2

1 + e2
2 + e2

3 + e2
4 + ã2

1 + ã2
2 + ω̃2

1 + ω̃2
2) (20)

where ã1 = a1−â1, ã2 = a2−â2, ω̃1 = ω1−ω̂1, ω̃2 = ω2−ω̂2
and â1, â2, ω̂1, ω̂2 are estimates of uncertain parameters a1, a2,
ω1, and ω2, respectively.

Its time derivative is

V̇ = e1[−2a1

√
1 − x2

1 sin x2 + 2â1

√
1 − y2

1 sin y2 − u1 + z2]

+ e2

[
− ω1(x1 − x3)+ ω̂1(y1 − y3)

+ 2a1
x1√

1 − x2
1

cos x2 − 2â1
y1√

1 − y2
1

cos y2 − u2

+ z1 − z3
1 − δ1z2 + f1 cosψ1t

]
+ e3[−2a2

√
1 − x2

3 sin x4 + 2â2

√
1 − y2

3 sin y4

− u3 + z4] + e4

[
− ω2(x3 − x1)+ ω̂2(y3 − y1)

+ 2a2
x3√

1 − x2
3

cos x4 − 2â2
y3√

1 − y2
3

cos y4

− u4 + z3 − z3
3 − δ2z4

+ f2 cosψ2t
]

+ ã1(−˙̂a1)+ ã2(−˙̂a2)

+ ω̃1(− ˙̂ω1)+ ω̃2(− ˙̂ω2). (21)

Choose

u1 = −2a1

√
1 − x2

1 sin x2 + 2â1

√
1 − y2

1 sin y2 + â1e1

+
â1z2

a1
+ ã2

1

u2 = 2a1
x1√

1 − x2
1

cos x2 − 2â1
y1√

1 − y2
1

cos y2 + z1 − z3
1

+ f1 cosψ1t + ω̂1e2 − ω1(x1 − x3)+ ω̂1(y1 − y3)

−
ω̂1δ1

ω1
z2 + ω̃2

1 (22)

u3 = −2a2

√
1 − x2

3 sin x4 + 2â2

√
1 − y2

3 sin y4

+ â2e3 +
â2z4

a2
+ ã2

2

u4 = 2a2
x3√

1 − x2
3

cos x4 − 2â2
y3√

1 − y2
3

cos y4 + z3 − z3
3

+ f2 cosψ2 t + ω̂2e4 − ω2(x3 − x1)+ ω̂2(y3 − y1)

−
ω̂2δ2

ω2
z4 + ω̃2

2

˙̃a1 = −˙̂a1 = −
e1z2

a1
+ ã1e1 − e2

1

˙̃ω1 = − ˙̂ω1 =
δ1

ω1
e2z2 + ω̃1e2 − e2

2

˙̃a2 = −˙̂a2 = −
e3z4

a2
+ ã2e3 − e2

3

˙̃ω2 = − ˙̂ω2 =
δ2

ω2
e4z4 + ω̃2e4 − e2

4. (23)

The initial values of estimates for uncertain parameters are
â1(0) = â2(0) = ω̂1(0) = ω̂2(0) = 0.

Substituting Eqs. (22) and (23) into Eq. (21), we obtain

V̇ = −a1e2
1 − ω1e2

2 − a2e2
3 − ω2e2

4 ≤ 0 (24)

which is a negative semi-definite function of e1, e2, e3, e4, ã1,
ã2, ω̃1, and ω̃2. The Lyapunov asymptotical stability theorem is
not satisfied. We cannot obtain that the common origin of error
dynamics (19) and parameter dynamics (23) is asymptotically
stable. Now, D is an 8-manifold, n = 8 and the number
of error state variables p = 4. When e1 = e2 = e3 =

e4 = 0 and ã1, ã2, ω̃1, ω̃2 take arbitrary values, V̇ = 0,
so X is a 4-manifold, m = n − p = 8 − 4 = 4.
m + 1 < n is satisfied. By the pragmatical asymptotical
stability theorem, error vector e approaches zero and the
estimated parameters also approach the uncertain parameters.
The pragmatical generalized synchronization is obtained. The
equilibrium point e1 = e2 = e3 = e4 = ã1 = ã2 = ω̃1 = ω̃2 =

0 is pragmatically asymptotically stable. Under the assumption
of equal probability, it is actually asymptotically stable. The
numerical results are shown in Fig. 1. After 10 s, the generalized
synchronization is accomplished.

Case II. The cubics of chaotic states of the goal system, a
double Duffing chaotic system, used as F(t).

We demand

lim
t→∞

ei = lim
t→∞

(xi − yi + z3
i ) = 0, i = 1, 2, 3, 4 (25)

and then
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ė = ẋ − ẏ + 3z2 ż. (26)

ė1 = −2a1

√
1 − x2

1 sin x2 + 2â1

√
1 − y2

1 sin y2 − u1 + 3z2
1 ż1

ė2 = −ω1(x1 − x3)− ω̂1(y1 − y3)+ 2a1
x1√

1 − x2
1

cos x2

− 2â1
y1√

1 − y2
1

cos y2 − u2 + 3z2
2 ż2 (27)

ė3 = −2a2

√
1 − x2

3 sin x4 + 2â2

√
1 − y2

3 sin y4 − u3 + 3z2
3 ż3

ė4 = −ω2(x3 − x1)+ ω̂2(y3 − y1)+ 2a2
x3√

1 − x2
3

cos x4

− 2â2
y3√

1 − y2
3

cos y4 − u4 + 3z2
4 ż4

where e1 = x1 − y1 + z3
1, e2 = x2 − y2 + z3

2, e3 = x3 − y3 + z3
3,

and e4 = x4 − y4 + z3
4.

Choose a Lyapunov function in the form of a positive
definite function:

V (e1, e2, e3, e4, ã1, ã2, ω̃1, ω̃2)

=
1
2
(e2

1 + e2
2 + e2

3 + e2
4 + ã2

1 + ã2
2 + ω̃2

1 + ω̃2
2) (28)

where ã1 = a1−â1, ã2 = a2−â2, ω̃1 = ω1−ω̂1, ω̃2 = ω2−ω̂2
and â1, â2, ω̂1, ω̂2 are estimates of uncertain parameters a1, a2,
ω1, and ω2, respectively.

Its time derivative is

V̇ = e1[−2a1

√
1 − x2

1 sin x2 + 2â1

√
1 − y2

1 sin y2

− u1 + 3z2
1z2] + e2

[
− ω1(x1 − x3)+ ω̂1(y1 − y3)

+ 3z2
2(z1 − z3

1 − δ1z2 + f1 cosψ1 t)

+ 2a1
x1√

1 − x2
1

cos x2 − 2â1
y1√

1 − y2
1

cos y2 − u2


+ e3[−2a2

√
1 − x2

3 sin x4 + 2â2

√
1 − y2

3 sin y4

− u3 + 3z2
3z4] + e4

[
− ω2(x3 − x1)+ ω̂2(y3 − y1)

+ 3z2
4(z3 − z3

3 − δ2z4 + f2 cosψ2 t)

+ 2a2
x3√

1 − x2
3

cos x4 − 2â2
y3√

1 − y2
3

cos y4 − u4


+ ã1(−˙̂a1)+ ã2(−˙̂a2)+ ω̃1(− ˙̂ω1)+ ω̃2(− ˙̂ω2). (29)

Choose

u1 = −2a1

√
1 − x2

1 sin x2 + 2â1

√
1 − y2

1 sin y2

+ â1e1 +
3â1z2

1z2

a1
+ ã2

1

u2 = 2a1
x1√

1 − x2
1

cos x2 − 2â1
y1√

1 − y2
1

cos y2

+ 3z2
2(z1 − z3

1 + f1 cosψ1 t)
+ ω̂1e2 − ω1(x1 − x3)+ ω̂1(y1 − y3)

−
3δ1

ω1
ω̂1z3

2 + ω̃2
1 (30)

u3 = −2a2

√
1 − x2

3 sin x4 + 2â2

√
1 − y2

3 sin y4

+ â2e3 +
3â2z2

3z4

a2
+ ã2

2

u4 = 2a2
x3√

1 − x2
3

cos x4 − 2â2
y3√

1 − y2
3

cos y4

+ 3z2
4(z3 − z3

3 + f2 cosψ2t)+ ω̂2e4 − ω2(x3 − x1)

+ ω̂2(y3 − y1)−
3δ2

ω2
ω̂2z3

4 + ω̃2
2

˙̃a1 = −˙̂a1 = −
3e1z2

1z2

a1
+ ã1e1 − e2

1

˙̃ω1 = − ˙̂ω1 =
3δ1

ω1
e2z3

2 + ω̃1e2 − e2
2

˙̃a2 = −˙̂a2 = −
3e3z2

3z4

a2
+ ã2e3 − e2

3

˙̃ω2 = − ˙̂ω2 =
3δ2

ω2
e4z3

4 + ω̃2e4 − e2
4.

(31)

The initial values of estimates for uncertain parameters are
â1(0) = â2(0) = ω̂1(0) = ω̂2(0) = 0. Substituting Eqs. (30)
and (31) into Eq. (29), it can be rewritten as

V̇ = −a1e2
1 − ω1e2

2 − a2e2
3 − ω2e2

4 ≤ 0 (32)

which is a negative semi-definite function of e1, e2, e3,
e4, ã1, ã2, ω̃1, and ω̃2. The Lyapunov asymptotical stability
theorem is not satisfied. We cannot obtain that the common
origin of error dynamics (27) and parameter dynamics (31)
is asymptotically stable. In our case, V̇ = 0 when e1 =

e2 = e3 = e4 = 0, and ã1, ã2, ω̃1, and ω̃2 take arbitrary
values. n = 8, m = 4, m + 1 < n is satisfied. By the
pragmatical asymptotical stability theorem, the equilibrium
point e1 = e2 = e3 = e4 = ã1 = ã2 = ω̃1 = ω̃2 = 0
is pragmatically asymptotically stable. Under the assumption
of equal probability, it is actually asymptotically stable. The
error vector e approaches zero and the estimated parameters
approach the uncertain parameters. The numerical results are
shown in Fig. 2. After 10 s, the generalized synchronization is
accomplished.

4. Conclusions

In this paper pragmatical generalized synchronization of
adaptive control is studied. The pragmatical asymptotical
stability theorem fills the vacancy between the actual
asymptotical stability and mathematical asymptotical stability;
the conditions of the Lyapunov function for pragmatical
asymptotical stability are lower than those for traditional
asymptotical stability. By using this theorem, with the same
conditions for the Lyapunov function, V > 0, V̇ ≤ 0, as in
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Fig. 1. Time histories of states, state errors, z1, z2, z3, z4, â1, â2, ŵ1, and ŵ2 for Case I with a1 = 4.9, a2 = 4.9, ω1 = 3.03, ω2 = 1.83.
the current scheme of adaptive synchronization, we not only
obtain the generalized synchronization of chaotic systems but
also prove that the estimated parameters approach the uncertain
values. Two Quantum-CNN chaotic systems and a double
Duffing chaotic system are used as the master system, slave
system, and goal system, respectively, in two cases: the chaotic
states of a goal system, a double Duffing chaotic system, used
as F(t) and the cubics of chaotic states of the same goal system
used as F(t). These generalized synchronizations of chaotic
systems by adaptive control can be used to increase the security
of communication.

Acknowledgment

This research was supported by the National Science
Council, Republic of China, under Grant Number NSC 95-
2221-E-009-175.



Z.-M. Ge, C.-H. Yang / Physica D 231 (2007) 87–94 93
Fig. 2. Time histories of states, state errors, z1, z2, z3, z4, â1, â2, ŵ1, and ŵ2 for Case II a1 = 4.9, a2 = 4.9, ω1 = 3.03, ω2 = 1.83.
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