US 20040095998A1

a2 Patent Application Publication o) Pub. No.: US 2004/0095998 A1l

a9y United States

Luo et al. (43) Pub. Date: May 20, 2004
(54) METHOD AND APPARATUS FOR MOTION (52) US.CL s 375/240.16; 375/240.17
ESTIMATION WITH ALL BINARY
REPRESENTATION (&9))] ABSTRACT
. A method of motion estimation for video encoding con-
(76) Inventors: gngﬁlyngLLuo%JgngheTC\?gy (Tw); structs a binary pyramid structure having three binary %ayers.
Clelllllilg-lll\llgnge%alelugnalga(ohsil)l’ng (TW); A state update module registers and updates repeat occur-
Tihao Chiang Taipé:i (TW) > rence of final motion vectors and a static-state checking
> module determines if the method is in a static mode or a
Correspondence Address: normal mode based on the repeat occurrence. In a normal
SUPREME PATENT SERVICES mode, the first binary layer is searched within a £3 pixel
POST OFFICE BOX 2339 refinement window to determine a first level motion vector.
SARATOGA, CA 95070 (US) In the second binary layer, a search range is computed based
> on six motion vector candidates. By checking every point
(21) Appl. No.: 10/301,415 within in the search range, a second binary layer search
generates a second level motion vector. Finally, a third
(22) Filed: Nov. 20, 2002 binary layer search within a +2 pixel refinement window
generates a final motion vector according to the second level
Publication Classification motion vector. In a static mode, a fine tuning module
performs search within a +1 pixel refinement window and
(51) Int. CL7 e HO4N 7/12 generates a final motion vector.

source video

111 / 100

filtering module

[}

|

l

1

| Y
|

|

I

| module
|

|

binary
layer

binarization

decimation
module

117

static mode

Static-state checking module

109 103 ‘

normal mode

N

first level search module

fine tuning module

second level search module

105 e

Y

third level search module

h

107 7

v

next block

Min SoD
—— final motion vector

119

e

State update module

Patent Application Publication May 20, 2004 Sheet 1 of 13 US 2004/0095998 A1

. 111 / 100
source video

P

1
101 | . |
! | filtering module {
! l
| |
| ! 115
| |
|
113 || binarization decimation ;/
| module module |
| |
R DR |
binary

1 /”/”_—— 17
static mode aycr

Static-state checking module

109 103 . inormal mode
\ v first level search module
fine tuning module l

second level search module | «————

10s - l

third level search module |¢——— —-!

107 e

next block

Min SoD
L—— final motion vector

119

v e FIG. 1a

State update module

Patent Application Publication May 20, 2004 Sheet 2 of 13 US 2004/0095998 A1

l block;

117
121
counter;

122

static mode

normal mode

FIG. 1b

stored vector; at frame j-1

final motion vector; at frame j
123

i No
wO motion vectors

are identical

counter; = counter;+1

counter; = 0

FIG. 1c

Patent Application Publication May 20, 2004 Sheet 3 of 13

binary layer

» data loading module

l

Bit Alignment Module

Don’t care Reference Block

parallel XOR
block matching module

US 2004/0095998 Al

— 203

min SoD

initial motion vector candidate

FIG. 2

Patent Application Publication May 20, 2004 Sheet 4 of 13 US 2004/0095998 A1

105
6 motion vector candidates /

307

motion offset
module

([lenn 2 Rr);lax]9 [Rr}r;lin > Rr)rjlax])

binary Ve 301
data loading module
layer l ¢ g
Bit Alignment Module
Initial Search Position /- 303
:v <4— Predictive MV T
BRI R SR
next , current data
position Don’t care Reference Block (8 bits)
-3 +3
parallel XOR block |q

matching module

l 305

level 2 motion vector candidate

FIG. 3

Patent Application Publication May 20, 2004 Sheet 5 of 13 US 2004/0095998 A1

167
Level 2 motion binary layer /
Vector candidate l 401
L : data loading module
— 403

l S

Bit Alignment Module

Current block at position X

—
— ~

Step 1. Init

Reg A Pt EL F2 43 10 o o1 S S
Reference block at posmon X-1

Right shift to reach mmal search position

Step 3. Reg A @ Reg B
SLASEE current

data
(16 bits)

Don’t cares Don’t cares
Step 4. Ahgnment

" Right shift to align the location on +2
Don’t cares

next L

position parallel XOR
block matching module

final motion vector

FIG. 4a

405

Patent Application Publication May 20, 2004 Sheet 6 of 13 US 2004/0095998 A1

Input the difference of i-th
- block

i Diff for j-th row

Registers for
minSoD and final

» Lookup Table

=i+ l SoDy motion vector
X
Sum of Difference
SoD; Update | with SoD;
and motion | vector;
SoD.<minSoD
Yes

l final motion vector

FIG. 4b

Patent Application Publication May 20, 2004 Sheet 7 of 13

US 2004/0095998 A1

F F B,
OOO0O00O0O RRIRIRIKXX® BPOEPDDDD
OOO0O000O H RRRIRRXIXKX T POPDDDDD

0600001 23008 2Hod0c OO
000000 IR PEODDDD

luﬁ,)

Fio
® ® ® ®

R ® ® &

O Original 8-bits representation
® TFiltered 8-bits representation

® Binary representation

FIG. 5

Patent Application Publication May 20, 2004 Sheet 8 of 13 US 2004/0095998 A1

/ Frame boundary

______ ;__--____-_______-________________-____-____-____“__--‘h_____-__,___-__

F(0,0) F,(]{ 0) F(2 0) F/(3,0) F,(4 0)

0 [(0 3) FI(J 3) F,(Z 3) F(3 3) F(4 3)

FIG. 6

Patent Application Publication May 20, 2004 Sheet 9 of 13 US 2004/0095998 A1

Current block at position X

Step 1. Init

Reg A

Ress B ST
Step 2. Shifting
Reg A bbb .
Left shiﬁ to reach initial scarch posmon Keep two bits for search
Reg B (RO FATE R0

Right.shift to reach initial search position

Step 3. Reg A @ Reg B

Ny A
5 0 A A A 7
L__.v_.__/

Don’t cares Don’t cares

Step 4. Alignment

AT
- — s Right shift to align the location on +2

Don’t cares

FIG. 7

Patent Application Publication May 20, 2004 Sheet 10 of 13 US 2004/0095998 A1

Sl,t(-al)
Sy,N-1)

— SoD (u,v+2R

2R+1 SoD (u,v+2R)
»
5
<
5

3 »SoD (u,v-R+3)

g 4 <
Qg-* 3 \ \ —» SoD (u,v-R+2)
2 \ »SoD (u,v-R+1)

ORI NN .

Sy,e1(u, vtR) S)a(u, v+R +N -1)
Si e (u, v-R+1

Sy, caf{u, v-R+2

b2 3 N time

FIG. 8

Patent Application Publication May 20, 2004

anw i of current block

Sheet 11 of 13

913

US 2004/0095998 Al

915
917

Row j of current block

{L

N

Current block 90 1
Storage 1 I
SI,|(09] N Sl l(o’o}
D
003 Processor g g Processor g gy p
roCessor
44— «------ R,R
S| .((u-R,v+R+1)
Processor g, . Processor p.q, i1
<+ <+------

Processor _p, r \
AY

2R+N

MUX

On-Chip Memory

\

907

S a(u-R+1,v+R~+1)

Pracessor g g Processor g gy

—>

Processor
R.R N
\

Storage 2

Reference block

Reference Window

N\
Sy (utR,v+R+1)

909

Patent Application Publication May 20, 2004 Sheet 12 of 13 US 2004/0095998 A1

Sequence Y PSNR | U PSNR| V_PSNR | AY _PSNR
(Target bitrate, Method (4B) (dB) B Total Bits B)
Size)
FS 3486 | 4059 | 41.12 | 238928
ABME 7, | 3473 | 4028 | 4105 | 239072 | -0.13
Mother- ABME H, | 3474 | 4030 | 4099 | 239120 | -0.12
Daughter ABME Jlc | 3475 | 4034 | 4106 | 239904 | -0.11
Cakbps, QCIF) | ABME_ff | 3477 | 4031 | 4101 | 239016 | 0.09
ABME Ihs | 3478 | 4034 | 4104 | 239200 | -0.08
ABME Hy, | 3474 | 4026 | 4104 | 239064 | -0.12
FS 2084 | 3739 | 3664 | 98832
ABME H, | 2060 | 3735 | 13643 | 99216 -0.24
Containet ABME H, | 2962 | 3747 | 3643 | 99952 022
ABME He | 2060 | 3726 | 3640 | 99144 2024
(10kbps, QCIF) | ApMiE pr,, | 2060 | 3728 | 3644 | 99304 -0.24
ABME Hys | 2963 | 3741 | 3645 | 99256 2021
ABME I, | 29.58 | 3731 | 3647 | 99176 -0.26
FS 2710 | 3898 | 4151 | 1116152
ABME H, | 2673 | 3913 | 4164 |1115072| 037
Comstguard | ABME_Hz | 2687 | 3007 | 4182 | 1114904 | 023
ABME He | 2690 | 39.03 | 4154 |1114568 | -0.20
(112kbps, CIF) | ApME B, | 2689 | 39.02 | 4158 | 1115520 | -021
ABME Fos | 2695 | 39190 | 4181 | 1114800 | -0.15
ABME Hy | 2692 | 39.04 | 4193 | 1113264 | -0.18
FS 3019 | 3679 | 3753 | 1114624
ABME H, | 2956 | 37.05 | 3783 |1114912| -0.63
Foreman ABME Hy | 2976 | 37.08 | 37.89 | 1114864 | -0.43
ABME He | 2978 | 37.12 | 3795 | 1114784 | -0.41
(112kbps, CIT) | A pmE foy | 2972 | 37.08 | 37.92 | 1114864 | -0.47
ABME Hss | 2982 | 37.06 | 37.87 |1114792| -037
ABME Hyp | 2981 | 37.16 | 3814 | 1114928 | -0.38
FS 4077 | 4406 | 4516 | 1115760
ABME f, | 4072 | 4398 | 4501 | 1115872 | -0.05
Akiyo ABME Hy | 4073 | 4400 | 4508 |1115992| -0.04
ABME_He | 4074 | 44.08 | 4515 | 1115808 | -0.03
C(N2kbps, CIF) | ApME f,, | 4074 | 44.02 | 4511 | 1115600 | -0.03
ABME_Hys | 4076 | 44.03 | 4513 1115824 | -0.01
ABME Hy | 4072 | 43.96 | 4504 |45.04129| -0.05

FIG. 10

Patent Application Publication May 20, 2004 Sheet 13 of 13 US 2004/0095998 A1
Sequence Y PSNR | U PSNR | V PSNR | AY PSNR
(Target. bitrate, Method (@B) @B) (iB) Total Bits (dB)
Size)
FS 29.55 34.22 33.96 5095128
ABME_H, 29.36 34.33 34.03 5095072 -0.19
Stefan ABME H; 29.45 34.40 34.11 5095440 -0.10
(512kbps, ABME He | 29.46 | 34.39 34.10 | 5095344 { -0.09
CCIR601) ABME_Hy | 2942 | 3437 3410 | 5095344 | -0.13
ABME H;s 2945 34.39 34.11 5095640 ° -0.10
ABME_ H3 29.44 34.40 34.11 5095160 -0.11
‘Lable Tennis FS 34.65 39.60 39.86 19901976
ABME H, 34.28 39.53 39.74 19901784 -0.37
(2Mbps, ABME Hy | 3449 | 39.63 30.90 |19901688] -0.16
CCIR601) ABME #He | 3450 | 3964 | 3991 |19901680| -0.15
FIG. 10 (Continued)
Complexity Bus Bandwidth
Search
Methods Operations / _
Ranges Speedup Mbytes / sec Ratio
Macroblock
FS . 196608 1 12.39 100 %
16 ABME_H, 4819 40.80 1.26 10.17 %
ABME Hy HW 1599 122.96 1.27 10.25 %
FS 786432 1 20.04 100 %
32 ABME_H; 7459 105.43 1.32 6.60 %
ABME 1, HW 1607 489.38 1.34 6.67%
FS 3145728 1 38.50 100 %
64 ABME_H, 18499 170.05 1.47 3.82%
ABME_/, HW 1623 1938.22 1.50] 3.90 %

FIG. 11

US 2004/0095998 Al

METHOD AND APPARATUS FOR MOTION
ESTIMATION WITH ALL BINARY
REPRESENTATION

FIELD OF THE INVENTION

[0001] The present invention generally relates to motion
estimation for video encoding, and more specifically to
motion estimation based on a pyramid structure with all
binary representation for video encoding.

BACKGROUND OF THE INVENTION

[0002] In a multimedia embedded system, the video
encoding module contains several major components
including DCT (Discrete Cosine Transform)/IDCT (Inverse
DCT), motion estimation (ME), motion compensation,
quantization, inverse quantization, bit rate control and VLC
(Variable Length Coding) encoding, where the most com-
putationally expensive part is the motion estimation. Gen-
erally the motion estimation takes around 50% of the total
computational power for an optimized system. Thus, to
further optimize motion estimation is critical in cost reduc-
tion for real-time video encoding in an embedded multime-
dia system.

[0003] Many fast search algorithms have been developed
including the three-step search, the 2-D logarithmic search,
the conjugate directional search, the genetic search, the
diamond search, the feature-based block motion estimation
using integral projection, and sub-sampled motion field
estimation with alternating pixel-decimation patterns. These
various search approaches reduce the complexity at the
expense of motion vector accuracy, which leads to a selec-
tion of only local minimum of mean absolute difference
(MAD) as compared to global minimum of a conventional
full search algorithm.

[0004] Conventional multi-resolution motion estimation
techniques perform the search with a much smaller window
from lower to higher resolution layers. The motion vectors
are refined gradually at each layer but the search area is
equivalent to that of the full search with much lower
complexity. To further reduce the complexity, the conven-
tional binary motion estimation algorithms significantly
decrease both the computational complexity and bus band-
width by reducing the bit depth. Based on a binary pyramid
structure, Song, et. al., disclose a fast binary motion esti-
mation algorithm, namely fast binary pyramid motion esti-
mation (FBPME), in “New fast binary pyramid motion
estimation for MPEG2 and HDTV encoding”, IEEFE Trans.
on Circuits and Systems for Video Technology, vol. 10, no.
7, pp- 1015-1028, October 2000. The pyramidal structure of
FBPME contains one integer layer at the lowest resolution
(smallest picture size) and three binary layers that contain
detail information. FBPME performs the tiled motion search
with XOR (Exclusive OR) Boolean block matching criterion
on binary layers and MAD on the integer layer. The block
matching uses XOR operations that are much simpler and
faster to implement than MAD operations.

[0005] However, the FBPME structure uses an integer
layer, which leads to two distortion computation modules to
perform both MAD and XOR operations. It requires bigger
code size and more hardware complexity. The FBPME
structure also needs more complicated pre-processing
including filtering, decimation, binarization and interpola-

May 20, 2004

tion. The hardware complexity for both MAD and XOR
operations and more complicated pre-processing in the
multi-layer approach result in more power consumption for
hardware implementation.

[0006] Another conventional fast binary motion estima-
tion algorithm presented by Natarajan, Bhaskaran, and Kon-
stantinides is based on a simple one-bit transform with
conventional search schemes. It provides single layer
motion estimation that derives the current and reference
blocks. However, the binary representation does not use any
hierarchical structure. When a hierarchical structure is
adopted, it is more challenging to get an accurate binary
representation at a lower resolution.

SUMMARY OF THE INVENTION

[0007] This invention has been made to overcome the
above-mentioned drawbacks of conventional motion esti-
mation. The primary object is to provide a method for
motion estimation with all binary representation for video
coding. Accordingly, a binary pyramid having three binary
layers of video images is constructed. The first binary layer
is first searched with a criterion based on bit-wise sum of
difference to find a first level motion vector. Six motion
vector candidates are used to determine a motion vector in
the second binary layer. Finally, a search in the third binary
layer according to the second layer motion vector generates
a final motion vector.

[0008] In the present invention, the construction of the
binary pyramid includes filtering, binarization and decima-
tion. The precise edge information is extracted based on the
spatial variation within a small local area of an image to
provide all binary edge information without having to use
any integer layer. In the first level search, the search is
performed within a +3 pixel refinement window. In the
second level search, this invention calculates the ranges of
two dimensional 8x8 motion offsets (R ;. % R *],[R_;.7,
R through the six motion vector candidates from the
current and previous frames according to the spatial-tempo-
ral dependencies that exist among blocks. The refinement
window in the second level has thus covered the dominant
ranges of the search area with dimension (R, *-R_; *+1)x
(R’ —Rpnin7+1) around the mean vector of the six motion
vectors. The invention then performs the full-search XOR
Boolean block matching with (R, R, .. “+1D)x(R,..~—
R, ;,7+1) pixels for refinement at the second level. Similarly,
the resultant motion vector candidate will be passed onto the
next binary level. In the third level, the search is performed
within a +2 pixel refinement window. At each level, the
search and determination of the best motion vector is based
on a criterion of minimum bit-wise sum of difference using

XOR block matching.

[0009] 1t is also an object of the invention to provide an
apparatus for motion estimation for video encoding. Accord-
ingly, the apparatus comprises a binary pyramid construc-
tion module, a first level search module, a second level
search module, and a third level search module. Each level
search module includes a data loading module, a bit align-
ment module, and an XOR block matching module. The
binary pyramid construction structure further comprises a
filtering module, a binarization module and a decimation
module. Each XOR block matching module further includes
a table lookup sub-module and a bit-wise sum of difference
(SoD) sub-module.

US 2004/0095998 Al

[0010] The motion estimation of this invention is feasible
for pipelined architectures. The method of motion estima-
tion can be implemented in various architectures including
general-purpose architectures such as x86, single instruction
multiple data (SIMD) architectures using Intel’s MMX
technology, and systolic arrays. The pipelined architecture
of the invention contains three major common modules
including the integrated construction, compact storage, and
parallel block matching.

[0011] The invention uses a MPEG-4 reference video
encoder and employs a macroblock with size 16x16 for
block matching to show the performances. According to the
experimental results, it not only has the benefits of low
computational complexity and low memory bandwidth con-
sumption but also is insensitive to search range increase.
System designer can choose better binarization methods to
further improve the visual quality. In addition, various
optimization methods can be developed for specific plat-
forms with different register size. The invention thus is more
flexible than other motion estimation method. From the
operation counts, the motion estimation of this invention is
very desirable for software implementation on a general-
purpose processor system. It can be realized by a parallel-
pipelined implementation for ASIC design and allows
tradeoffs between silicon area, power consumption and
visual quality during the hardware design phase.

[0012] The foregoing and other objects, features, aspects
and advantages of the present invention will become better
understood from a careful reading of a detailed description
provided herein below with appropriate reference to the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] FIG. 1a shows a block diagram of the three-level
binary pyramid structure for motion estimation according to
this invention.

[0014] FIG. 1billustrates the static-state checking module
for motion estimation according to this invention.

[0015] FIG. 1c illustrates the state update module for
motion estimation according to this invention.

[0016] FIG. 2 shows the first level search module for the
motion estimation illustrated FIG. 1.

[0017] FIG. 3 shows the second level search module for
the motion estimation illustrated FIG. 1.

[0018] FIG. 4a shows the third level search module for the
motion estimation illustrated FIG. 1.

[0019] FIG. 4b shows that an XOR block matching mod-
ule according to the invention comprises a table lookup
sub-module and a bit-wise sum of difference (SoD) sub-
module.

[0020] FIG. 5 illustrates the construction of each binary
layer according to the invention.

[0021] FIG. 6 illustrates a parallel processing of the
binarization process.

[0022] FIG. 7 illustrates the bit alignment to the initial
search position for the Level 3 search.

[0023] FIG. 8 illustrates the spatial-temporal representa-
tion of parallel block matching for each column of check
points using systolic arrays.

May 20, 2004

[0024] FIG. 9 illustrates the detail implementation of
parallel 2-D block matching.

[0025] FIG. 10 illustrates the computational complexities
and bus bandwidths for full search, the motion estimation
with and without hardware acceleration according to this
invention.

[0026] FIG. 11 illustrates the performance comparison of
the motion estimation according to this invention vs. full
search based on the various encoding conditions, filters, and
visual quality in PSNR.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

[0027] The all binary motion estimation of the invention
basically comprises a multi-level binary pyramid structure
and multiple search modules. To achieve a tradeoff between
the precision of the estimated motion vectors and the com-
putational complexity, the preferred embodiment of this
invention includes a three-level pyramid for motion estima-
tion. In the following parts of the description, the levels are
denoted as level 1, level 2, and level 3, respectively.

[0028] FIG. 1a shows a block diagram of the three-level
binary pyramid structure for motion estimation according to
this invention. The apparatus for motion estimation of FIG.
1 comprises a binary pyramid structure 101, a first level
search module 103, a second level search module 105, a
third level search module 107, a fine tuning module 109, a
static-state checking module 117, and a state update module
119. Each level search module includes a data loading
module, a bit alignment module, and an XOR block match-
ing module. The binary pyramid structure 101 further com-
prises a filtering module 111, a binarization module 113 and
a decimation module 115. Using simple decimation, the
block sizes used in the XOR block matching at the three
levels are 4x4, 8x8 and 16x16. In the fine tuning module, the
motion search is skipped and the block size used in the XOR
block matching is 16x16. FIGS. 2-4 illustrate the first, the
second and the third level search modules respectively.

[0029] Referring to FIGS. 1b and 1c, in the static-state
checking module and the state updating module, there is one
counter 121 and three comparators 122, 123, 124. Initially,
the counters for all blocks are set to zero when processing
the first frame in the source video. Two constants S1 and S2
(S2>81>2) are used to control the occurrence of the static
mode and to retain the video quality. To process each block
i, the comparator 122 in the static-state checking module
checks if the content of the counter, is larger than S1. If it is
true, the motion search enters the static state and fine tunes
the motion vector within a range of +1 in the fine tuning
module. Otherwise, the motion search goes through the
normal state and proceeds to the three level binary search.
After motion estimation, in the state updating module, the
comparator 123 checks if the final motion vector of each
block 1 in the current frame j equals to the stored motion
vector of the block i in the previous frame j-1, whose
coordinates are identical to the current block. If the two
motion vectors are the same, the comparator 124 checks if
the content of the counter, 121 is less than S2. If it is less
than S2, the counter, 121 is increased by one. Otherwise, the
counter; 121 is reset to zero. The same steps are applied to
every block in the current frame. It should be noted that the
same counter; 121 is used in FIGS. 15 and 1c.

US 2004/0095998 Al

[0030] To further reduce the computational complexity, an
optional counter can be used to register the repeat occur-
rence of motion vector for each macroblock. If the motion
vectors remain identical for the past four frames, the inven-
tion assumes the current macroblock is static and skips the
motion search and only makes a refinement within a smaller
search range of =1 by the fine tuning module 109 in FIG. 1a.
With all binary representation, XOR operation, and smaller
search window, the speed of the motion estimation can be
improved with only minor loss of the reconstructed image
quality.

[0031] Referring to FIG. 2, the first level search module
includes a data loading module 201, a bit alignment module
203, and a parallel XOR block matching module 205. The
bit alignment module 203 has a +3 pixel refinement window.
With reference to FIG. 3, the second level search module
105 also includes a data loading module 301, a bit alignment
module 303, a parallel XOR block matching module 305,
and a motion offset module 307.

[0032] Referring to the motion offset module 307 in FIG.
3, before entering the fine tune search of level 2, with six
motion vector candidates estimated from the first level
search and from the previous frame, the motion offset
module calculates the ranges ((R_;.*, R_ ..~ [Ruu’>
R,...) of two dimensional motion offsets for every 8x8
block. Based on the derived motion offsets, the bit alignment
module 303 has a ((Rn™, Rua™ls [Riuin”s Rumax’]) pixel

min > min >
refinement window.

[0033] Referring to FIG. 4a, the third level search module
includes a data loading module 401, a bit alignment module
403, and a parallel XOR block matching module 405. Each
of the parallel XOR block matching modules 205, 305 and
405 of FIGS. 2-4 further includes a table lookup sub-module
and a bit-wise sum of difference (SoD) sub- module as
shown in FIG. 4b. The method of motion estimation imple-
mented in the apparatus shown in FIG. 1 comprises four
major steps. The first step is to construct the multi-level
binary pyramid structure. The second step is to perform full
search XOR Boolean block matching with a +3 pixel refine-
ment window. The third step is to calculates the ranges
(Ruuin™s Riase] [Rinin”> Rinax’) 0f two dimensional motion
offsets for every 8x8 block with the six motion vectors
candidates from the previous and current frames and per-
form XOR Boolean block matching within specified area for
refinement at the second level. The fourth step is to perform
full search XOR Boolean block matching with a +2 pixel
refinement window at the last level.

[0034] In the first step, three sub-steps including filtering,
binarization and decimation are performed by the filtering
module 111, binarization module 113 and the decimation
module 115 respectively to build the three-level pyramid
structure. Each original pixel is compared to a threshold,
which is computed from an average of the neighboring
luminance pixels, to derive the binary representation. At the
decimation stage, the filtered image is then sub-sampled by
2 in each dimension of the image to achieve the next layer
iteratively.

[0035] During the construction of the binary pyramid
structure, the precise edge information is extracted based on
the spatial variations within a small local area of an image.
In the invention, the design of the filtering module provides
all binary edge information without having to use any

May 20, 2004

integer layer that is needed in FBPME. The spatial variations
can be extracted with various filters. Assume that an 8-bit
representation of the current frame, F, is low-pass filtered to
create a new frame T,. In other words,

Fr=F
Fi=H(Fy,

[0036] with 1=1 . .. L, where L is the total number of
pyramidal levels used. In the invention, L is set to 3. The
frame F, is a blurred version of the original frame F, with the
same size at the 1-th level. The construction of each pyra-
midal level in binary format is illustrated in FIG. 5.

[0037] The filtered frame F, is then used to create the
binary representation of the current frame. The construction
of the binary representation is based on a threshold T,,. The
threshold is defined to precisely represent the edge infor-
mation in binary format. The edge information can be found
by differencing the original image and its lowpass version.
To compute the binary representation, the invention adopts
a novel differencing operation using a specified threshold as
computed from frame F}, which provides the average spatial
variations for the neighboring area. Thus, the binary repre-
sentation of the I-th level is computed by the following
one-bit transformation:

— L if (R y) = T, = Filx, y)
Si(x, y) = Tipie(Fy, Fi) = . -
0 otherwise

[0038] In the last process of decimation, the lowpass
frame F;, which contains most of the spatial information
from the original image at the current level, is used to create
the input frame in the next pyramidal level. To compute the
next level, the frame F, is decimated every other pixel to

yield the new frame F, ; as described in the following
equation:

F171=~L(F1)-

[0039] In the second step, the full search XOR Boolean
block matching with a +3 pixel refinement window is
performed at the first level search module 103 to locate one
initial motion vector candidate with a block size of 4x4. The
initial motion vector candidate is projected to the next binary
level which has a block size of 8x8.

[0040] The matching criterion of this invention is bit-wise
sum of difference (SoD):

SoD@,v)= D[Sy) @Sy (et u, ¥ +v)]
(x,)€ Block

[0041] where S, | (%, y) denotes the current binary block at
the 1-th level and S, ; (x+u, y+v) denotes the reference
binary block with offset (u, v) from the left top corner of the
current block. Because the frame data are in all binary
formats, a simple XOR operation is used to compute the
difference.

[0042] This invention performs the full search at the first
level with a search range of +3 instead of a search range of
+16 (R;,,=R/4-1), where R is the target search range. With

US 2004/0095998 Al

a smaller window, motion vectors covering 16 times of the
actual search area are still obtained.

[0043] In the third step, based on the spatial-temporal
dependencies that exist among blocks, this invention selects
the best 8x8 motion vector from six candidates in the current
and previous frames using XOR matching criterion men-
tioned above. The six motion vector candidates are motion
vectors corresponding to the upper right (UR), upper (U),
and left (L), initial motion vector candidate of level 1, a
motion vector of temporally previous (P) blocks and the
center (C). The center candidate means a zero motion vector.

[0044] According to the invention, the minimum and
maximum offsets of the six candidates for each dimension
are selected as the boundaries of the refinement window in
the second level by the motion offset module 307 shown in
FIG. 3. Thus, the motion offset module 307 defines the
ranges ([R.in™ R s [Rinin”s Rinax 1) of two dimensional
motion offsets for every 8x8 block. The refinement window
in the second level has covered the dominant ranges of the
search area with size (R, “-R_, *+1)x(R__"-R_. ¥+1)
around the mean vector of the six motion vectors. We then
perform the full- search XOR Boolean block matching with
a Rowx Rpim +DX(R . -Rin7+1) pixel window for
refinement at the second level. Similarly, the resultant
motion vector candidate is passed onto level 3 for further

refinement within a search range of +2.

[0045] In the fourth step, a +2 search window refined
search is used to derive the final motion vector for a block
size of 16x16. In the present invention, the final motion
vector accuracy is affected by the efficiency of the binariza-
tion process in the first step. The threshold T, use in the
binarization process depends on the average spatial charac-
teristics and the edge information retained after the filtering
process. A low pass filter with a higher cutoff frequency
removes less amount of the average spatial variation and
retains more high frequency components in the binary
representation S, ,(x, y) as shown above. Additional high
frequency information retained may increase the precision
of the all binary edge information. For practical implemen-
tation, a trade-off needs to be made between the coding
efficiency and the complexity of the filter.

[0046] To demonstrate that the motion estimation of the
invention is suitable for pipelined architecture, specific
implementations are investigated to achieve pipelined pro-
cessing for various architectures which include general-
purpose architectures such as x86, SIMD architectures using
Intel’s MMX technology, and systolic arrays., For simplic-
ity, in all implementations described below the filter used in
the filtering module 111 is:

Hy =

Bl
R
=T

< = O
[}

[0047] To verify the effectiveness of the approach in the
present invention over the full search approach, this inven-
tion uses the x86 system and C language for simulations.
Since the initial locations and the storage units of each level
are distinct, the speedup of the block matching is accom-
plished level by level with the disclosed method in the

May 20, 2004

invention. The level-by-level implementation allows low
memory bandwidth consumption with frequent data access
for block matching.

[0048] The pipelined architecture of the invention com-
prises three major common modules including the integrated
construction, compact storage, and parallel block matching.
For each module, the size and type of storage are constrained
by the data bins/registers defined in the individual architec-
ture, which provides various distinct sizes of data storage
devices/registers. To implement each generic module in an
x86 system, the use of C language provides three basic data
bins including INT (32 bits), SINT (16 bits), and UCHAR (8
bits). In the Intel SIMD architecture using MMX technol-
ogy, the largest data bin is a register of 64-bit MMX for
every module. Unless larger data bin is available, the opti-
mization processes for this kind of architecture are similar to
that of x86 architectures. For further reductions in memory
bandwidth between the processing units and reductions in
operation counts on both architectures, the use of the largest
data bin is preferable to store the binary representation of
several consecutive blocks in a packed way.

[0049] The first module, integrated construction of the
3-level binary pyramid, consists of three processes including
filtering, binarization and decimation. This module can be
enhanced in two sub-modules including the boundary par-
titioning and parallel processing. The boundary partitioning
is used to skip the branching decision on whether the current
data is located at the frame boundaries. The first sub-module,
boundary partitioning, is achieved by classifying the frame
into the nine regions: four corners, two boundary rows and
two boundary columns, and the interior. The second sub-
module, parallel processing, is achieved by loading multiple
sets of pixels that are sequentially stored in registers with a
larger size. FIG. 6 shows an example of using the filter H,
to construct the lowpass frame F,. The pixel F,(x, y) indi-
cates the pixel at the coordinates (X, y) within the processing
frame of the 1-th pyramid level. The shadowed circle rep-
resents the current pixel to be binarized. The derivation of
the lowpass frame using the filter H, is equivalent to the
computation of the average value of the neighboring pixels
surrounding the check point with a distance of one.

[0050] Assume the frame data are stored in the data bin,
named as SINT, under C/C++ environment in X86 system.
FIG. 6 also demonstrates an example of processing the pair
([Fy(0, 1) Fy(1, 1])5.. This invention first loads four neigh-
boring pairs, ((F(1, 0) {0, 0) Dsa, (F(1L, 2) F(0, 2) Daxy
([F,(0, 1) 0], and ([F(2, 1) Fi(1, 1) Dfrom the reference
frame into four 32-bit INT registers, (R;)s5, (R5)32, (R3)35,
and (R,)s;,. After loading, the summation and rounding
operations can be performed directly since no overflow or
underflow occurs for the frame data. This is because only
8-bit wide data are stored in a 16-bit data bin. After
summation and loading, the results are put back to a 32-bit
INT register (R)s,:

(R)3p = (R1)3p + (Rp)3 + (R3)35 + (Rq)3, + 0x00040004
= ([F,(1,0) + F;(1,2) + F;(0,1) + F;(2,1)]

[Fi(0,0) + F4(0,2) + 0 + Fy(1,1)])3, + 0x00040004,

US 2004/0095998 Al

[0051] where the value 0x00040004 is used for the round-
ing purpose of the concurrently processed pixels. The
threshold for each pixel can be derived by extracting the pair
of the values inside the register (R)s,,

[0052] (Rigp>>2);5=((R);,>>2)& Ox3FFF
[0053] (Rysp>>2)16=(R)s,>>(2+16)

[0054] where ‘>>" means the logical SHIFT RIGHT
operation. The derived threshold is used for binarization.
With this optimization, the construction stage has about 30%
improvement in speed.

[0055] If a larger bin is available, the speed can be
increased by a factor that equals to the number of the pixels
that can be simultaneously loaded into a single bin. In the
Intel SIMD architecture using MMX technology, the binary
pyramid can be similarly constructed with the boundary
partitioning and parallel processing as described previously
for x86 architectures. However, the achievable parallelism
based on MMX technology is almost doubled due to the
64-bit architecture. Based on the two equations just shown
above, the improvement is 63% in speed.

[0056] The binary representation of frame data results in
desirable compact storage for the pyramid layers. At level 1,
each row of a 4x4 block only occupies four bits. Hence, one
data bin with 4o bits can store the same row for several
sequential a blocks. At level 2, a continuous and sequential
search range of size (R *-R_; *+Dx(R__Y-R_. Y+1) is
defined based on the six candidates. The packing of multiple
blocks into a single bin as the blocks of level 1 is adopted
in the second level search. Thus for both computer archi-
tectures, this invention stores every row of the successive a
8x8 blocks at level 2 into a single data bin of size 8a. Using
the same concept of level 1, the invention packs every row
of the successive a 16x16 blocks at level 3 into a single data
bin of size 16c. Note that the widest data bin in both
architectures is only used for speedup of block matching.

[0057] The block diagrams for the fast block matching
using all binary edge information are illustrated in FIGS. 2-4
including loading, bit alignment, and parallel XOR block
matching. The loading module puts each group of sequential
data into the corresponding bins of a larger size for reducing
memory access. Since the frame data in binary format has
been compactly and sequentially stored, the memory access
becomes a simple fetch instruction. Thus, the loading mod-
ule loads the current data and the reference data in the search
window into the on-chip memory, respectively.

[0058] As shown in FIG. 2, for each group of four
sequential 4x4 blocks at level 1, this invention loads the
same row of the current four blocks into a specified SINT
register one by one, and puts the corresponding row of the
reference blocks into an INT register one by one in x86
architecture. Thus, the four SINT registers can be used for
following parallel block matching so that the speed is
increased by about 4 times as compared to the block-by-
block matching scheme. The same processes are employed
in the Intel SIMD architecture except for the use of 64-bit
data bins to handle each group of eight sequential 4x4 blocks
at level 1. Thus, the four MMX registers can be used for a
factor of about 8 in parallelism as compared to the block-
by-block matching method.

[0059] The bit alignment module synchronizes the refer-
ence data in the search window with the current data. After

May 20, 2004

bit alignment, (parallel) XOR block matching, table lookup,
and SoD comparison sub-modules are adopted for finding
the motion vector with the minimal SoD. The XOR opera-
tion is applied to compute the distortion. To derive the block
SoD after the XOR module, a table lookup operation is
applied in the table lookup sub-module by counting the
number of ‘1’s in this temporary register. Finally, by com-
paring all SoDs, this invention can determine which motion
vector is the best for each of the four blocks separately in the
SoD comparison sub-module. While going through all
blocks of the current frame, the resultant motion vector with
the minimal SoD is selected.

[0060] The optimization processes of motion vector
search in either architecture are similar except that the 64-bit
registers can handle more successive blocks simultaneously
and special instructions are used to operate on the registers
in SIMD architecture. Thus, only relevant steps in x86
system at each search level are described in detail to show
how to achieve such parallelism. The optimization of the
parallel XOR bock matching modules will be explained in
detail at level 1. For the remaining levels, the relevant
descriptions are skipped because of their similarities.

[0061] In level 1, because cach block has the initial
location assigned sequentially, the invention can simulta-
neously compute SoDs for four blocks in x86 architecture
and derive SoDs for eight blocks with MMX technology in
a row-by-row manner. The following five steps summarizes
the optimization for achieving parallelism:

[0062] Step 1 (Loading): Since the invention processes
four neighboring blocks of size 4x4 for the current frame
simultaneously, 16-bit data is needed to compute the SoDs
for each row. With the search range of £3, the data of the
reference frame that needs to be loaded into a data bin
should be larger than or equal to 22 bits for parallel block
matching. Step 2 (Bit Alignment): For the initially loaded
data, the invention aligns the reference block with a hori-
zontal offset of +3 relative to the current blocks at level 1 as
shown in FIG. 2. To move to the next check point, the bits
of the overlapped area are reused by right shifting the bits in
the register by one.

[0063] Step 3 (XOR): The row-wise matching is illus-
trated in FIG. 2, where each square indicates a single bit.
Since the STNT contains 16 bits, only the lower 16 bits of
the reference register will be compared with the current data
using XOR. This XOR result is temporarily stored in another
STNT register and three 4-bit SHIFT and three AND (as a
mask) operations are required to get the SoDs for the four
blocks respectively.

[0064] Step 4 (Table Lookup): Diff is a SENT register that
stores the corresponding SoD of the current row of the n-th
block as computed by

SoD(u, v),=T1Diff>>[4x(4-n)]& (0000 0000 0000
1111].

[0065] The overall SoD for each block equals the sum of
the SoDs for each row.

[0066] Step 5 (SoD Comparison): Comparing all SoDs,
the invention can determine which motion vector is the best
for each of the four blocks, respectively.

[0067] At level 2, the invention stores 2 successive blocks
in a 32-bit data bin with similar packing approach used in

US 2004/0095998 Al

level 1 for both architectures. For each predefined check
point that is found with the motion offset module 307 of
FIG. 3, the motion estimation at level 2 computes the block
difference in a row-by-row manner. For the current row, the
invention needs not only load the required bits within the
predefined search range into the registers but also aligns the
reference data by shifting the registers [bits, which are
equal to the horizontal offset indicated by the current motion
vector. For the consecutive check points, extra shift opera-
tions are necessary to align the reference data. The bit
alignment process for the level 2 search is shown in FIG. 3.

[0068] In level 3, the modules including loading and bit
alignment in x86 architecture are optimized as follows. In
the loading module, one 32-bit register A stores the same
row of the reference data at the block X and the previous
block (X-1). The other 32-bit register B stores the same row
at block (X+1). Both registers contain partial bits of refer-
ence data within the specified search window as demon-
strated in FIG. 7. To align the reference data, the horizontal
predictive motion vector is initially set to be —10 as an
example. Register A is shifted left by 10 while register B is
shifted right by 6 to reach the initial search position. The
invention combines the contents of the two registers with a
simple XOR/OR operation. In the last step, the reference bits
are aligned to match the initial search location +2. When the
invention moves to the next location in the same row, an
extra shift operation is needed to synchronize the pair of data
for matching.

[0069] The following describes the implementation of the
invention using systolic arrays. The all-binary representation
for each pyramid level reduces the storage from N* bytes to
N? bits, which can be stored as groups of row or column
vectors. Since the vectors are consecutively stored, the
invention accesses the information efficiently through pipe-
lining the binary information and overlapping the processing
time for each matching process. Because the current block
is fixed in the search process, the reference data can be
accessed and propagated in the form of pipelines for an
ASIC implementation. In short, it is advantageous to employ
systolic arrays to design the hardware implementation for
the motion estimation of the invention.

[0070] In FIG. 2, FIG. 3, and FIG. 4a, the parallel XOR
Block Matching module is optimized with systolic arrays for
level 1, level 2, and level 3 searches. FIG. 8 illustrates the
spatial-temporal representation of parallel block matching
for each column of check points using systolic arrays, where
each bold dot denotes a processor element and the spatial-
temporal representation of the XOR block matching is
defined as

SoD(u, v) = 3 [Su(%) @Sy 1+, ¥ +).

(x,y)€Block

[0071] S,.(.,.) shown in FIG. 8 indicates the 1-th level
binary representation of the current frame at time t. S;,_,(.,.)
presents the reference data at the same pyramid level of the
temporally previous frame. For block matching, the block
dimension is set as NxN and the search range is +R. The
motion vector from the current block to the corresponding
reference block is indicated by (u, v).

May 20, 2004

[0072] The binary data of both the current block and the
reference block can be transported into the processors in the
order that the resultant SoD’s can be computed by summing
the XOR block matching criterion in a row-by-row manner.
For each block of the current or the reference frame, the
binary data of each row is stored as a 1-D vector. Each pair
of vectors from the current and reference blocks is delivered
to the processing element (PE) for computing the SoD. The
current block is further passed to the next PE through the
systolic arrays. Consequently, for each column of check
points, the invention obtains (2R+1) final SoDs as shown in

FIG. 8.

[0073] To cover all check points of size (2R+1)7, the
invention computes and compares the SoDs with a pipelined
approach, where each PE handles a specified row of the
reference blocks at the same column within the search
window. Based on the pipelined approach, the invention can
process each column within the search window sequentially
in time. That is, the invention checks every check point
located at the first column of the search window, and selects
from these check points to find the best candidate with the
minimal SoD. The pipeline scans through the subsequent 2R
columns using all PEs in the array, and the invention obtains
the final candidate with the minimal SoD among all search
points, which leads to the resultant motion vector for the
current block.

[0074] The pipelined architecture requires (2R+1) PEs,
(CR+N)*(2R+1) cycles, (2R+N)*(2R+1) memory access to
get the reference data and N*(2R+1) memory access to load
the current data from the on-chip memory to compute
(2R+1) SoDs of each block with N* bits, where additional
2R cycles are used for pipeline 1n1t1ahzat10n and each
memory access takes N bits of the reference block and N bits
of the current block. The gate counts for constructing (2R+1)
PEs are small while memory access efficiency poses the
challenge.

[0075] To further reduce the latency for the memory
access, the invention discloses a 2-D parallel block matching
architecture using systolic arrays. The 2-D architecture
removes the overhead of loading the overlapping bits within
the successive reference blocks by simultaneously fetching
all the (2R+N)? bits within the reference window into the
on-chip memory. From each row of (2ZR+N) bits, the inven-
tion then de-multiplexes each group of N serial bits into the
corresponding pipeline. The overall SoD for each pair of
block is computed in a PE, which is implemented with detail
circuits as shown in FIG. 9.

[0076] FIG. 9 illustrates the detail implementation of
parallel 2-D block matching. The apparatus for 2-D parallel
block matching of FIG. 9 comprises a storage 1 module, a
delay module, (2R+N)* PEs, an MUX module, a on-chip
memory module, and a storage 2 module. The storage 1
stores the binary data of the current blocks. The delay
module receives the row of binary data of the current blocks
and sends the row out after one clock cycle delay. The
(2R+N) PEs that are arranged as a 2-D array with (2R+N)
rows by (2R+N) columns as shown in FIG. 9 receives the
rows of the binary data from the current block and the
reference blocks and performs XOR operations of multiple
bits in parallel, computes the number of 1’s using a decoder,
and finally accumulates the total number of 1’s as the SoD.
The MUX receives the (2R+N) bits of the binary data from

US 2004/0095998 Al

the reference block and distributes every N bits into each
row of PEs. The (2R+N) bits received by the MUX are
fetched into the on-chip memory from the storage 2.

[0077] The (2R+N)> PEs that are arranged as a 2-D array
with (2R+N) rows by (2R+N) columns as shown in FIG. 9
further comprises a XOR module, a decoder module, a
summation module, two delay modules, and a switch mod-
ule.

[0078] A decoder 1010 is used to compute the number of
‘1’s within each input data. Blocks with label ‘D’ are the
delay elements. The SoD stored in the delay element of the
inner loop is accumulated with all outputs from the decoder
1010. The overall SoD of concurrently matched blocks is
compared by a comparator, which is not shown. The motion
vector with minimal SoD is found after going through all of
locations within the search areas. S, (.,.) shown in FIG. 9
indicates the 1-th level binary representation of the current
frame at time t. S;;_,(.,.) presents the reference data within
the same pyramid level of the temporally previous frame t-1.
For block matching, the search range is +R. The motion
vector from the current block to the corresponding reference
block is indicated by (u, v). The delay element ‘D’ next to
the decoder 1010 stores the accumulated SoD for the cor-
responding position within the search area.

[0079] The PE performs XOR operations of multiple bits
in parallel, computes the number of 1’s using a decoder, and
finally accumulates the total number of 1°s as the SoD. The
relationship between the PEs, the current block, and the
reference block can be represented as the block diagram in
FIG. 9. The dimension of the input blocks to each PE is
related to the block dimension of the current pyramid level.
For example, the block dimension is 4 for the level 1 and is
increased to 16 for the level 3. With the 2-D parallel
architecture, the invention requires (2R+1)*> PEs, (2R+N)
cycles, (2R+N) memory access to get the reference data and
N memory access to load the current data from the on-chip
memory to derive SoD for a search range of value R and
each block with N* bits. Each memory access fetches
(2R+N) bits of the reference block and N bits of the current
block from the on-chip memory. As compared to the 1-D
pipelining architecture, the speed is (2R+J) times in com-
putation of SoDs and each reference data is fetched from the
on-chip memory just once, which is the minimal memory
access to load the bits into the system. Because the motion
estimation of this invention requires a small search range for
each level, the increase of gate count in realizing the 2-D
pipelining architecture is still within a reasonable range.
Although the invention provides an implementation
example, it is possible to be more efficient in mapping the
block diagram of the motion estimation onto a physical
hardware like ASIC or FPGA chips.

[0080] FIG. 10 illustrates the computational complexities
and bus bandwidths for the traditional full search (‘FS”), and
the motion estimation of this invention with and without
hardware acceleration. The frame size is 352x288 and the
frame rate is 30 fps. The following first describes the
analysis of computational complexity of the motion estima-
tion of this invention on x86 architectures with and without
the alternative implementation of parallel XOR block
matching module in FIGS. 2-4 using the 2-D systolic arrays.
The analysis is based on how a single block computes its
motion vector and the memory access per second for a

May 20, 2004

particular frame rate. The notations of W, H, £R, and F, (fps)
denote the frame width, frame height, search range, and
frames per second, respectively. The block size is assumed
to be 16x16, which is the most commonly used in video
compression standards.

[0081] For easy analysis of the complexity by the motion
research with a range (R, Rl [Ruin’s Rumax’]) at
level 2, the maximum motion search range is used as the
worst-case scenario. The maximum motion search range of
all frames is found for each dimension as in the following.
For each block j within each frame i of the current sequence,
the boundaries of the maximum motion search range for
level 2 search are

[0082]
[0083]

Tmax =max {(Rp 5y,
[i, =Min {(Rminx)l, 1.

[0084] r, . Y =max {(Rmaxy)L .
[0085] r,, =max {(Rmaxy)L .

[0086] For each block, the traditional full search using
sum of absolute difference (SAD) needs to process all 4R*
search points within search window. Each location takes
16?x3 operations, where the three operations consist of one
subtraction, one absolute value, and one addition operation
for each pair of data. Hence, the computational complexity
of a full search, labeled as ‘FS’, to obtain a single motion
vector is approximated as Cg=3072xR? operations per mac-
roblock. Based on the theoretical best-case scenario for full
search using the 32-bit register in x86 system, to obtain a
single motion vector is approximated as

1)
Ops = Z(SFS =T768%X R

[0087] operations per macroblock.

[0088] For the same search area, the total operations,
labeled as ‘ABME_HA,’, required to compute a motion
vector for the disclosed architecture without using 2-D
systolic arrays are Capme 1,=Gc+Civi+ELVo+E; o5 per mac-
roblock, where (Co, Ciois Cress and Gps represent the
operation counts for the pyramid construction and the
motion search at each level of the binary pyramid, respec-
tively. With a search window of size 4R* and XOR opera-
tions for matching a macroblock of size 16x16, the search
range of level 1 is reduced to (R/2-1)* and the block sizes
from level 1 to level 3 are 4%, 82, and 167, respectively. The
binarization process requires 4.5 operations per pixel on the
average. Thus to build the binary pyramid needs C=(4>+8+
16%)x4.5=1512 operations per block.

[0089] As for the block matching process, because the
data storage techniques are different from level to level, the
operations required for each level are analyzed individually.
Inlevel 1, each pack of four blocks stored in the 4 SINT bins
forms a matching unit, which contains the data in the current
row where the four blocks are sequentially stored. To
complete the derivation of the four SoDs, it takes fifteen
operations for every row of the block within the search
window. The fifteen operations include one register shifting
for XOR, three AND operations and three shift operations to
extract the four bit-wise SoDs, four table lookup operations,

US 2004/0095998 Al

and four addition operations to accumulate the SoDs of the
four macroblocks processed concurrently. Hence, the total
operations at level 1 for each macroblock are

St =(15><4)><(§ —1)2><411 :15><(§ _1)2.

[0090] The computational analysis of level 2 is similar to
level 1 but with a larger block size and a dynamic search
range, which is computed with the six motion vector can-
didates form the current and the previous frames. In level 2,
each pack of two blocks stored in the 2 SINT bins forms a
matching unit, which contains the data in the current row
where the two blocks are sequentially stored. To complete
the derivation of the two SoDs, it takes seven operations for
every row of the block within the search window. The seven
operations include one register shifting for XOR, one AND
operation and one shift operation to extract the two bit-wise
SoDs, two table lookup operations, and two addition opera-
tions to accumulate the SoDs of the four macroblocks
processed concurrently. The number of search locations is
(T ~Tinin F1)X(Tmax T +1) and 8 SINT bins cover all
rows of two Level 2 blocks of size 8x8. Thus, level 2 search
needs

Orv2 = 8XTX(r]

max

1
—r,fu-n+1)><(rrﬁax—r,fu-n+1)><E

[0091] operations per block.

[0092] The computational analysis of level 3 is similar to
level 2 but with a larger block size and a fixed search range.
The number of search locations is 25 and 16 SINT bins cover
all rows of a Level 3 block of size 16x16. Thus, level 3
search needs C; ,=16x3x25=1200 operations per block.

[0093] To build the binary pyramid needs C.=(4+8%+
16%)x4.5=1512 operations per block. The number T; ., of
total operations at level 1 for each macroblock is 15x(R/2-
1)*. The numbers g, and ;5 of operations per block at
level 2 and level 3 are 28x(r_ . “—r_; “+D)x(r . -1 +1D)
and 1200 respectively. Therefore, total number of operations
required for ‘ABMEB_H,’ is CABME_H,=C+C; 1 +C1 1+
CLV2+CLV3=2712+1SX(R/2_1)2+(rmaXX_rminX+1)X(rmaxy_
rminy+ 1)

[0094] The use of the 2-D systolic arrays for parallel XOR
block matching modules at level 1, level 2 and level 3, which
is called as ‘“ABME_H, HW?’, reduces the total operations
per macroblock to

SABME_H,_HW = Oc + 07y + 0z + 81,3
R X X
= 1512+(§ — 144+ O — T + B) (5 =14 16)

X
max ~ 'min + 1)

- 1542+(§)+(rx

May 20, 2004

[0095] Comparing the wvalues of CABME_H,,
CABML H HW and Frg, this invention outperforms the
full search, which is consistent with the computational
complexities as shown in FIG. 10 for various search ranges.

[0096] The following analyzes total memory bandwidth
for loading the data from the current and reference frames.
For the full search, the total bandwidth consumption in bytes
per second is Cpe=(Cpg curtlps Ref)xF, where Cpg v
and Crg goe are the memory bandwidth to access the data
for the current and reference frames respectively. Assume
that the current block is loaded simultaneously into on-chip
memory with 16x16 UCHAR bins. Thus, to access the data
for, the current frame of size WxH requires Cpg . =WxH
bytes.

[0097] Assume that the reference block is loaded simul-
taneously into on-chip memory with (16+2R)*> UCHAR
bins. When moving to the next block, the data for over-
lapped area are reused and the bandwidth required is
16x(16+2R). Thus, to completely load the data from the
reference frame needs additional

w
Z

4 =£><(16+2R)2+(
PSR T6 16

)x(16+2R)x16]

[0098] bytes. The first term search window, which takes
more operations due to the memory stall in the initialization
stage of pipelining. Because the rest search windows are
overlapped with its previous one, fewer operations are
needed.

[0099] For the motion estimation of this invention, the
total memory bandwidth consumption in bytes used in x86
system with and without hardware acceleration using the
2-D systolic arrays: Capmp Ha=(Cout+CrvitClrvotiia)x
F.and CABME_H;, HW=(Cc+C1 o1+8r0+C'03)¥E,,
respectively. The term T, indicates the bandwidth con-
sumption for loading the current frame. The remaining terms
Civis C'rot Crvzs Cro 3» and T, 5 denote the bandwidth
required for accessing the reference frame.

[0100] In x86 systems without hardware acceleration
using the 2-D systolic arrays, the memory bandwidth (bytes)
to load every block of the current frame is

1 1 1
ZcHr=(E +7 +1]><HW><§ ~0.164xX W x H.

[0101] Based on the reusability of the data already in the
registers, the memory bandwidth required for each pyramid
level to load reference data within a search window per
frame is

US 2004/0095998 Al May 20, 2004

H R R w 1 R 1
éVLv1=(—)><[(4+5—l)x(4x4+ 5 —l)+(m><é—1 —1)><(4+E—1)x16]><§,
H w 1 1
Cinz = (g) X[P =P + DX BX 2 7 =iy 4 1)+ (5 % 5 = L)X (84 =y + D16 x 5,

bz = [(16+5)2+(% —1)><16><(16+5)]x%><%.

[0102] Where for easy calculation of the memory band- [0106] The video sequences with CIF format including

width required for each frame at level 2, the worst case of Coastguard, Foreman, and Akiyo and the sequences with
the search range is set as [-3,3] for both x and y dimensions. QCIF format covering Container and Mother-Daughter are
[0103] When the XOR matching modules at levels 1, 2 used for testing. The six sequences characterize a variety of
and 3 are implemented with 2-D systolic array architecture, spatial and motion activities. The invention further tests two
the memory bandwidths required for loading reference data CCIR601 sequences, including Table Tennis and Stefan,
within a search window per frame are which consist of fast moving objects. The fast moving

(4+1—2?—1)2x(%—1)><(4+§—1)x4 xé,

H
Cor = (m)x

gﬁ:(%)x[(mq{m—r,ynin+1)><(8+r;m—rfnin +1)+(2_v>1</8 —1)x(8+rfnax—rfm+1)><8]xé,

[0104] and T'.5=Ci.s, respectively. This invention sig- objects within a picture of larger size are adopted to examine
nificantly reduces the bus bandwidth as compared to the full the performance and the computational load of the motion
search. As the search range is increased, the memory band- estimation of the invention. Each source sequence consists
width for the full search is increased dramatically and those of 300 frames.

for the motion estimation of the invention is increased [0107] As for the encoding conditions, each sequence is
slightly only due to the increased C; ,; and 'y ;. As opposed encoded under the conditions recommended by MPEG
to the high sensitivity with various R to the memory band- committee. The target frame rate is set as 10 fps and the bit
width for the full search, the motion estimation of the rates range from 10kbps to 2M bps for various sequences.
invention is insensitive to the search range variation since For finding the precise motion vector, the search range is
the frame size at level 1 is the smallest and the data from the +16 for each sequence and the range is increased to +32 for
consecutive blocks can be stored in a larger bin. Such the CCIR-601 sequences.

superior performances are consistent with the observations

25 shown in FIG. 10 [0108] As for the motion search range for the level 2

SearCh> the range Of SiZe ([rminx’ rrnaXX:L [rminy> rmaxy]=([_3>

[0105] To show the performance of this invention over the 3][-3,3]) can provide satisfactory motion vectors of level 2

full search, the invention uses MPEG-4 reference video empirically and thus is used for the complexity estimation in
encoder and employs a macroblock with size 16x16 for FIG. 11.

block matching. The performance comparison shown in [0109] As for the decimation filters, this invention uses
FIG. 11 is analyzed based on the factors including the video three two-dimensional (2-D) filters and three 1-D separable
sequences, the encoding conditions, various decimation fil- filters to analyze how various filters impact the binarization
ters, the motion estimation approaches, and the visual qual- and coding efficiency of the motion estimation. The three 2-
ity of the reconstructed video in PSNR values. D filters, denoted as H,, Hg, and H, are

Hy = . He =

N
[R]
— O =
O = O
N
N

(=R = =]
[T o B o B e B <o
— O O O
=R e T e B - R e }
[T B s B
o O O = O O O
o O O O O o O
O O O O O O O
-0 O QO O @ =
o O O O O o O
o QO O O o <o O
[=EN el e = =)

US 2004/0095998 Al

May 20, 2004

10

[0110] The frame Si(x, y) that is extracted with the filters
Hg, or H. retains more high frequency information than the
frame that is extracted with the filter H .

[0111] The three 1-D filters are three separable 13-tap
Hamming filters with distinct cutoff frequencies at 20%,
25% and 30% of Nyquist frequency. For further reduction in
filter complexity, every filter of the 1-D filters is a linear
phase FIR filter with coefficients in the form of k-27™. For
a 1-D filter with M taps, i.e. H=[h,, h,, . . . , hy,], the lowpass
frame is computed as

M +1
2

M
Lt y) = H O) =) hy *Fl(x+ d-
d=1

,y]:[i koo -

d=1

M

where m = Ing[Z kd].

d=1

[0112] For instance, a 5-tap filter with the coefficients of
H=[1, 4, 6, 4, 1]-:27* can be implemented with only shift and
add operations. The typical cost of such operations on
various modern computer architectures is one cycle. Thus,
this type of filter can achieve significant speedup over the
original filters although it is not designed with specific filter
design methodology. The three 1-D filters are:

[0113] H,,=[-1, 0, 4, 15, 33, 49, 56, 49, 33, 15, 4, 0,
-1]256,

[0114] H,.=[-1, -2, 0, 11, 32, 55, 66, 55, 32, 11, 0,
-2, -1]/256,and

[0115] H,o=[-1, -2, -4, 4, 30, 62, 78, 62, 30, 4, -4,
-2, -1]/256.

[0116] Based on the complexity analysis from FIG. 10
and the performance comparison from FIG. 11, it can be
seen as compared to the full search, this invention not only
takes the benefits of low computational complexity and low
memory bandwidth consumption but also is insensitive to
search range increase. The invention also demonstrates that
with better binarization methods, the visual quality can be
further improved. With this feature, it can provide flexible
configurations. System designers can choose the binariza-
tion methods depending on the available memory, compu-
tational power, display resolution, or data bus bandwidth
provided by their system. For example, the characteristics of
wireless mobile phones have less computational power,
lower display resolution and less available memory. Thus,
the smallest filters should be used for the best execution
speed while its visual quality is still acceptable for the
low-resolution display. On the other hand, for a faster
machine such as today’s personal computers or high-end
DSP systems, the filter with better frequency response can be
applied since its computational power can afford more
complexity. In addition, various optimization methods can
be developed for specific platforms with different register
size. Thus, the motion estimation of the invention is more
flexible than other motion search algorithms.

[0117] The invention also demonstrates platform specific
optimizations for several hardware architectures including
x86, SIMD using MMX and systolic arrays. From the
operation counts, the motion estimation of the invention is

very desirable for software implementation on a general-
purpose processor system. It can also be realized with a
parallel-pipelined implementation for ASIC design and
allows tradeoffs between Silicon area, power consumption,
and visual quality during the hardware design phase. Thus,
the motion estimation of this invention is versatile and
effective for multimedia systems in both software and hard-
ware platforms.

[0118] Although the present invention has been described
with reference to the preferred embodiments, it will be

M+1
2

, y]] 2,

understood that the invention is not limited to the details
described thereof. Various substitutions and modifications
have been suggested in the foregoing description, and others
will occur to those of ordinary skill in the art. Therefore, all
such substitutions and modifications are intended to be
embraced within the scope of the invention as defined in the
appended claims.

What is claimed is:
1. An apparatus for motion estimation in video encoding,
comprising:

a binary pyramid construction module for transforming
video images into first, second and third binary layers;

a static-state checking module determining if said appa-
ratus is in a static mode or a normal mode based on
repeat occurrence of final motion vectors;

a first level search module receiving said first binary layer
and performing parallel XOR block matching with a +3
pixel refinement window in a first level and generating
a first level motion vector for said normal mode;

a second level search module receiving said second binary
layer and using six motion vector candidates to deter-
mine a second level motion vector for said normal
mode;

third level search module receiving said second level
motion vector and performing parallel XOR block
matching with a +2 pixel refinement window in a third
level and generating a final motion vector for said
normal mode;

fine tuning module performing parallel XOR block
matching with a 1 pixel refinement window and
generating a final motion vector for said static mode;
and

a state update module registering and updating said repeat

occurrence of final motion vectors.

2. The apparatus for motion estimation as claimed in
claim 1, wherein said binary pyramid construction module
has a filtering module, a binarization module and a decima-
tion module.

US 2004/0095998 Al

3. The apparatus for motion estimation as claimed in
claim 1, wherein said first level search module comprises a
data loading module receiving said first binary layer, a bit
alignment module coupled to said data loading module for
aligning a current block and a reference block with a +3
pixel refinement window in said first level, and a parallel
XOR block matching module for generating a first level
motion vector with a criterion based on minimum bit-wise
sum of difference.

4. The apparatus for motion estimation as claimed in
claim 3, said parallel XOR block matching module further
comprising a table lookup sub-module and a bit-wise sum of
difference sub-module.

5. The apparatus for motion estimation as claimed in
claim 1, wherein said six motion vector candidates are
motion vectors corresponding to an upper right block, an
upper block, and a left block, an initial motion vector of a
current block from said first level, a motion vector of a
temporally previous block and a zero motion vector respec-
tively.

6. The apparatus for motion estimation as claimed in
claim 3, wherein said second level search module com-
prises:

a motion offset module determining a search range of
motion vector offsets based on said six motion vector
candidates;

a data loading module receiving said second binary layer,
and said search range from said motion offset module;

a bit alignment module for aligning a current block and a
reference block; and

a parallel XOR block matching module;

wherein said bit alignment module and said parallel XOR
block matching determine said second level motion
vector by checking motion vectors corresponding to
said search range determined by said motion offset
module.

7. The apparatus for motion estimation as claimed in
claim 6, said parallel XOR block matching module in said
second level search module further comprising a table
lookup sub-module and a bit-wise sum of difference (SoD)
sub-module.

8. The apparatus for motion estimation as claimed in
claim 6, wherein said third level search module comprises a
data loading module receiving said third binary layer and
said second level motion vector, a bit alignment module
coupled to said data loading module for aligning a current
block and a reference block with a 2 pixel refinement
window in said third level, and a parallel XOR block
matching module for generating a final motion vector with
a criterion based on minimum bit-wise sum of difference.

9. The apparatus for motion estimation as claimed in
claim &, said parallel XOR block matching module in said
third level search module further comprising a table lookup
sub-module and a bit-wise sum of difference (SoD) sub-
module.

10. The apparatus for motion estimation as claimed in
claim 1, wherein said state update module further comprises
a counter for registering repeat occurrence of said final
motion vectors within previous frames, said counter is
increased by 1 if a same final motion vector within said
previous frames repeats, and said counter is reset to zero if

May 20, 2004

said counter is-larger than a predefined constant or if a
different final motion vector is found.

11. The apparatus for motion estimation as claimed in
claim 10, wherein said static-state checking module sets said
apparatus in said static mode if said counter for registering
repeat occurrence of said final motion vectors within said
previous frames is greater than a pre-defined constant.

12. The apparatus for motion estimation as claimed in
claim 1, wherein said binary pyramid construction module,
said first level search module, said second level search
module and said third level search module are implemented
in a pipelined architecture.

13. The apparatus for motion estimation as claimed in
claim 1, wherein said binary pyramid construction module,
said first level search module, said second level scarch
module or said third level search module is implemented by
systolic arrays.

14. The apparatus for motion estimation as claimed in
claim 1, wherein said first level search module, said second
level search module or said third level search module
comprises a search circuit having:

a first storage unit storing binary data of a current block;
a delay circuit coupled to said first storage unit;

a second storage unit storing binary data of a reference
block;

an on-chip memory module receiving data from said
second storage unit; and

a multiplexer coupled to said on-chip memory module
and providing a plurality of outputs; and

a two dimensional systolic array having a plurality of
rows of systolic cells, each systolic cell having a first
input for receiving data from said delay circuit, each
systolic cell in a row except a first systolic cell having
a second input coupled to an output of a preceding
systolic cell in a same row;

wherein a first systolic cell in each row of systolic cells
has a second input coupled to an output of said multi-
plexer.

15. The apparatus for motion estimation as claimed in
claim 14, wherein each systolic cell comprises:

a decoder;

an XOR unit having an output connected to an input of
said decoder, a first input connected to the first input of
the systolic cell, and a second input connected to the
output of the systolic cell;

a first delay unit connected between the second input and
the output of the systolic cell;

a second delay unit;

a summation unit having a first input coupled to an output
of said decoder, and an output connected to said second
delay unit; and

a switch unit for controlling connection between an output
of said second delay unit and a second input to said
summation unit.

US 2004/0095998 Al

16. A method of motion estimation for video encoding,
comprising the steps of:

(a) constructing a binary pyramid by transforming video
images into first, second and third binary layers;

(b) determining if said method is in a static mode or a
normal mode based on repeat occurrence of final
motion vectors;

(¢) performing parallel XOR block matching with a 1
pixel refinement window and generating a final motion
vector if said method is in said static mode;

(d) executing a first level search by performing parallel
XOR block matching in said first binary layer with a +3
pixel refinement window in a first level and generating
a first level motion vector if said method is in said
normal mode;

(e) executing a second level search in said second binary
layer according to six motion vector candidates and
determining a second level motion vector if said
method is in said normal mode;

(f) executing a third level search in said third binary layer
according to said second level motion vector and
performing parallel XOR block matching with a =2
pixel refinement window in a third level and generating
a final motion vector if said method is in said normal
mode; and

(g) registering and updating said repeat occurrence of

final motion vectors.

17. The method for motion estimation as claimed in claim
16, wherein said step (a) includes filtering, binarization and
decimation.

18. The method of motion estimation as claimed in claim
16, wherein said step (d) is accomplished by aligning a
current block and a reference block with a 3 pixel refine-
ment window in said first level using parallel XOR block
matching with a criterion based on minimum bit-wise sum
of difference.

May 20, 2004

19. The method of motion estimation as claimed in claim
16, wherein said six motion vector candidates are motion
vectors corresponding to an upper right block, an upper
block, and a left block, an initial motion vector of a current
block from said first level, a motion vector of a temporally
previous block and a zero motion vector respectively.

20. The method of motion estimation as claimed in claim
16, wherein said step (e) comprises:

(el) determining a search range of motion vector offsets
based on said six motion vector candidates; and

(e2) determining said second level motion vector by
checking motion vectors corresponding to check points
within said search range using XOR block matching
with a criterion based on minimum bit-wise sum of
difference.

21. The method of motion estimation as claimed in claim
16, wherein said step (f) is accomplished by aligning a
current block and a reference block with a +2 pixel refine-
ment window in said third level using parallel XOR block
matching for generating said final motion vector with a
criterion based on minimum bit-wise sum of difference.

22. The method of motion estimation as claimed in claim
16, wherein said step (g) uses a counter for registering repeat
occurrence of said final motion vectors within previous
frames, said counter is increased by 1 if a same final motion
vector within said previous frames repeats, and said counter
is reset to zero if said counter is larger than a predefined
constant or if a different final motion vector is found.

23. The method of motion estimation as claimed in claim
22, wherein said method is in said static mode if said counter
for registering repeat occurrence of said final motion vectors
within said previous frames is greater than a pre-defined
constant.

