US20080111718A1
a9y United States

a2 Patent Application Publication (o) Pub. No.: US 2008/0111718 A1

Lin et al. (43) Pub. Date: May 15, 2008
(54) STRING MATCHING SYSTEM AND METHOD (30) Foreign Application Priority Data
USING BLOOM FILTERS TO ACHIEVE
SUB-LINEAR COMPUTATION TIME Nov. 15,2006 (TW) oo 095142250
Publication Classification
(76) Inventors: Po-Ching Lin, Taipei City (TW); (51) Int.CL
Ying-Dar Lin, Hsinchu City (TW); HO3M 7130 (2006.01)
Yi-Jun Zheng, Hsinchu City (TW); (52) US.Cl it 341/51
Yuan-Cheng Lai, Taipei City (TW) 67 ABSTRACT

A string matching system includes a text string, a plurality of
Correspondence Address: patterns, an m-byte search window and a plurality of Bloom

LAW OFFICES OF LAIANDASSOCIATES, PC. 1, 50 Ui he o g under npecton. Fvery
Bloom filter comprises sub-strings of a plurality of patterns.

HOUSTON, TX 77036 These Bloom filters are queried for membership of the right-

most block in the search window to determine the shift length.

The acceleration efficiency of matching many bytes can be

(21) Appl. No.: 11/756,453 achieved simultaneously by shifting the search window for
many bytes. Meanwhile, the patterns are stored into an

embedded memory through a memory-efficient mechanism-

(22) Filed: May 31,2007 the Bloom filter.
Start
Provide a plurality ol palterns S41
|
Provide a text suing }ﬂ/ S47
» Stand [or an m-bylc sub-siring [rom (he (ext siring oy S43

under inspection through an m-byte search window

l

Require a plurality of Bloom filters for membcership of

a rightmost block in the m-byte search window to
determine a shift length, wherein every Bloom filter

S44

comprises sub-strings ol the plurality ol pattcrns

345

No whether shift Yes

length is 0

Sa7

(Query the Bloom filters for comperison
from the rightmaost block in the m-byte
search window. Check whether a shift
length > 0 is derived?

Shifl the m-bylc scarch Yes
window according to

the shift length L, S46

Perform verification aller all
blocks in the search window
are compared completely, and
then shift a byze for the
m-byle search window

Check whether or nof all

toxt strings arc matched

Patent Application Publication = May 15, 2008 Sheet 1 of 5 US 2008/0111718 A1

—
(start .~ 811

512

Compare the shift |\~
distance tabi‘e;

T Yes

- :
= M shift lerigth is 0
\‘\\mwwm /

/ S14 815
| /

Shift forward search 1 | Compare the hash value
window for the distance | | table that contains the
implied from the table | | paltern set

lookup | \
k//{ff a string in the

table is the same x

817 | Setthe successfnl | | Shift forward 1 byte
S, Amatching flag as for the shding
true | | window

818

FIG. 1

May 15, 2008 Sheet 2 of 5 US 2008/0111718 A1

Patent Application Publication

P3SUS YIS

¢ DIAd
vz 7V uspedy-x | T weyed puosog waned 1SIL]
1wz V| swopedjo Suins-qng
A 4

y A 4 A m

- L !

RNMGUOOITUY-X | eeenaanae woog puoosg 1N wooid s “

Y y'y Y i

SuLns-gqns NAQ-us
1zz 7V ms-q q

i MOpUIM [OIB3S 91AQ-1

A

Fuiys 1%y,

May 15, 2008 Sheet 3 of 5 US 2008/0111718 A1

Patent Application Publication

€ Old

sa|npowl Buyes Ajuold

oe

A

7y

Ge

> Bloom Fiter (G4)

» Bloom Filter (Gg)

> Bloom Filter (G4)

> Bloom Fiter (Gg) |
| Bloom Filter (G7) »

> Bloom Filter ((G5) 1

—*| Bloom Filter (Gg) [

— Bloom Filter (Gy) 1

LE

A

uo[oalp yosess

MOPUIM Y2eaS VA%

Jaunoo a)Ag

NN oo

ﬁ

A 4

ID[[ODUOD YIS

NN e

{z1el=2
{fiz''qe}=95
{xAzl*oqe}—5o
{mxAZ* Ml pogel =15
{amxA wipl'epogt =9
{nAamx‘uwp ‘Jepo} =
{inmwouwu‘Byept= o
{siInA‘douw‘ybie} =0
SINAMXAZ —£4
douwpili=24
ubjepoge=td

Patent Application Publication = May 15, 2008 Sheet 4 of 5 US 2008/0111718 A1

Start
v
ide a plurality of S41
Provide a plurality of patterns 1/
v
Provide a text string 1/ S42
v
o Stand for an m-byle sub-string from the tex! string %y s43
under inspection through an m-byte search window

A 4

Require a plurality of Bloom filters for membership of
a rightmost block in the m-byte search window to
determine a shift length, wherein every Bloom filter

,, S44

comprises sub-strings of the plurality of patterns

whether shift

length1s 0 S47

v

Shift the m-byte search Yes
window according to |

the shift length N/ S46

Query the Bloom filters for comparison
from the rightmost block in the m-byte
search window. Check whether a shift
length > 0 1s derived?

S48

Perform verification after all
blocks in the search window
are compared completely, and
then shift a byte for the
m-byle search window

Check whether or not all

text strings are matched

Patent Application Publication = May 15, 2008 Sheet 5 of 5 US 2008/0111718 A1

Check if all bytes in the text string
are matched, or if pattemns are

found in the text string

A 4
Perform comparison in the first phase, query a End
plurality of Bloom filters for a rightmost block in
the search window, and find out the shift length of ShH2
the search window based on heuristic 4%
Check if the
shift length 15 O
No
S84 S55
i Shift the search §
window y
A Perform comparison in the second phase, and

query the Bloom filters for comparison from

the rightmost block in the search window

Check if blocks
with shift length
>0 are found

Yes

So/

S

Perform verification through the
verification module, and shift the
search window for a byte

NoO

FIG. 5

US 2008/0111718 Al

STRING MATCHING SYSTEM AND METHOD
USING BLOOM FILTERS TO ACHIEVE
SUB-LINEAR COMPUTATION TIME

BACKGROUND OF INVENTION

[0001] 1. Field of the Invention

[0002] The present invention generally relates to a string
matching system and its method, and more particularly to the
system and the method, which employ a plurality of Bloom
filters for matching the strings and decide the shift distance of
the search window to achieve the goal of accelerating hard-
ware (HW) within sub-linear computation time.

[0003] 2. Description of Related Art

[0004] While more and more people gain access to the
Internet, there is ever-growing information flowing across the
network. However, potential network intrusion and attack
pose negative influences upon computer and network sys-
tems. For example, a variety of servers or even PCs (personal
computers) are vulnerable to viruses.

[0005] In recent years, many safety-related information
systems, such as a Network Intrusion Detection System
(NIDS) and an antivirus system have become an important
safety-related network technology, in which the matching
efficiency of network packet content is decisive to the system
performance. In the event of slow matching speed on strings,
the network-dependent tasks may not be performed on time,
so the failures of detecting network intrusion or viruses
increases to a great extent.

[0006] A sub-linear time algorithm can skip characters not
in a match during scanning for signatures of intrusions and
viruses. Therefore, it can be very efficient for signature
matching. FIG. 1 depicts the flow process of a typical sub-
linear time string matching method, of which the matching
steps include:

[0007] Step S11: Start;

[0008] Step S12: Build up a block containing the last bytes
in the search window, and look it up in the shift distance table
to obtain a shift length N;

[0009] Step S13: Check if shift length is O if yes, perform
Step S15, otherwise, perform Step S14;

[0010] Step S14: Shift forward the search window for the
distance implied from the table lookup, and return to Step
S12;

[0011] Step S15: Compare the hash value table that con-
tains the pattern set;

[0012] Step S16: Check if a string in the table is the same;
if yes, perform Step S17, otherwise, perform Step S18;
[0013] Step S17: Set the successful matching flag as true;
[0014] Step S18: Shift forward 1 byte for the sliding win-
dow, and return to Step S12; and

[0015] Step S19: Output.

[0016] The shift length of the search window is generally
decided by means of looking up the shift distance table. This
requires a large memory space to store the shift length for
every block. When a small block is used to reduce the table
space, frequent verification may be required, thus leading to
slower matching speed and poorer matching efficiency. To
overcome the aforementioned problems of the prior art, it
would be an improvement if the art provides a better structure
that can significantly improve the efficacy.

[0017] To this end, the inventor has provided the present
invention of practicability after deliberate design and evalu-

May 15, 2008

ation based on years of experience in the production, devel-
opment and design of related products.

SUMMARY OF THE INVENTION

[0018] For this reason, the purpose of the present invention
is to provide a string matching system and its method, which
employ a plurality of Bloom filters to match the strings and
decide the shift length of the search window to achieve the
goal of accelerating hardware (HW).

[0019] For this purpose, the string matching system of the
present invention comprises a text string, a plurality of pat-
terns, an m-byte search window and a plurality of Bloom
filters. The m-byte search window stands for an m-byte sub-
string in the text string under inspection. Every Bloom filter
comprises sub-strings of a plurality of patterns. These Bloom
filters are queried for membership of the blocks from the
rightmost one in the search window to determine the shift
length.

[0020] According to the string matching system and
method of the present invention, a heuristic algorithm is used
to match several bytes simultaneously by skipping over
unsuccessful bytes without increasing the complexity of
hardware. The patterns are stored into an embedded memory
through a memory-efficient mechanism-the Bloom filter,
thereby saving the memory space without the need of setting
up the shift distance table.

BRIEF DESCRIPTION OF THE DRAWINGS

[0021] FIG. 1 shows a flow process of a conventional sub-
linear time string matching method;

[0022] FIG. 2 shows a block diagram ofthe string matching
system of the present invention;

[0023] FIG. 3 shows aview of a preferred embodiment of a
string matching system of the present invention;

[0024] FIG. 4 shows a flow process of a string matching
method of the present invention; and

[0025] FIG. 5 shows a flow process of a preferred embodi-
ment of a string matching method of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0026] The features and the advantages of the present
invention will be more readily understood upon a thoughtful
deliberation of the following detailed description of a pre-
ferred embodiment of the present invention with reference to
the accompanying drawings.

[0027] FIG. 2 depicts a block diagram of a string matching
system of the present invention, wherein the system com-
prises a text string 21, a plurality of patterns 24, an m-byte
search window 22 and a plurality of Bloom filters 23. The
m-byte search window 22 stands for an m-byte sub-string 221
in the text string 21 under inspection. Every Bloom filter 23
comprises sub-strings 241 of a plurality of patterns, wherein
the Bloom filters are required for membership of a rightmost
block in the m-byte search window 22 to initially determine a
shift length 25.

[0028] The length of the m-byte search window is equal to
the shortest length of the pattern. Every pattern is divided into
M-Q+1 sub-strings based on length Q. The sub-strings are
grouped according to positions of the sub-strings in the pat-
tern in order to be respectively stored in the Bloom filter. In
addition, every pattern is grouped into a plurality of sub-
strings according to the prefix of preceding i words, wherein
i=1,...(Q—1), and are separately stored in the Bloom filter.

US 2008/0111718 Al

Moreover, the string matching system comprises a priority
setting module. When the Bloom filter generates two or more
shift lengths, the priority setting module is used to determine
the shift length and output the shorter shift length on a prior-
ity.

[0029] FIG. 3 depicts a view of a preferred embodiment of
a string matching system of the present invention. P, P,, P,
are patterns. The texts to be searched are stored separately in
a text buffer area 31, where a search window 32 is shifted to
compare the bytes in the window to determine whether or not
patterns appear in the pattern set. If the string length in the
pattern set is not the same, and it supposes the minimum
length is M, only the pattern with prefix length M is consid-
ered. And, the length of the search window 32 is also setas M,
the shift position of the search window is controlled through
the byte counter 33, and the suffix in the preceding buffer area
will become the prefix of next buffer area for repetitive
matching to prevent some patterns in the patterns spanning
two buffer areas against matching. In common case, the bytes
in the search window are not matched one by one, so possibly
bytes which are unsuccessfully matched shall be skipped
over, and the search window is shifted forward for several
bytes.

[0030] To determine the shift distance ofthe search window
32 conveniently using heuristic algorithm, every pattern in
the pattern set is considered to be composed of M-Q+1
blocks, wherein Q is the block length. In the preferred
embodiment, Q=4, P,=abcdefgh is deemed as five blocks:
abcd-bede-cdef-defg-efgh, and the like. Every block is
grouped according to its position in the pattern, and then
stored separately in the Bloom Filter 35. In addition, the
prefixes of preceding i words in every pattern are grouped, i=1
..., (Q—1), and separately stored in respective Bloom Filter
35. In the preferred embodiment, the prefixes of blocks and
blocks in the pattern set {P, ,P,,P;} are grouped into G,-G-, as
shown in the figure.

[0031] The matching process begins with searching the
rightmost block of the length Q in the search window 32, and
simultaneously querying the Bloom Filter 35 to determine
whether or not the rightmost block appears from G, to G, and
whether or not the suffix of this block is located among G5 to
G,. If the Bloom Filter 35 representing G, is successfully
queried (possibly successful querying of more than one G,),
the suffix of the block or the pattern possibly exists in G,. If
1>0, the shift distance of the search window 32 1s the mini-
mum value of i; if G,, is unsuccessfully queried, the shift
distance of the search window 32 is m-bytes; if i=0, the
matching process in the next phase is performed. The afore-
mentioned heuristic is summarized below:

the shift distance of the search window =

min{fsuccessful querying of G;},the minimum value of i > 0;
m, unsuccessful querying of any Gj;

comparingin the next phase, the minimum value of i =0;

[0032] Even if the Bloom Filter 35 misjudges in this sys-
tem, the heuristic only enables the search window to have a
smaller shift distance, but no intended pattern is missed. In the
embodiment, the rightmost “exam” block in the search win-
dow does not exist in any block of the patterns, and its suffix
is not the prefix of any pattern either. Thus, the search window
could be freely shifted 8 bytes without missing any pattern.

May 15, 2008

After querying with heuristic, the query result of the Bloom
Filter 35 is sent to the priority setting module 36 to find out the
minimum value, and then sent to the shift controller 34 to
compute a new value of the byte counter 33, equivalent to
shifting the search window 32 to the next position. Therefore,
several bytes can be compared simultaneously since several
bytes are skipped one time in the search window 32. If the
search window 32 exceeds the scope of the text buffer area 31,
the next batch of texts is loaded to the buffer area for continu-
ously searching. The searching could end, where applicable,
if one or more patterns are found in the text (or no any pattern
is matched).

[0033] Ifthe minimum value of 1 for successful querying of
G, is 0, the next matching step is performed. The reciprocal
2" and 3" blocks, and so on in the search window are com-
pared sequentially from right to left, while the positions of the
Bloom Filters 35 in G, are queried and found out. The possible
matching results are listed below:

[0034] (1) If the reciprocal i-th block from right to left
successfully queries the Bloom Filter representing G,_,, the
content in the search window 32 may still be a portion of a
certain pattern, and then the matching process continues until
all blocks in the search window 32 are completely matched
for successful querying of the Bloom Filters. In such case, the
validation process is performed.

[0035] (2) If the reciprocal i-th block from right to left fails
to query the Bloom Filter representing G, _,, the content of
the search window 32 may not exist in any pattern, so no
continuous matching is required. In such case, check which
Bloom Filter 35 representing G, is successfully queried,
wherein j>>1—1.In the case of successful querying two more
Bloom Filters 35, the shift distance of the search window 32
is j—i+1, otherwise m—i+1.

[0036] Inthe case of successful querying Bloom Filter by
every block in the search window 32, the words in the window
may present a portion of or whole patterns. In such case, the
validation process is performed, rather than validation imme-
diately after successful querying the rightmost block. There-
fore, the frequency of validation is reduced and worse situa-
tion induced by external attackers is decreased, so that the
system may not take much time for verification.

[0037] Through a non-blocking verification interface, the
words are verified by a verification module. Meanwhile the
search window is shified with a byte to search continuously
without waiting, such that the search time may not be delayed
by the verification procedure.

[0038] FIG. 4 depicts a flow process of a string matching
method of the present invention:

[0039] Step S41: Provide a plurality of patterns;
[0040] Step S42: Provide a text string;
[0041] Step S43: Stand for an m-byte sub-string from the

text string under inspection through an m-byte search win-
dow;

[0042] Step S44: Require a plurality of Bloom filters for
membership of a rightmost block in the m-byte search win-
dow to determine a shift length, wherein every Bloom filter
comprises sub-strings of the plurality of patterns;

[0043] Step S45: Determine whether or not shift length is 0,
if yes, perform Step S47, otherwise, perform Step S46;
[0044] Step S46: Shift the m-byte search window accord-
ing to the shift length;

[0045] Step S47: Sequentially query the Bloom filters for
comparison from the rightmost block in the m-byte search

US 2008/0111718 Al

window, and determine whether or not the block with shift
length>0 is found, if yes, perform Step S46, otherwise, per-
form Step S48;

[0046] Step S48: Perform verification after all blocks in the
search window are compared completely, and then a byte for
the m-byte search window is shifted; and

[0047] Step S49: Check whether or not all text strings are
matched completely, if yes, finish the matching; otherwise,
repeat Step S43.

[0048] The length of the m-byte search window is equal to
the shortest length of the pattern. Every pattern is divided into
M—Q+1 sub-strings based on length Q. The sub-strings are
grouped according to positions of the sub-strings in the pat-
tern in order to be respectively stored in the Bloom filter. In
addition, every pattern is grouped into a plurality of sub-
strings according to the prefix of preceding i words, wherein
i=1,...,(Q—1), and are separately stored in the Bloom filter.
Moreover, the string matching system comprises a priority
setting module. When the Bloom filter generates two or more
shift lengths, the priority setting module is used to determine
the shift length and output the shorter shift length on a prior-
ity.

[0049] FIG. 5 depicts the flow process of a preferred
embodiment of a string matching method of the present
invention:

[0050] Step S51: Check whether or not all bytes in the text
string are matched, or whether or not patterns are found in the
text string; if yes, finish the matching, otherwise, perform
Step S52;

[0051] Step S52: Perform comparison in the first phase,
query a plurality of Bloom filters for a rightmost block in the
search window, and find out the shift length of the search
window based on heuristic;

[0052] Step S53: Check whether or not the shift length is 0;
if yes, perform Step S55, otherwise, perform Step S54;
[0053] Step S54: Shift the search window, and return to
Step S51;

[0054] Step S55: Perform comparison in the second phase,
and sequentially query the Bloom filters for comparison from
the rightmost block in the search window;

[0055] Step S56: Check whether or not blocks with shift
length>>0 are found; if yes, perform Step S54, otherwise,
perform Step S57; and

[0056] Step S57: Perform verification through the verifica-
tion module, and shift the search window for a byte, and
return to Step S51.

[0057] Although the invention has been explained in rela-
tion to its preferred embodiment, it is to be understood that
many other possible modifications and variations can be
made without departing from the spirit and scope of the
invention as hereinafter claimed.

What is claimed is:

1. A string matching system, comprising:

a text string;

a plurality of patterns;

an m-byte search window standing for an m-byte sub-
string in the text string under inspection; and

a plurality of Bloom filters, each of the Bloom filter com-
prising sub-strings of the plurality of patterns; wherein
the Bloom filters are required for membership of a right-
most block in the m-byte search window to determine a
shift length.

May 15, 2008

2. The string matching system defined in claim 1, wherein
thelength of the m-byte search window is equal to the shortest
length of the pattern.

3. The string matching system defined in claim 1, wherein
if the shift length is N, the m-byte search window stands for a
next m-byte sub-string in the text string under inspection by
shifting forward N bytes.

4. The string matching system defined in claim 1, wherein
every said pattern is divided into M—Q+1 sub-strings based
on length Q, and the sub-strings are grouped according to
positions of the sub-strings in the pattern in order to be sepa-
rately stored in the Bloom filter.

5. The string matching system defined in claim 4, wherein
every said pattern is grouped into a plurality of sub-strings
according to the prefix of preceding i words, wherein i=1, . .
. (Q—1), and are stored separately in the Bloom filters.

6. The string matching system defined in claim 1, further
comprising a priority setting module, wherein when the
Bloom filter generates two or more shift lengths, the priority
setting module is used to determine the shift length and output
the shorter shift length on a priority.

7. A string matching method, comprising:

(a) providing a plurality of patterns;

(b) providing a text string;

(c) standing for an m-byte sub-string from the text string

under inspection through an m-byte search window;

(d) requiring a plurality of Bloom filters for membership of

the rightmost block in the m-byte search window to
determine a shift length, wherein every Bloom filter
comprises sub-strings of the plurality of patterns; and

(e) if the shift length is 0, the Bloom filters are queried for

comparison of the blocks from the rightmost one back-
ward in the m-byte search window; if the shift length is
not greater than 0, verification is implemented after fin-
ishing comparison, and a byte for the m-byte search
window is shifted, and if the shift length is not 0, or
greater than 0, the m-byte search window is shifted
according to the shift length; and

(D) repeating Step (c) to Step (e) until the text string is

matched completely.

8. The method defined in claim 7, wherein the length of the
m-byte search window is equal to the shortest length of the
pattern.

9. The method defined in claim 7, whereinifthe shift length
is N, the m-byte search window stands for a next m-byte
sub-string in the text string under inspection by shifting for-
ward N bytes.

10. The method defined in claim 7, wherein every said
pattern is divided into M—Q+1 sub-strings based on length
Q, and the sub-strings are grouped according to positions of
the sub-strings in the pattern in order to be respectively stored
in the Bloom filter.

11. The method defined in claim 10, wherein every said
pattern is grouped into a plurality of sub-strings according to
the prefix of preceding 1 words, whereini=1, ..., (Q—1),and
are stored separately in the Bloom filter.

12. The method defined in claim 7, further comprising a
step of providing a priority setting module, wherein when the
Bloom filter generates two or more shift lengths, the priority
setting module is used to determine the shift length and output
the shorter shift length on a priority.

k& ok k%

