US 20050289207A1

a2 Patent Application Publication o) Pub. No.: US 2005/0289207 Al

asy United States

Lee et al.

(43) Pub. Date: Dec. 29, 2005

(54) FAST FOURIER TRANSFORM PROCESSOR,
DYNAMIC SCALING METHOD AND FAST
FOURIER TRANSFORM WITH RADIX-8
ALGORITHM

(76) Inventors: Chen-Yi Lee, Hsinchu City (TW);
Yu-Wei Lin, Tainan City (TW)

Correspondence Address:

ROSENBERG, KLEIN & LEE

3458 ELLICOTT CENTER DRIVE-SUITE 101
ELLICOTT CITY, MD 21043 (US)

(21) Appl. No.: 11/052,876
(22) Filed: Feb. 9, 2005
(30) Foreign Application Priority Data
Jun. 24, 2004 (TW).cooeerereeeeeecrsneenens 93118237

Publication Classification

(51) It CL7 oo GOGF 15/00
(52) US.CL oo 708/404
7) ABSTRACT

The present invention provides a fast Fourier transform
processor, dynamic scaling method and fast Fourier trans-
form with radix-8 algorithm. It reduces quantization errors
generated from the operation by using a matrix prefetch
buffer-based fast Fourier transform processor. Operation
sizes of the matrix prefetch buffer as block sizes the inven-
tion adjust the signals against overflow by the status of
signals in each block. It can shunt time of complex multi-
plication operation systematically and reduce operation
complexity in butterfly units by utilizing algorithms of
3-step radix-8 fast Fourier transform and re-scheduling.
Moreover, the present invention provides a fast Fourier
transform processor for realizing the methods and algo-
rithms mentioned above.

els

If (the butterfly number < = the
first half of that in each group)

BU_l=mode A;
e

BU 1=mode B;

If (group number == even)
—p BU 3=mode C;
else -

BU_3=mode D;

US 2005/0289207 Al

Patent Application Publication Dec. 29, 2005 Sheet 1 of 12

(LIV JORdd) 1 314

REARRRRRREN:

. N . N -
[\K~ ..\\Kﬂ

[(L1X

[91X

[Clx

[¥1X

[€1X

[TIX

(11x

(01X

[SIX

19).¢

[91X

4):¢

[PIX

(01X

US 2005/0289207 Al

Patent Application Publication Dec. 29, 2005 Sheet 2 of 12

[¥]°x
[31Xx
[f1'Xx
[2]°x
[P1'x
[o]'x
[q]'x

[v]'x

(e)z 314

M [y]" 'y
o [8] “x
AT

N

wll o]y
oM [y
N |

EID'e
[q]'"x

[v]' ‘x

Patent Application Publication Dec. 29, 2005 Sheet 3 of 12 US 2005/0289207 Al

o~
o)
v ~~
Q
< —’
e m
N) (]
— DD
~ . -
— A
o~
— N
\© =~ B
~~
- S
~ N
m L]
R — 20
= .
as
— [a\] on
= e = ~ ~~
S <
=1 ©
3 o
—— M
N

T1
T2
T3

Patent Application Publication Dec. 29, 2005 Sheet 4 of 12 US 2005/0289207 Al

Q .A 0RQL.LO0QACAGROGARAA FOR foo ooo. o

W2z
SRR

YO
‘\T&\ A

Stage 2

......
(XXX XTY L

A ﬂ;v? w\%\\;\\\ X
% ﬁ’f’%\\
Z = / ‘ ‘ \ \

NN

Stage 1
Fig. 4

US 2005/0289207 Al

Patent Application Publication Dec. 29, 2005 Sheet 5 of 12

G 314
 =pou D opou d spou Vv Spou
[q]""x [0]""x [q]""x [v]"x (g1 x [#17"x [q]""x [0]™"x
@TE)
1- I-
MM A - H
"1 Ny AT H MO
\ \ w v \ v
lal'x [°1'x [q]'x [2]'x [9]"x [o]'x (91X [0]'x

US 2005/0289207 Al

Patent Application Publication Dec. 29, 2005 Sheet 6 of 12

9 314

‘gepow=¢ Ng

(uaas — 1raquinu dnoig) J1

7. T =98e1s 5T

‘g spow=] Ng
_ o8]
'V opow=[Ng
(dnois yoeo ur 1ey) Jo jrey IsIy
o) = > Joquunu K[Jrenng oy3) J1

. oso
D apouwi=¢ Nd AI

Patent Application Publication Dec. 29, 2005 Sheet 7 of 12 US 2005/0289207 Al

<t =
] 2
i
8
-
0.
O FS"" ™~
— s O .
] e& B
V 3 ton
a. ad

<>

12

Yok
memory

Patent Application Publication Dec. 29, 2005 Sheet 8 of 12 US 2005/0289207 Al

© =~ &N ¢t WV OV N~ o 2 - 8 o 32w
®
[—— o])]
o v
-c/

N @ O =~ a n

Patent Application Publication Dec. 29, 2005 Sheet 9 of 12 US 2005/0289207 Al

1 T P~
2
25 .
0o
00
...9."‘;8 Sereeneriaenans Boorrveveesiodfeenrenasnnetoiiionns 4 O
'UQQ.
$58
& 0 o 4
[T . A WA |o
%
-
— R ‘1 ... —Qa
C
g 9
(]
'g @)\
S RO O OO SRR oz o
|
4' Jesseansssveonvsrsnsosnsnnssecccnssscssosssssnsuiasacse ..At
<’
:! lllllllllllllllllll QP P 20U BRI LEIIBEEIEAIIIIIEOEOEDS " IR N O RN N NN N RO BN R N Y ‘qm
' A ol
’ 1 L -
= S () N
H o wn
A - UNDOS

US 2005/0289207 Al

Patent Application Publication Dec. 29, 2005 Sheet 10 of 12

01 ‘81

0"

(43

0t [44
CC—_ /
yun
EHOE
y pazijewiou
= @]
pI10921]
T Y01 X T¢
8¢ q pr\‘ WVdS
| snd
- 201 ¥ CC
T i
>~ T opng | 1 Ho‘ﬁ:m | Y201 X C¢
- WVHES
pe m [
-~ PCOL X TC
I INVYS
A ::2 :32 MO
P01 X T
8¢C VS
J
[snd \ ¥Z01 X CC
WOY N INVES
9¢
POl X Z¢
~ Io1nq WVAS
or | yoreyerd TTOL X ¢C
| xmew VS
9z /"

£1owow)1 SSuByOXS BIR(Aﬁ_.Vﬁ ﬁ .Wﬁmm A@VM I wﬁm
_ _

US 2005/0289207 Al

Ndg Y31 23ueyoxa ele(: I9pio uonerddp
~ I L 9 S 14 13 (4 1 0
—(. o o o - - . _ _ _ _ o _ _ . N _ _ _
D RREOEOOOO T HOOOOOOMOR
RN TGy FoY TN TR T T Y KoY F R FY o PR FaY Pl Tl ol o fh
. StOTOIO OO OO O "THOIOIOTOO OO
[\] m [4 L 4 \ 4 4 4 \ 4 4 d ' " L 4 4 4 . 4 \ 4 4 4 v .y T
S OO0 IOIOI00 T OO IO OO IO ORY
I LORODIOOIIOR SOOI IO IO IO
= - . . - . . - . . - - - - .
P OO RDIOIO0 ORISR
m : ; ¢ ; ; 3 : ; a _m:m:.r@.x@?@.v@?@t@?@ W‘M sne H
.m N ror oronrororonono e} e yeyeyeYelrol o e
= L 9 < v € z L o e e by o be bz Do b0
M.. TSNE A TSNA A SNE A TSNE A TSN A SNd ASnd A SNE A SNg A SN9 A SNg A SNd A SN A SNE A SNG A SNd A ,
:

Z1 31

US 2005/0289207 Al

MOY/ uwnjo)

A

ENER : -ors 9

BE} :ours s

B 1 oome 4

B ooma 1

10[s awiI], . ENEY 1 ~nre 0

<

mN,H. VN.H; mN.H. NN,H ~N.H‘ ON.H erH wﬁ.H. :rﬁ E.H m_.H. EH m_,H. N~;H. :,H. EH. Q.Ht mH. \._.H w,ul m..,—l vH. m:._.l N,H ﬂ.H‘ O.H

Patent Application Publication Dec. 29, 2005 Sheet 12 of 12

US 2005/0289207 Al

FAST FOURIER TRANSFORM PROCESSOR,
DYNAMIC SCALING METHOD AND FAST
FOURIER TRANSFORM WITH RADIX-8
ALGORITHM

BACKGROUND OF THE INVENTION
[0001]

[0002] The present invention relates to the technique of
fast Fourier transform processor (FFT processor), and more
particularly to the architecture of fast Fourier transform
processor, dynamic scaling method and fast Fourier trans-
form with radix-8 algorithm.

[0003] 2. Description of the Prior Art

[0004] There is a long-size fast Fourier transform proces-
sor (FFT processor) in some particular wireless communi-
cation systems such as Asymmetrical Digital Subscriber
Line (ASDL), Very-High-Speed Digital Subscriber Line
VSDL), Digital Audio Broadcasting (DAB), and Digital
Video Broadcasting Terrestrial (DVB-T) for increasing the
transmission bandwidth and efficiency. An FFT processor
can take much area of chip and consumes a lot of power in
digital audio/video broadcast systems. SQNR, (Signal to
quantization noise ratio) attenuates with the increase of the
size of FFT; hence. In order to maintain the same SQNR, the
long-size FFT processor needs more wordlength than the
short-size FFT processor. Block-floating point is a dynamic
scaling mechanism usually used for reducing quantization
errors and the length of wordlength in FFT processors.

[0005] FIG. 1 is a diagram of conventional block-floating
point method. It avoids overflow occurring by checking the
signal’s maximum value and adjusts the scale factor appro-
priately after completing every stage operations. The points
in the circle mean that overflows occur after completing the
operation. Meanwhile, the scale factor has to shift right in
order to avoid those overflows. However, currently the
design of dynamic scaling approach or block-floating point
in existence cannot provide the best mechanism for prefetch
buffer-based FFT processors. The radix-8 FFT algorithm
with low hardware complexity is mostly used and based on
the pipeline architecture. It can only utilize serial complex
multiplier operations in a single-port memory-based FET
processor for reducing the hardware complexity. But this
approach scarifies the performance of the processor.

[0006] In conventional prefetch buffer-based FFT proces-
sor the overflow block size is determined by points of FET
and the hardware complexity of high radix FFT processor is
determined by number of complex multipliers. Therefore,
the hardware complexity of this high radix FFT processor is
extremely high.

1. Field of the Invention

[0007] According to the disadvantages motioned above,
the present invention provides a dynamic scaling FFT pro-
cessor and methods to solve these problems.

SUMMARY OF THE INVENTION

[0008] The present invention provides an FFT processor
and dynamic scaling method to realize a dynamic scaling
mechanism of high SNQR by using the size of the matrix
prefetch buffer to determine the size of overflow blocks.

[0009] Additionally, the present invention provides
radix-8 FFT algorithm which can be implemented effec-
tively by rescheduling, thereby being able to reduce the chip
area and power consumption greatly.

Dec. 29, 2005

[0010] Additionally, the present invention employs
radix-8 FFT algorithm to effectively reduce the number of
complex multipliers and therefore to achieve the purpose of
low hardware complexity.

[0011] In order to reach the objects above, the present
invention provides a dynamic scaling FFT processor includ-
ing a matrix prefetch buffer. The dynamic scaling method
extracts data, carries out block-floating operations and deter-
mines the overflow block size by utilizing the size of the
matrix prefetch buffer; after completing the operations in the
matrix prefetch buffer, the data corresponding to belonged
block without overflow is restored by prescaling the data
size dynamically according to the condition of data overflow
and block size.

[0012] Moreover, the present invention provides radix-8
FFT algorithm. It is used in the Fourier transform with plural
stages, wherein the radix-8 FFT algorithm separates a
radix-8 butterfly unit into plural steps; then utilizes the
re-scheduling method to separate the complex multiplication
performed originally in one time in the butterfly unit into
plural steps for execution and shifts part of multiplications
performed in the first step to the last step of the previous
stage for implementation.

[0013] The present invention also provides an FFT pro-
cessor for realizing above methods. It comprises a control
unit for controlling and dealing with actions between com-
ponents. The control unit is coupled to a memory, a matrix
prefetch buffer, a butterfly operator and a normalized unit,
wherein the memory provides storing data and the prefetch
buffer used as a block is in charge to extract data from the
memory; next, the butterfly operator extracts data from the
matrix prefetch buffer for carrying out butterfly operations
and the operated data will be stored back to the matrix
prefetch buffer for determining the scale factor of blocks by
using the data, which is operated by the matrix prefetch
buffer each time; the normalized unit renders the belonged
block without overflow by scaling data size according to the
determined scale factor before the data stored into the
memory.

[0014] The objects, features and efficacy of the invention
will be apparent from the following more detailed descrip-
tions of concrete implemented examples.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] The accompanying drawings are included to pro-
vide a further understanding of the invention, and are
incorporated in and constitute a part of this specification.
The drawings illustrate embodiments of the invention and,
together with the description, serve to explain the principles
of the invention. In the drawings,

[0016] FIG. 1. A diagram of conventional block-floating
point method,
[0017] FIG. 2. (a) A diagram of butterflies of radix-8 FFT

algorithm. (b) A diagram of butterflies of three-step radix-8
FFT algorithm;

[0018] FIG. 3. A time scheduling graph of the complex
multiplications: (a) before scheduling, (b) and (c) after
scheduling;

[0019] FIG. 4. Signal flow chart of the rescheduling
algorithm in a 64-point FFT algorithm;

[0020] FIG. 5. Operation modes of butterfly units in
rescheduling approach;

[0021] FIG. 6. A flow chart of rescheduling algorithm;

[0022] FIG. 7. Architecture of the hardware suitable for a
dynamical scaling approach;

US 2005/0289207 Al

[0023] FIG. 8. A block diagram of block-floating point
method;

[0024] FIG.9.SQNR for 8 K FFT with the invented, fixed
point and block-floating point approaches;

[0025] FIG. 10. A block diagram of the invented FET
architecture;

[0026] FIG. 11. (a) Operation of the matrix prefetch buffer
at the first stage. (b) Operation of the matrix prefetch buffer
at the second stage; and

[0027] FIG. 12. Scheduling of data of the matrix prefetch
buffer operated with butterfly units and exchanged with
memory.

DESCRIPTION OF THE SYMBOLS
10 prefetch buffer

12 memory

[0028]
[0029]
[0030]
[0031]
[0032]
[0033]
[0034]
[0035]
[0036]
[0037]
[0038]
[0039]
[0040]
[0041]
[0042]

14 butterfly unit

20 FFT processor

22 control unit

24 memory

26 matrix prefetch buffer

28 complex multiplier

30 butterfly operator

32 normalized unit

34 buffer

36 common bus

38 record table

40 ROM

42 butterfly unit
DESCRIPTION OF THE PREFERRED

EMBODIMENTS

[0043] The present invention provides a long-size FFT
processor in which a new dynamical scaling approach and a
novel matrix prefetch buffer are exploited. Moreover, a
radix-8 FFT algorithm with data rescheduling is used for
realizing radix-8 FFF more effectively.

[0044] For saving power consumption effectively, it devel-
ops a radix-8 FFT which avoids the disadvantage of multi-

M_

X(%Vl+ﬁ NV3 +/£2)

4

73=07y72=07=0

-

)

M_

1 1
(r1,2v2 1473)2 A1 V] v, 2Y1V Ayav (y1 +272)v; 4y3v
Z Z BUnjs (1, 72, v3, ko) W2 R T g T2 T2 LIS w757

Dec. 29, 2005

plication complexity of conventional radix-2 algorithm. The
operating process of N-point FFT (N=8") is described as
follows.

[0045] The N-points Discrete Fourier Transform (DFT) of
a sequence x(n) is defined as:

N-1 68}

(k)= Wik k=0 N -1,
n=0

[0046] Where x(n) and ng) are complex number and the
twiddle factor is W™= 1"/

[0047] First, let n—n1+8n2, k=N/8k1+k2, n,,k;=0...7, and
n,,k,=0 . . . N/8-1. (1) can be rewritten as:
7 NI 2)
XV /8 k)=) > x + Sy Wi S W)
n=0 np=0
N/g-1
Z Xy +8m)Wid2 Wil'? w1
=0 =0 twiddle factor
N/8 point DFT
8 point DFT
N/g-1 . (3)
$i5
Where BUyyg(iny, k2) = Z il + 8n2)WN%82.
np=0

[0048] Equation (2) can be considered as two-dimensional
DFT. By decomposing the N/8-point DFT into an 8-point
DFT recursively v—1 times, where v is equal log_~. We can
complete the N-point decimation in time (DIT) radix-8 FFT
algorithm.

[0049] In (2), the 8-point DFT, which is a basic operation
unit, is called the butterfly, and is also called butterfly unit
(BU) in an FFT processor in hardware implementation, as
shown in FIG. 2 (a). It is clearly seen from the figure that
7 complex multipliers, corresponding to 28 real multipliers,
is installed in a butterfly unit in the implemented example of
the 8-point DFT. In order to implement radix-8 FFT algo-
rithm more efficiently, the present invention further decom-
poses the butterfly of radix-8 algorithm into three steps and
applies the radix-2 index map to the butterfly of radix-8
algorithm. Applying a three-dimensional linear index map,
n, and k, can be defined as:

Y+ 2t Y1 Yo Yse {01}

ky=4v 42V, +1v5 Vi,V,,v5e{0,1]. &)
[0050] By means of (4), (2) has the following form:

©)

71=072=07.

o3
il

{TU'\//S 71, 720 73 Ko)Wznvl WZlvzwvz‘z}Wmﬂ% wvsvs ;
0

st step

2nd step

Where TUps (Y1, 72, V3> k2) = BUpss (71, 2, V3,

3th step

kz)W/(\}/l +2yp+4y3)k2. (6)

US 2005/0289207 Al

[0051] In (5), we use radix-2 index map to divide an
8-point DFT into three steps. FIG. 2(b) shows the butterfly
of 3-step radix-8 FFT. Because the trivial multiplication,
Wst and W2, at the third step can be easily realized by 6
shifters and 4 adders, radix-8 algorithm can reduce lots
number of complex multiplications deeply. Please refers to
“Anew VLSI-oriented FFT algorithm and implementation”
(see attachment 1) for knowing how the realization of
multipliers can be used with shifters and adders. The original
scheduling of complex multiplication in 3-step radix-8 algo-
rithm is shown in FIG. 3(a), where T1, T2, and T3 mean the
time slot of each step and the rectangle means complex
multiplications in each time slot.

[0052] In order to minimize the number of complex mul-
tipliers, the present invention proposes a re-scheduling
method in 3-step radix-8 FFT algorithm, which is used in 8"
points FFT. The algorithm provides a systematical manner to
move some twiddle factors to previous stage and to balance
the complex multiplications in three time slots in the but-
terfly. The black point in FIG. 4 means to multiply the
twiddle factor at that point and all the removed twiddle
factors are at the third step of the butterfly. Thus, there are
at most 4 complex multiplications in each time slot of the
butterfly and only 4 complex multipliers are needed in 3-step
radix-8 algorithm after re-scheduling. FIG. 3(b) and FIG.
3(c) show the scheduling of the complex multiplication after
re-scheduling.

[0053] Some operation modes need to be added in FIG. 5
since the twiddle factors are located at both the first and the
third steps of the butterfly under the re-scheduling approach
as shown 1in the figure, the operation modes, modes A and B,
are operated at the first step of the butterfly; and the other
two operation modes, modes C and D, are at the third step
of the butterfly.

[0054] In order to let 8 data in the processor operate in the
same mode at each step of the butterfly to reduce operation
complexity, the present invention provides a re-scheduling
algorithm for N-points FFT. It determines which groups are
moved and the stage to which the groups are moved accord-
ing to the stages of FFT and number of butterfly groups.

[0055] First, we define that:
[0056] 1. The Stage of N point FFT is from 1 to L
(logg™).
[0057] 2. The group number in the Lth stage is from 0
to N/8™-1

[0058] 3. The butterfly number of each group in the Lth
stage is from 0 to 81)-1.

[0059] 4. BU_1 is an operation mode in the first step of
butterfly and BU__3 is an operation mode in the third
step of butterfly.

[0060] Referring to the flowchart shown in FIG. 6, the
re-scheduling algorithm of N-point FFT is as follows:

For (stage from 1 to 1)
begin
If (1 = stage = L-1)
begin
If (group number is even)
BU_3=mode C;
else
BU_3=mede D ;

Dec. 29, 2005

-continued

end

If (2 = stage = 1)

begin

If (butterfly number is equal to or less than the first half
of that in each group)

BU_1=mode A ;
else
BU__1=mode B ;
end
end
[0061] Dynamic Scaling Method

[0062] In order to maintain the data accuracy in fixed-
point FFT, the internal wordlength of FFT processor is
usually larger than the wordlength of the input data to
achieve a higher signal to noise ratio (SNR), especially in a
long-size FFT. The block-floating point (BFP), which is one
of the dynamic scaling methods, is usually used in FFT
processors to minimize the quantization error and the needed
wordlenth. In the traditional BFP, the largest value is
detected and all computational results are scaled by a scale
factor in stage N before starting the calculations of the stage
N+1.

[0063] The dynamic scaling method of FFT processors of
the present invention is used in prefetch buffers of FFT
processors. The hardware architecture to which the dynamic
scaling method of the present invention can be applied is
shown in FIG. 7. A prefetch buffer 10 is coupled between a
memory 12 and a butterfly unit (BU) 14. We will use the
architecture mentioned above o assist in describing the
dynamic scaling method of the present invention. The
method comprises the following steps: First, extracting data
in the memory 12 from the prefetch buffer 10, then carrying
out the block-floating point operations from the butterfly
unit and determining the overflow block sizes according to
the size of the prefetch buffer 10 at this time; each time when
the data in the blocks are operated completely, based on the
data overflow quantity, the scale factors of the blocks will be
determined and the size of the data in the blocks scaled so
that the data without overflow can be restored to the memory
12. The manner of scaling data size is to shift the position of
decimal point therein.

[0064] Block-floating point method of the present inven-
tion can be executed by prefetch buffer-based FFT proces-
sors. It improves the SQNR effectively by enlarging the
scale factors and block numbers in the FFT algorithm, FIG.
8 shows an implemented example for 16-point FFT with
4-point block size. It is capable of determining the scale
factors of the blocks after the data in the blocks are operated
completely each time and scaling the size of the data in the
blocks in the previous blocks according to the determined
scale factors to avoid the data overflow before starting to
operate the next block. All of the scale factors are stored in
a table for use in next data operation therein.

[0065] The signal processing quality of three data repre-
sentations including fixed point, traditional block-floating
point, and the proposed approach is simulated. Because the
SNR is highly dependent on the input data, we build up a
system platform for 8 K mode DVB-T system and all data
are generated by this platform. The block size of our

US 2005/0289207 Al

approach is 64 points. It is clearly seen that our proposed
approach can minimize quantization error efficiently and
give much higher SNR than the others at the same
wordlength, as shown in FIG. 9.

[0066] After understanding the efficacy and dynamic scal-
ing method of FFT processors of the present invention, we
will use the architecture of the implemented hardware to
describe how to put the method and efficacy into practice.

[0067] FIG. 10 shows a block diagram of FFT processor
of the present invention. An FFT processor 20 comprises a
control unit 22. The control unit is coupled to a memory 24,
an matrix prefetch buffer 26, four complex multipliers 28, a
operator 30 and a normalized unit 32, wherein the control
unit controls and deals with actions between components
and the memory provides storing data; the matrix prefetch
buffer is in charge to extract the data from the memory and
its size is used as a block size. Four complex multipliers are
coupled between the matrix prefetch buffer and the butterfly
operator and also coupled to the ROM 40; they carry out the
multiplication operation of the data in the matrix prefetch
buffer according the multiplied twiddle factors read out from
the normalized unit and then transfers the data to the
butterfly operator; the butterfly operator 30 consisting of
four butterfly units 42 is used for carrying out butterfly
operations of the data operated by multiplication operation
and storing the operated data back to the block correspond-
ing to the matrix prefetch buffer and after completing the
operations of the data in the matrix prefetch buffer, block
scale factors are determined and stored in a record table 38;
the normalized unit 32 scales data before the data in each
block being operated and stored back into the memory 24.
That is, in order to avoid the data overflow, use the normal-
ized unit 32 to scale the data in the previous block according
the determined scale factors before operating the data in the
next block. Furthermore there installs two buffers 34
between multipliers 28 and the butterfly operator 30 to
register data for reducing the reading times of the matrix
prefetch buffer; and there is a common bus 36 coupled with
the matrix prefetch buffer, the butterfly operator, and the
normalized unit.

[0068] In the present invention, the FFT processor uses
three-level memory to improve data processing efficiency.
The first level is main memory 24 which is divided into eight
data banks to allow concurrent accesses of multiple data and
its size is 8K points; the matrix prefetch buffer 26 is the
second level which installs 64 points for carrying out the
radix-8 operation; the third level is two buffers 34 and each
buffer is eight points. Through an appropriate scheduling
among three-level memories. Single-port memory can be
used in the first and second level without any throughout rate
degradation. Therefore, in this design, the wordlength of real
number and imaginary number is 11 bits by utilizing
dynamic scaling method. The butterfly unit 42 is a core unit
of the FFT processor 20; it comprises a trivial multiplier
dealing with —j, W', W.* and a complex adder/subtractor;
the ROM 40 is a read only memory (ROM) which is used for
storing twiddle factors. Only s period of cosine and sine
waveforms can be stored in the ROM and other period
waveforms can be reconstructed by these stored values. Data
are multiplied by twiddle factors when there are read or
written into buffers 34. The data in buffers need three cycles
in butterfly units to implement the three-step radix-8 FET
algorithm. Therein, the architecture of the matrix prefetch

Dec. 29, 2005

buffer 26 is shown in FIG. 11 (a) and FIG. 11 (b). Columns
0 to 7 are eight butterflies of the first sage and rows 0 to 7
are eight butterflies of the second stage, as shown in FIG. 4.
Eight data in the matrix prefetch buffer 26 are read or written
simultancously in the horizontal or vertical direction each
time; the common bus 36 can reduce the wiring complexity
of chip manufacture in this architecture.

[0069] When data have been completely loaded from the
memory 24 in order, The FFT processor 20 starts to imple-
ment 64 points FFT with three-step radix-8 algorithm. At the
first stage, data are loaded into the matrix prefetch buffer 26
in the column direction in sequence, as shown in FIG. 11
(). After the operation of multipliers 28, the data are stored
in buffers 34 and operated with the butterfly operator 30. All
computed data are restored to the same addresses in the
matrix prefetch buffer. At the second stage, data are loaded
in the matrix prefetch buffer in the row direction in order and
the data operation flow is same as that at stage 1; only the
operated data are transmitted to the normalized unit 32 for
waiting for scaling When the data of row 0 have been loaded
into the normalized unit, new data will be loaded into row
0 from the memory, as shown in FIG. 11(b). In next 64
points, the direction of stage 1 will change to row direction
because the new data is in row direction.

[0070] FIG. 12 shows the scheduling of the data in the
buffers operated with butterfly units and exchanged with
memory. In this figure, the white rectangular is the opera-
tional time of the data in buffers; the gray rectangular is the
time spent in exchanging the data in the matrix prefetch
buffer or loaded into the normalized unit. It can be clearly
seen that there is no stall in this scheduling. Similarly, data
are loaded from the first level into the second level at the
second stage of 64-point FFT and they are restored to the
first level from the normalized unit at the first stage of
64-point FFT. Therefore, single-port memory can be used
without degrading throughout rate. With the 8 K mode
DVB-T system simulation, the wordlength of the real and
imaginary parts has about 4 bits less than that of the fixed
point when bit error rate (BER) meets the 8 K mode DVB-T
standard. So about 64 K bits of memory capacity can be
saved by dynamical scaling method.

[0071] The present invention uses a matrix prefetch
buffer-based FFT processor as a basis and carries out
dynamic scaling according to signals overflow condition in
each block. It uses the size of the matrix prefetch buffer as
a block size to determine if the value in the block needs
overflow. It can improve SNQR and reduce quantization
errors generated from the operation because the determined
overflow block size is smaller than traditional one. Further-
more, using three-step Radix-8 FFT and re-scheduling algo-
rithm to re-schedule the needed operation of the complex
multiplication in butterfly units avoids all the operation of
complex multiplications at the same time and therefore
reduces the number of complex multipliers. This not only
has the advantage of low hardware complexity but also
reduces the chip area and power consumption.

[0072] Inthe above descriptions, we have made use of the
specific implemented examples to explain the features of the
present invention. The main aim is to familiarize those
people with this technology to understand the content of the
invention and to put it into practice. It is evident that various
modifications and changes made in these examples without

US 2005/0289207 Al

departing the spirit and scope of the invention still have to
be included in the scope of the following claims.

What is claimed is:

1. A dynamic scaling method of fast Fourier transform
processor is applied in a fast Fourier transform processor
with a matrix prefetch buffer; the dynamic scaling method
comprises following steps:

(1) to extract data and compute block-floating;

(2) to determine the overflow block size by utilizing the
size of the matrix prefetch buffer; and

(3) after completing the operations in the matrix prefetch
buffer, to prescale dynamically the data size according
the overflow condition and the block size to make the
data to the corresponding block without overflow, then
store the data to the memory.

2. The dynamic scaling method of fast Fourier transform
processor according to claim 1, wherein the step of dynamic
scaling data size is: when the operations of the data in the
block is completed, the scale factor of the blocks is deter-
mined by the overflow quantity of the data, then using the
scale factor to scale the size of the data in the block to avoid
the data overflow.

3. The dynamic scaling method of fast Fourier transform
processor according to claim 2, wherein the data size is
scaled in the previous block before starting the computation
of the data in the next block.

4. The dynamic scaling method of fast Fourier transform
processor according to claim 1, wherein the method of
scaling data size is to shift the position of decimal point

5. A fast Fourier transform with radix-8 algorithm applied
in plural-stage Fourier transform, comprising the following
steps:

(1) to decompose each stage in a radix-8 butterfly operator
into plural steps; and

(2) to utilize rescheduling to separate the complex mul-
tiplications executed originally in one time in the
butterfly operator at the same stage into plural steps for
executing and, shifting part of multiplications from the
first step of the stage to the last step of the previous
stage for executing simultaneously.

6. The fast Fourier transform with radix-8 algorithm
according to claim 5, wherein radix-2 algorithm is applied to
radix-8 algorithm in butterfly operations.

7. The fast Fourier transform with radix-8 algorithm
according to claim 5, wherein to carry out rescheduling
steps, the twiddle factor of the first step of the next stage is
moved and rendered to coexist in the last step of the previous
stage.

8. The fast Fourier transform with radix-8 algorithm
according to claim 5, wherein after rescheduling step, the
step of two balance operation modes is included in butterfly
operation. That is, the first balance operation mode multi-
plies the twiddle factor of the first step in the next stage and

Dec. 29, 2005

the second balance operation mode multiplies the twiddle
factor of the last step in the previous stage.

9. The fast Fourier transform with radix-8 algorithm
according to claim 8, wherein the first and second operation
mode comprise plural modes, respectively.

10. The fast Fourier transform with radix-8 algorithm
according to claim 5, wherein re-scheduling determines
which groups are moved and the stage to which the groups
are moved according to the level of stages and number of
butterfly groups.

11. A fast Fourier transform processor comprises:

a control unit for controlling and dealing with operation
between components;

a memory coupled with a control unit for storing data,

a matrix prefetch buffer as a block size and in charge to
extract data from the memory;

plural multipliers coupled with the matrix prefetch buffer
for carrying out multiplication of data;

a butterfly operator coupled with multipliers for carrying
out butterfly operations of the data in the blocks and
storing the operated data back to belonged block,
thereby the matrix prefetch buffer being able to deter-
mine the scale factor of each block by the operated
data; and

a normalized unit, which scale the data size to the
belonged block without overflow in according to the
determined scale factor before the data stored into
memory.

12. The fast Fourier transform processor according to
claim 11, capable of determining the scale factor of the
belonged block after completing the data operation in the
matrix prefetch buffer and before starting to operate the data
in next block, of scaling the data by utilizing the determined
scale factor in previous block and the normalized unit to
avoid the data overflow.

13. The fast Fourier transform processor according to
claim 11, wherein the butterfly operator consists of plural
butterfly units.

14. The fast Fourier transform processor according to
claim 11, wherein the multipliers are complex multipliers.

15. The fast Fourier transform processor according to
claim 11, wherein the scale factor of each block is stored in
a record table.

16. The fast Fourier transform processor according to
claim 11, installing at least one buffer between multipliers
and butterfly operator.

17. The fast Fourier transform processor according to
claim 11, further comprising a common bus for coupling
with the matrix prefetch buffer, the butterfly operator and the
normalized unit.

18. The fast Fourier transform processor according to
claim 11, further comprising a ROM.

O T

