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METHOD AND APPARATUS FOR SOLVING KEY
EQUATION POLYNOMIALS IN DECODING
ERROR CORRECTION CODES

BACKGROUND OF THE INVENTION

[0001] In the transmission of data from a source location
to a destination location through a variety of media, noise
caused by the transmission path and/or the media itself
causes errors in the transmitted data. Thus, the data trans-
mitted is not the same as the data received. In order to
determine the errors in the received data, various methods
and techniques have been developed to detect and correct
the errors in the received data. One of the methods is to
generate a codeword which includes a message part (data to
be transmitted) and a parity part (information for performing
error correction).

[0002] Among the most well-known error-correcting
codes, the BCH (Bose-Chaudhuri-Hocquenghen) codes and
the RS (Reed-Solomon) codes are the most widely used
block codes in the communication field and storage systems.
The mathematical basis of BCH and RS codes is explained
by: E. R. Berlekamp, Algebraic Coding Theory, McGraw-
Hill, New York, 1968; and Richard E. Blahut, Theory and
Practice of Error Control Codes, Addison-Wesley, 1983.

[0003] An (N, K) BCH or RS code has K message
symbols and N coded symbols, where each symbol belongs
to GF(q) for a BCH code or GF(q™) for a RS code. A binary
(N, K) BCH code can correct up to t errors with N=2m-1,
N-K<=mt. An (N, K) RS code can correct up to t errors and
p erasures with

|2y

[0004] For binary BCH codes, an error can be corrected
simply by finding out the error location. For RS codes, an
error can be corrected by finding out the error location and
the error value. In RS codes, an erasure is defined to be an
error with a known error location, and hence its correction
reduces to finding the error value.

[0005] The method steps for common popular RS decoder
architectures for the correction of errors can be summarized
into four steps: (1) calculating the syndromes from the
received codewords, (2) computing the error locator poly-
nomial and the error evaluator polynomial, (3) finding the
error locations, and (4) computing error values. If both
errors and erasures and corrected, the four steps are modified
to: (1) calculating the Forney syndromes from the received
codewords and the erasure locations, (2) computing the
errata locator polynomial and the errata evaluator polyno-
mial, (3) finding the errata locations, and (4) computing the
errata values.

[0006] Referring to FIG. 1, the general decoding steps are
illustrated. Note that for simplification, the error-only RS
decoder is introduced. The received data, R(x), is provided
to a syndrome generator 10,20 to generate a syndrome
polynomial, S(x), representing the error pattern of the code-
word from which the errors can be corrected. The syndrome
is then provided to a key equation solver 12,22 to generate
an error locator polynomial, o(x), and an error evaluator
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polynomial, £(x). The error locator polynomial indicates the
location(s) of the error and the error evaluator polynomial
indicates the amount of the error. In the next step, the error
locator polynomial is passed to a Chien search engine 14,24
to generate the root(s), 3, representing the location(s) of the
errors. Then the error evaluator 16,26 receiving the root(s)
and the error evaluator polynomial, €(x), calculates the
error value(s) of the root(s)

[0007] The second step in the above-mentioned four-step
procedure involves solving the key equation, which is

SE)o()=Q(x)mod ¥ K (€]

[0008] where S(x) is the syndrome polynomial, o(x) is the
error locator polynomial and Q(x) is the error evaluator
polynomial. When both errors and erasures are corrected,
o(x) and Q(x) are the errata locator polynomial and the
errata evaluator polynomial, respectively. In addition, the
errata locator polynomial o(x) becomes the product of A(x)
and A(x) corresponding to the error locator polynomial and
the erasure locator polynomial, respectively.

[0009] The techniques frequently used to solve the key
equation (1) include the Berlekamp-Massey algorithm and
the Euclidean algorithm. The extension of these algorithms
to correct both errors and erasures can be found in the Blahut
article cited above. Here a novel invertionless decomposed
Euclidean architecture is invented to reduce the hardware
complexity drastically while maintaining the over all decod-
ing speed.

[0010] Prior art technologies applied the traditional
Euclidean algorithm (or variation thereof) for the calculation
of the error locator polynomial and the error evaluator
polynomial, and designed circuits based upon these algo-
rithms. However, each of these algorithms require a large
number of registers, finite-field multipliers (FFM) and per-
haps a finite-field inverters (FFI). Each of the FFMs and FFI
translates into a hardware circuitry and real estate on an
integrated circuit chip. Therefore, the goal here is to derive
a method for solving of the polynomials in an efficient
manner and to minimize the amount of circuitry required in
the implementation of the algorithm. The number of regis-
ters and FFMs is typically a function of the variable t. Table
1 illustrates the authors of the architectures for correcting
error-only codewords and the corresponding number of
registers, FFMs and FFI:

TABLE 1
Registers as a FFMs as a
Reference function of t function of t FFI
Reed 8t +2 8t 0
Song ot + 4 6t + 2 0
Wu Tt+5 i+l 1
- [_2 }

[0011] From Table 1, Reed proposed the implementation
of the inversionless Fuclidean algorithm requires 8t+2 reg-
isters, 8t FFMs and no FFI in VISI Implementation of A
Pipeline Reed-Solomon Decoder, 1EEE Transaction on
Computers, vol. C-34, pp. 393-403, May 1985. In addition,
the article An Efficient Architecture for Implementing the
Modified Euclidean Algorithm, the 9™ NASA Symposium
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on VLSI Design, November 2000, Song demonstrated an
architecture requiring 6t+4 registers and 6t+2 FFM’s and no
FFIL

[0012] On the other hand, the article An Area-efficient
Versatile Reed-Solomon Decoder for ADSL, 1EEE Interna-
tional Symposium on Circuits and Systems, May 1999, Wu
et al. presented the architecture reducing the number of
FFMs but requiring the relatively complex FFI, which will
limit speed and impose a significant hardware complexity.

[0013] Therefore, it would be desirable to have an inver-
sionless method and apparatus that requires no FFIs and
minimizes the number of registers and FFMs in the imple-
mentation thereof.

SUMMARY OF THE INVENTION

[0014] Accordingly, it is an object of the present invention
to provide a method and apparatus for solving key equation
polynomials in the decoding of codewords. Based upon the
Euclidean algorithm, it can be implemented with minimal
hardware circuitry.

[0015] 1t is another object of the present invention to
provide a method and apparatus for solving key equation
within a t-step iterative decoding procedure while the prior
art architectures require at most 2t iterations.

[0016] It is yet another object of the present invention to
provide a method and apparatus for solving key equation
polynomials without decreasing the overall decoding speed
of the decoder.

[0017] Briefly, in a presently preferred embodiment, a
method for computing error locator polynomial and error
evaluator polynomial in the key equation solving step of the
error correction code decoding process is presented whereby
the polynomials are generated through at most t intermediate
iterations that can be implemented with minimal amount of
hardware circuitry. However, depending on the selected
(N,K) code, the number of cycles required for the calcula-
tion of the polynomials would be within the time required
for the calculation of upstream data.

[0018] Additionally, a presently preferred embodiment for
computing the error locator polynomial and the error value
polynomial employs an efficient scheduling of a small
number of registers and finite-field multipliers (FFMs) with-
out the need of finite-field inverters (FFIs) is illustrated.
Using these new methods, a new area-efficient architecture
that uses only 4t+2p+2 registers and three FFMs and no FFIs
is presented to implement the inversionless Euclidean algo-
rithm. This method and architecture can be applied to a wide
variety of RS and BCH codes with suitable code sizes.

[0019] More specifically, the 3-FFM architecture of the
presently preferred embodiment for solving key equation
polynomials can also be utilized to calculate the Forney
syndrome polynomial T(x) described above. This method
and architecture can be applied to correct the error-only as
well as the error-and-erasure codewords.

[0020] An advantage of the present invention is that it
provides a method and apparatus for solving key equation
polynomials in the decoding of codewords. Based upon the
Euclidean algorithm, it can be implemented with minimal
hardware circuitry.
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[0021] Another advantage of the present invention is that
it provides a method and apparatus for solving key equation
polynomials within a t-iteration decoding procedure while
other architectures require at most 2t iterations. It will
maintain the overall decoding speed of the decoder.

[0022] Yet another advantage of the present invention is
that it provides an identical method and apparatus for not
only solving key equation polynomials but also calculating
the Forney syndrome polynomial T(x). It can be applied to
the correction of errors as well as erasures.

BRIEF DESCRIPTION OF THE DRAWINGS

[0023] FIGS. 1a and 15 illustrates the processing blocks
in the decoding or codewords;

[0024] FIG. 2a~FIG. 2¢ shows a three-FFM architecture
of the preferred embodiment for calculating the errata evalu-
ator polynomial, £2(x), in the key equation solver.

[0025] FIG. 2d shows a three-FFM architecture of the
preferred embodiment for calculating the errata location
polynomial, o(x), in the key equation solver.

[0026] FIG. 2¢ shows a three-FFM architecture of the
preferred embodiment for calculating the Forney syndrome,
T(x).

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

[0027] Firstly, we will show our modified decoding pro-
cedure requiring at most t iterations while the previous
decoding procedure requires at most 2t iteration. Following
the inversionless Euclidean algorithm is illustrated and the
errata value(s) and errata location(s) produced by €(x) and
O(x) in our inversionless decoding procedure are identical to
the errata value(s) and errata location(s) founded by Q(x)
and o(x) in the original algorithm. Secondly, we decompose
the inversionless Euclidean algorithm for reducing the num-
ber of registers to 4t+2p+2 and the number of FFMs to 3.
Finally, we show the condition on N, K such that our
architecture can be applied.

[0028] The Euclidean Decoding Procedure

[0029] For illustrating the Euclidean algorithm, we rewrite
(1) as:

QE)="FQE+TEM) @
[0030] where Q(x) is the quotient polynomial of ™ and
T((x), T(x)=S(x)A(x) is the Forney syndrome polyno-
mial, and o(x)=Mx)A(X) is the errata locator polynomial,
which is the product of the error locator polynomial, A(x),
and the erasure locator polynomial, A(x). Therefore, the
errata evaluator polynomial, (x), can be calculated by the
similar process of computing the GCD polynomial of x5
and T(x) through the Euclidean algorithm, whose decoding
process can be shown as follows:

RED(x)=n K

ROx)=T(x)

RO()=RVx0)-ROx) 0 (x)

RO=REI(x)-RE Dy 0V (x) ©)
[0031] where Q¥(x) is the i-th quotient polynomial and
R®(x) is the i-th remainder polynomial. Each iterative step
in (4) performs a polynomial division operation. Note that
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the i-th dividend polynomial R%2(x) and the i-th divisor
polynomial RED(x) are equivalent to the (i-2)-th and the
(i-1)-th remainder polynomials respectively. After n divi-
sion operations, the n-th remainder polynomial, R™(x), is
assumed to be the errata evaluator polynomial Q(x). From
the extended form of Euclidean algorithm introduced by
Error-Control Coding for Data Networks, Kluwer Aca-
demic, 1999, the similar decoding process except the minor
difference in the initial condition can be used to determine
the errata locator polynomial o(x), which is also described
as follows:

#P(x)=0

UO@)=AR)

HOE) =)+ x) QP x)

U= (04D (0-QO ) @
[0032]

where

AX) = I (1 +a'x)

a'eEN

[0033] represents the erasure locator polynomial and A is
the erasure set. Note that all Q°(x) here are equivalent to the
i-th quotient polynomial Q®(x) in (3). Similarly, after n
iterations, #™(x) is assumed to the errata locator polyno-
mial, o(x). From (3) and (4), it can be shown that the sum
of deg(R%“"(x)) and deg(u”(x)) equals to a constant num-
ber, N-K+s, where s is the number of actual erasures and
hence, equals the degree of A(x).

[0034] Our Modified Decoding Procedure

[0035] The proposed modified decoding procedure calcu-
lating the quotient polynomial with degree one in advance is
shown as follows:

[0036]
A=, MOX)=Ox)=T(x)
a®)=0, MmO E)=0D)=A)

[0037] For(i=0 to t)
d=deg(AD(x)), A=deg(MD(x))

Initial Condition

[0038]  if(deg(0™(x)=deg(QV(x))
_ o)
a0 = ,‘%)
qg)(x)=0 ford=A
() 4 1) 0 A9
A0 = % for § + A
Q(i+1)(x) A (i)(x) pxo-A-1 M(i)(x). q(i)(x) (5)
D () D ()AL D)D) (6)
[0039]  if(deg(QD(x))<A)

ACDE=MO(r), MED(x)=QE ) (x)

a2 () =m®x), m(0)=c")
[0040] eclse

AGD (=D (), MED (=MD (x)

At D)=00(0), mD)=mO(x)
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[0041] else
Q1)=0QD(x), o(x)=0(x) Finish

[0042] where qP(x)=q, Px+q,® is the i-th dummy quo-
tient polynomial, Q%*(x) is the i-th dummy remainder
polynomial, and A, and M, are the leading coefficients
of the i-th dummy dividend polynomial A®(x) with degree
of & and the i-th dummy remainder polynomial with degree
of A, respectively. Note that if there are only errors, the
erasure locator polynomial, A(x) equals 1 and the Forney
syndrome polynomial, T(x) should be altered to the syn-
drome polynomial S(x).

[0043] As compared with (3), if we assume the i-th
dividend polynomial R%"2(x) to AP(x) as well as the i-th
divisor polynomial R&V(x) to M¥(x), the difference in
degree between AP(x) and MO(x) equaling 8-A implies the
decoding procedure shown above will take at most

[6—§+l]

[0044] iterations to calculate the i-th remainder polyno-
mial RO(x).
[0045] Note that our modified decoding procedure will

stop at deg(QP(x))<deg(c®(x)) and in the meantime, o'¥(x)
is the errata locator polynomial o(x) with degree of s+v.
That s and v represent the number of actual erasure(s) and
error(s). Recalling deg(o™@(x))=deg(A(x))=s, the degree of
oW(x) will increase from s to s+v. In a specific case with
degree of Q¥(x) in (3) all equaling one, v division opera-
tions are needed and in the decoding procedure shown
above, the total number of iterations is v as a result that
accomplishing each division operation takes 1 iteration with
d-A=deg(qP(x))=1. Owing to v=t, the modified decoding
procedure above requires at most t iterations for solving key
equation polynomials.

[0046] The Inversionless Decoding Procedure

[0047] For eliminating the inverse operation within our
modified decoding procedure, a novel inversionless decod-
ing procedure is proposed and shown as follows:

[0048] Initial Condition:
AOE)=E, NO(x)=QO)=T(x)
A9)=0, 1O (x)=FOx)=A(x)
[0049] For (i=0 to t)
B=deg(AV(x)), A=deg(MDix)
[0050] if(deg(5(x))=deg(QP(x)))
§.O00)=A DN, ©
4oP(0)=0 for d=A
4P I=M,Phe, D+NL,_, PAD for d-A
QED ()N, ONELD-AD (A LMD ()-GO ) %
S (0)=M, O, P-4 (x> P-4 Ox) ®
[0051] if(deg(QD(x))<A)
AW D0=MO), MED()=Q V()
A= (), HOD()=D(r)
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[0052] else
AED()=QED (), MED()=MD(x)
A D() =5 D), MED(x)=mD(x)

[0053] else
QX=QO(x),

[0054] where Q(x) and O(x) are the modified errata evalu-
ator polynomial and errata locator polynomial, respectively,
It can be shown that 6(x) and €(x) can be used to find the
same error location(s) and error value(s) as the original o(x)
and Q(x) do. While compared with other approaches, our
proposed inversionless Euclidean algorithm not only elimi-
nates the costly inversion operation but also introduces a
t-iteration decoding procedure.

[0055] The Decomposed Architecture

(}(x)=6(i)(x) Finish

[0056] Here we propose a decomposed architecture from
the proposed inversionless Euclidean algorithm, which
works with individual coefficients of the polynomial instead
of the entire polynomial as a whole.

[0057] And (7)~(8) can be decomposed as the following
two equations:

QJ((‘;+1) =NMLOMDAD4M,_ 5 p 1y D@+ 0D
gt 0<]<5_ ®

&GN ON, P Dt _p gy PGPy P

ql D0=k=g (0
[0058] where & and A represent the degree of A9(x) and
M(l)(x) respectively, and Q @D and 5,9 corresponds to
the j-th and k-th coefficient of Q(”D(X) with degree of 3-2
and 0'"(x) with degree of ¢ at the i-th iteration. From
(9~(10), if M, OM, D, q,P and q,¥ can be calculated in
advance, there only three finite-field multiplications needed
to compute Q% and &,*?. The detailed cycle operation
of our inversionless decomposed architecture can be seen in
Table 2. For simplifying notations, we let 8—A=1 without
loss of generality.

TABLE 2
Cycle QY (x) and 6D (x)
Initial-  w = M, ONM, D
ization qu® = MDA, D+ M, PALD
j=0 c11() = MA(‘)Aég(‘ D
QD = - AGD 4 N® - 4@
i=1 Q D _ gy A, v, MO g O+ MO -G,

—a- O M ow A0V s M@ 4P+ M, O ,®

j

2 ~ ~ ~ ~ ~ ~
j=08- 9671(i+1) —w - Aé,l(i’l) " MA(i) . qo(i) + MA—l(i) . ql(i) =0
1

j=d @D -ow ASD T M,® - §,® =0
k=0 G w04 me® - g, ) )

k=1 &0D_w-3,04 m® g0+  m®-q,®
k= &L,V —w e a, O iy @ 4D+ my, O 4,0

1

ket 5,60 = w2, ® i, @ - Go® iy, @ - 4,9
[0059] 1t is evident from Table 1 that, at cycle j=0, the

computation of .0V requires w=M, M, and g,
which have been calculated at the initialization cycle. Simi-
larly, at cycle j=1, the computation of Q &1 also requires
q,Y, which has been calculated at cycle ]—0 Note that each
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cycle needs three finite-field multiplications and the calcu-
lations process of 0'"*(x) is similar to that of QD(x).

[0060] The inversionless decomposed Euclidean algo-
rithm shown above suggests a 3-FFM implementation of the
key equation solver, which is illustrated in FIG. 2. The
branch labeling in FIG. 2 corresponds to a particular time
instance. As compared with Table 1, FIG. 2(a) shows the
initialization cycle, when j=0, refer to Table 1, is w=M,®
M2® is computed by a finite field multiplier 34, equation
4oP@)=M,PA,_ FDeM, PA D, wherein
MDA, 6D s computed by a finite field multiplier 30,
N DA =D s computed by a finite field multiplier 32, these
two terms are added by a finite field adder 36 to have q,°,
as shown in FIG. 2a. FIG. 2(b) indicates the calculation
cyele for q;® and @,V Since q, V=M, DAY, the finite
field multiplier 40 is used to compute q,®, since
O V=g A V4N D-q D, the finite field multiplier 44
realize w-A,"" and the finite field multiplier 42 realize
M, ©-q,®, these two terms are added by a finite field adder
36 to have Q%Y.

[0061] The process for computing other coefficients of
Q*+D(x) is expressed in FIG. 2(c), when j =1, refer to Table
1, Q#Y(x) can be obtained by finite field multiplier 50,52,
54 and a finite field adder 56. Because the computation
process of 0W(x) is similar to that of QU(x), the
hardware used to compute Q%*(x) can be reconfigured to
calculated 6%*(x), which is presented in FIG. 2(d), the
hardware is similar to FIG. 2¢, with multipliers 60,62,64
and an adder 66 to compute ¢"*P(x) for k=1 to 1, as
illustrate in Table 1.

[0062] This architecture can be used for error-only cor-
rection as well as error-and-erasure correction. Compared to
existing proposals requiring 6t to 8t FFMs, the preferred
embodiment of the present invention significantly reduces
hardware complexity down to 3 FFMs. However, in order to
finish the i-th iteration, the architecture of the preferred
embodiment requires d+\+1 cycles whereas prior art archi-
tectures requires only two to three cycles. The additional
time required for generating the data under the architecture
of the present invention does not slow down the overall
system processing speed. Due to the overall system process-
ing speed dominated by the syndrome calculator and Chien
Search, each taking N cycles to finish, our architecture
slowing down the Euclidean algorithm (till taking N cycles)
will not impact the decoding speed.

[0063] Additionally, the method and apparatus of the
present invention also minimize the amount of required
registers. Recalling (9) and (10), y representing the degree
of 8% (x) is equivalent to the degree of uP(x) in (4) and
similarly, A representing the degree of M®(x) is equivalent
to that of R“(x) in (3). As shown earlier, deg(u®(x))+
deg(RUV(x))=N-K+s=2t+p, where t and p represent the
number of errors and erasures in the decoding of codewords
and consequently, in the preferred embodiment of the
present invention, 2t+p+2 registers are used to store the
coefficients of M®(x) and 6%)(x), and another 2t+p reg-
isters can be used for storing the coefficients of m®(x) and
QU (x). Hence, calculating QU+(x) and 60 (%) itera-
tively totally requires 4t+2p+2 registers and if there are only
errors corrected, the amount of required registers is 4t+2 and
the previously proposed architectures requiring 6t to 8t
registers.
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[0064] Furthermore, the preferred embodiment of the
present invention can also be used to calculate the Forney
syndrome polynomial, T(x), which is defined as:

T(x)=S(x)A(x)mod xN ¥ (11)
[0065] where

s

Ax) = ]_[ (L + %)

J=1

[0066] is the erasure locator polynomial and y; is the j-th
erasure magnitude. T(x) can be obtained by following pro-
cedures:

[0067]
TO(x)=5(x)
[0068] For(i=0 to t)

Initial Condition

[0069] if(2i<s)
ADC=(T+) (1+%2101%) 12
TED)=TO () AD(x)mod XK (13)

[0070] else
T()=TO(x) Finish

[0071] where AP(x) is the i-th auxiliary polynomial for
computing the i-th iteration Fonrey syndrome polynomial,
T@(x). Note that AV(x) can be expressed as 1+AVx+
A,Px? and TV (x) can be decomposed as the following
results:

T8 D=7 Oy DA Oy DA Do=v=NK-1 (14)

[0072] 1t is evident that the process calculating the T-th
coefficient, T, is very similar to (9) or (10), and there-
fore, the 3-FFM architecture can be used to obtain the
Forney syndrome polynomial T(x), which is illustrated in
FIG. 2(e), as refer to equation (14), the second term is
computed by a finite field multiplier72, the third term is
computed by a finite field multiplier70 and these two terms
an? tl;e first term are added by a finite field adder 74 to have
T—.; i+l .

[0073] Application Conditions

[0074] The total number of cycles required to compute
6(x) and Q(x) using the 3-FFM architecture of the preferred
embodiment is of interest in considering the potential impact
on the overall system performance. From the proposed
iterative decoding process, 0=j=06-2 in (9) and 0=X=v in
(10) implying the number of cycles required to compute
Q(x) is 8-1 and calculating 6%V (x) needs +1 cycles
in the i-th iteration. However, one more cycles is needed to
get ;Y and q,®, and the proposed decoding procedure
requires O+ +1 cycles in one iteration totally. From {+A=
N-K+s and 3-AZ1, it is clear that d++1 EN-K+s+2=2t+
p+2. For RS (N,K) code for correcting t errors and p
erasures, the total number of cycles required in our t-itera-
tion decomposed inversionless architecture is less than 2+
pt+2t. Table 3 shows the maximum number of cycles for
different RS (N,K) codes with N-K ranging from 4 to 16. If
N is larger than the number of cycles required, then our
3-FFMs architecture can be applied to reduce the hardware
complexity while maintaining the overall decoding speed.
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TABLE 3
N-K t P cycles t P Cycles
4 2 — 12 1 2 6
6 3 — 24 2 2 16
8 4 — 40 3 2 30
10 5 — 60 4 2 48
12 6 — 84 5 2 70
14 7 — 112 6 2 96
16 8 — 144 7 2 126

[0075] There are many applications of BCH and RS codes
in communications and storage systems that benefit from
methods and apparatus of the present invention. For
example, Digital Versatile Disks (DVDs) use a RS product
code which is (182,172) in the row direction and (208,192)
in the column direction. Digital TV broadcasting uses a
(204,188) RS code. CD-ROM uses a number of smaller
(32,28) and (28,24) RS codes. In the optical fiber submarine
cable systems, RS (255,239) code is used and standardized
to provide burst error correcting capability. In wireless
communications, the AMPS cellular phone system uses
(40,28) and (48,36) binary BCH codes, which are shortened
codes of the (63,51) code. The (63,51) code, which can
correct up to 2 errors (N-K=12,m=6), requires fewer than 12
cycles (t=2, row 1 of Table 3). All of these applications, as
well as many others, can benefit from the method and
apparatus of the present invention.

[0076] Although the present invention has been described
in terms of specific embodiments, it is anticipated that
alterations and modifications thereof will no doubt become
apparent to those skilled in the art. It is therefore intended
that the following claims be interpreted as covering all such
alterations and modifications as fall within the true spirit and
scope of the invention.

What is claimed is:

1. An apparatus for solving key equation polynomials in
decoding error correction codes, a novel inversionless
decomposed architecture which is frequently used in BCH
and Reed-Solomon decoders comprising:

a syndrome calculator that received codewords and output
a syndrome polynomial to a key equation solver;

a key equation solver that calculated error locator poly-
nomial and error evaluator polynomial and output error
location;

a Chein Search that received said error locator polynomial
and input a result to an error value calculator and output
said error location;

an error value calculator that received signal from said
key equation solver and Chein Search, output an error
value.

2. An apparatus for solving key equation polynomials in
decoding error correction codes according to claim 1,
wherein said apparatus is used for BCH and Reed-Solomon
(RS) decoders.

3. An apparatus for solving key equation polynomials in
decoding error correction codes according to claim 1,
wherein said apparatus is applied to BCH and Reed-So-
lomon (RS) decoders which is a kind of inversionless
decomposed architecture.
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4. An apparatus for solving key equation polynomials in
decoding error correction codes according to claim 1,
wherein said apparatus can be applied to the correction of
errors as well as erasures.

5. An apparatus for solving key equation polynomials in
decoding error correction codes in claim 1, wherein said
method and apparatus is applied in inversionless Euclidean.

6. An apparatus for solving key equation polynomials in
decoding error correction codes according to claim 1,
wherein said apparatus can eliminate the finite-field inverter
(FFD) to finish.

7. An apparatus for solving key equation polynomials in
decoding error correction codes according to claim 1,
wherein said apparatus is only needed t iteration decoding
procedure.

8. An apparatus for solving key equation polynomials in
decoding error correction codes according to claim 1,
wherein said apparatus including said decomposed tech-
nique which can also drastically reduce the required number
of finite-field multipliers (FFMs) from 4t~6t to 3.

9. An apparatus for solving key equation polynomials in
decoding error correction codes according to claim 1,
wherein said apparatus including said decomposed tech-
nique that uses only 4t+2p+4 registers.

10. An apparatus for solving key equation polynomials in
decoding error correction codes according to claim 1,
wherein said apparatus including said decomposed tech-
nique that no FFIs is presented to implement the inversion-
less Euclidean algorithm.

11. An apparatus for solving key equation polynomials in
decoding error correction codes according to claim 1,
wherein said apparatus can use to calculate the Forney
syndrome polynomial.

12. An apparatus for solving key equation polynomials in
decoding error correction codes according to claim 1,
wherein said apparatus is further operable in communica-
tion.

13. A method for solving key equation polynomials in
decoding error correction codes. In particular, a novel
method for inversionless decomposed architecture which is
frequently used in BCH and Reed-Solomon decoders
executable instructions for:

(a) received said codewords and calculate said syndrome;

(b) produced said errata locator polynomial and errata
evaluator polynomial;

(c) search said error location;

(d) calculated said error value.

14. A method for solving key equation polynomials in
decoding error correction codes according to claim 13,
wherein said method is used for BCH and Reed-Solomon
(RS) decoders.

15. A method for solving key equation polynomials in
decoding error correction codes according to claim 13,
wherein said method is applied to BCH and Reed-Solomon
(RS) decoders which is a kind of inversionless decomposed
architecture.

16. A method for solving key equation polynomials in
decoding error correction codes according to claim 13,
wherein said method can be applied to the correction of
errors as well as erasures.
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17. A method for solving key equation polynomials in
decoding error correction codes according to claim 13,
wherein said method is applied in inversionless Euclidean.

18. A method for solving key equation polynomials in
decoding error correction codes according to claim 13,
wherein said method can eliminate the finite-field inverter
(FFI) to finish.

19. A method for solving key equation polynomials in
decoding error correction codes according to claim 13,
wherein said method is only needed t iteration decoding
procedure.

20. A method for solving key equation polynomials in
decoding error correction codes according to claim 13,
wherein said method including said decomposed technique
which can also drastically reduce the required number of
finite-field multipliers (FFMs) from 4t~6t to 3.

21. An apparatus for solving key equation polynomials in
decoding error correction codes according to claim 1,
wherein said method including said decomposed technique
that uses only 4t+2p+4 registers.

22. A method for solving key equation polynomials in
decoding error correction codes according to claim 13,
wherein said method including said decomposed technique
which no FFIs is presented to implement the inversionless
Euclidean algorithm.

23. A method for solving key equation polynomials in
decoding error correction codes according to claim 13,
wherein said method including said decomposed technique
which can also use to calculate the Forney syndrome poly-
nomial.

24. A method for solving key equation polynomials in
decoding error correction codes according to claim 13,
wherein said method and apparatus is further operable in
communication.

25. A method for solving key equation polynomials in
decoding error correction codes. In particular, a novel
method for inversionless decomposed architecture which is
frequently used in BCH and Reed-Solomon decoders,
wherein improving process including;

(2) improved the speed of said Educlidean algorithm;

(b) embellished said decoded procedure to reduce half
decoded result;

(¢) combined the calculate which said errata locator

polynomial and errata evaluator polynomial.

26. A mothed as recited in claim 25, wherein said Edu-
clidean algorithm and time is shared said finite-field multi-
pliers (FFMs).

27. A mothed as recited in claim 25, wherein said method
can reduce said hardware area.

28. A mothed as recited in claim 25, wherein said modi-
fied Educlidean algoridean is a decomposed architecture,
eliminated the limit of finite-field inversionless

29. A mothed as recited in claim 25, wherein said inver-
sionless Educlidean algoridean including total iteration
number of degree is less than t but also other architectures
requires at most 2t interations.

30. A mothed as recited in claim 28, wherein said inver-
sionless Educlidean algoridean use the degree of said error
locator polynomial increase from p+1 to p+t.

31. A mothed as recited in claim 25, wherein said inver-
sionless Educlidean algoridean, the number of total itera-
tions in our modified procedure is less than t.
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32. A method for solving key equation polynomials in
decoding error correction codes. In particular, a novel
method for inversionless decomposed architecture which is
frequency used in BCH and Reed-Solomon decoders includ-
ing:

(a) each iteration could eliminate at least one degree;

(b) combined the hardware of said errata locator polyno-
mial and errata evaluator polynomial,

(c) a number of FFMs is reduced to 3.

33. A mothed as recited in claim 32, wherein said speed
of inversionless Educlidean algoridean slowing down, but it
will not impact the decoding speed.

34. A mothed as recited in claim 32, wherein said BCH
and Reed-Solomon (RS) decoder, Digital Versatile Disks
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(DVDs) use a RS product code which is (182,172) in the row
direction and (208,192) in the column direction.

35. A mothed as recited in claim 32, wherein said BCH
and Reed-Solomon (RS) decoder, digital TV broadcasting
uses a (204,188) RS code.

36. A mothed as recited in claim 32, wherein said BCH
and Reed-Solomon (RS) decoder, CD-ROM uses a number
of smaller RS codes, including (32,28),(28,24).

37. A mothed as recited in claim 32, wherein said BCH
and Reed-Solomon (RS) decoder, in wireless communica-
tions, the AMPS cellular phone system uses (40,28) and
(48,36) binary BCH codes, which are shortened codes of the
(63,51) code.



