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We quantitatively describe the competition between interactions, thermal fluctuations, and random quenched
disorder using the dynamical Martin-Siggia-Rose approach �Phys. Rev. A 8, 423 �1973�� to the Ginzburg-
Landau model of the vortex matter. The approach first used by Dorsey et al. �Phys. Rev. B 45, 523 �1992�� to
describe the linear response far from Hc1 is generalized to include both pinning and finite voltage. It allows one
to calculate the non-Ohmic I-V curve, thereby extending the theory beyond the linear response. The static flux
line lattice in type-II superconductors undergoes a transition into three disordered phases: the vortex liquid �not
pinned�, the homogeneous vortex glass �pinned, if one disregards an exponentially small creep at finite tem-
peratures�, and the crystalline Bragg glass �pinned� due to both thermal fluctuations and disorder. The location
of the glass transition line in the homogeneous phase is determined and compared to experiments. The line is
clearly different from both the melting line and the second peak line describing the translational and rotational
symmetry breaking at high and low temperatures, respectively. Time correlation and response functions of the
order parameter as functions of the time difference are calculated in both the liquid and the amorphous
homogeneous phases. They determine the relaxation properties of the vortex matter due to the combined effect
of pinning and thermal fluctuation. We calculate the critical current as a function of magnetic field and
temperature in the homogeneous phase. The surface in the J-B-T space defined by this function separates
between a dissipative moving vortex matter regime and vortex glass. A quantitative theory of the peak effect,
qualitatively different from the conventional one due to Pippard �C. Tang, X. Ling, S. Bhattacharya, and P. M.
Chaikin, Europhys. Lett. 35, 597 �1996�; A. B. Pippard, Philos. Mag. 19, 217 �1969�; A. I. Larkin and Yu. N.
Ovchinnikov, J. Low Temp. Phys. 34, 409 �1978��, is proposed.
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I. INTRODUCTION

In type-II superconductors for which the penetration
depth � exceeds the correlation length �, the magnetic field
penetrates the sample in the form of Abrikosov vortices
which strongly interact, thereby creating an elastic “vortex
matter.” Impurities always present in a sample lead to inho-
mogeneities both on the microscopic scale �described by the
electron’s mean free path� and the mesoscopic scale �pin-
ning�, which greatly affect the thermodynamic and, espe-
cially, dynamic properties of the vortex matter. When disor-
der is strong enough, it pins the vortex matter, resulting in
dissipationless persistent current, thereby recovering an
original defining property of superconductor. In addition,
thermal fluctuations also significantly influence the vortex
matter, either directly by melting the vortex lattice into a
vortex liquid or by changing the efficiency of the disorder
�thermal depinning�. They are especially important in high Tc
superconductors. As a result of a delicate interplay between
disorder, interactions, and thermal fluctuations, even the
static H-T phase diagram of high Tc superconductors is very
complex and is still far from being reliably determined.

Once electric current J is injected into a sample, one is
faced with the problem of describing the dynamical phase
diagram, which should be drawn in the three dimensional
space T-H-J. This makes the analysis essentially more com-
plicated, especially if one intends to study it beyond linear
response. Generally, there are two phases: the pinned phase,
in which the vortices are pinned and thus the resistivity van-

ishes �perfect superconductivity exists�, and the unpinned
phase, in which vortices can move due to Lorentz force and
thus a finite resistivity appears. The transition surface is de-
termined by the critical current as function of magnetic field
H and temperature T. When the critical current vanishes, the
intersection of the surface with the H-T plane gives the
“static” irreversibility line.

Theoretically, the problem of the vortex matter subject to
both thermal fluctuations and disorder has a long history.
Two major simplifications are generally made. In the major-
ity of the works, the vortex matter is considered as an array
of elastic lines.2 This �London� approximation is generally
valid far from the higher critical field Hc2, when the vortex
density is low. An alternative simplification to the vortex
matter is valid far enough from the lower critical field Hc1.
At high vortex densities, magnetic fields of many vortices
overlap and the resulting magnetic inductance is nearly ho-
mogeneous. It is usually supplemented by the so-called low-
est Landau level �LLL� approximation.3,4 The original idea
of the vortex glass5 and the continuous glass transition ex-
hibiting the glass scaling of conductivity in statics appeared
early in the framework of the frustrated XY model.6 The
model was studied by the renormalization group and the
variational methods, and has been extensively simulated
numerically.7,8 In analogy to the theory of spin glasses, in
this model the replica symmetry is broken when crossing the
glass transition line. The frustrated XY model ran into several
problems. For finite penetration depth, it has no transition9

and, moreover, there was a difficulty in explaining sharp

PHYSICAL REVIEW B 76, 014507 �2007�

1098-0121/2007/76�1�/014507�20� ©2007 The American Physical Society014507-1

http://dx.doi.org/10.1103/PhysRevB.76.014507


Bragg peaks observed in the experiments at low magnetic
fields. To address the last problem, another simplified model
had been proven to be more convenient: the elastic medium
approach to a collection of interacting linelike objects sub-
ject to both the pinning potential and the thermal bath. The
resulting theory was treated using the Gaussian
approximation10,11 and renormalization group.6 The original
problem of the very fast destruction of the vortex lattice by
disorder was solved with the vortex matter being in the rep-
lica symmetry broken phase for dimensionality 2�D�4,
and it was termed “Bragg glass.” In D=2, there exists dis-
crete replica symmetry broken transition. It is possible to
address the problem of dynamics in the presence of thermal
fluctuation using an approach in which one directly simulates
the interacting line-like objects subject to both the pinning
potential and the thermal bath Langevin force.12

A vast majority of theoretical works deal with the linear
response and cannot address the flux dynamics at finite cur-
rents. The I-V curves of the flux flow are very nonlinear.
However, one should be very cautious in interpreting the
experimental results since they generally do not distinguish
between the bulk and the edge effects. In several experiments
in which the bulk was isolated �either by Corbino geometry13

or by varying the width of the sample14�, one finds that the
bulk I-V has a structure simpler than the commonly accepted
nonlinear form. It is important to achieve a theoretical un-
derstanding of both the bulk and edge contributions in the
region of the magnetic phase diagram in which these experi-
ments on NbSe2 were performed. Very often the flux dynam-
ics is investigated in the London limit with widely separated
vortices, so that one can model them as an array of line-like
thin objects interacting pairwise. The motion in the presence
of disorder looks like a rather chaotic advance in channels,
with sudden hops between pinning centers and occasional
avalanches. This picture cannot be directly applied in situa-
tions when magnetic field of vortices overlap, creating a ho-
mogeneous magnetic field. Still, the core regions might ex-
hibit this type of behavior. Moreover, the connection
between the qualitative description of the motion and the
resulting I-V curves is not clear at present.

In this paper, we investigate the �bulk� dynamics of the
vortex matter beyond linear response using the disordered
Ginzburg-Landau model. In statics, the replica method of
handling disorder in the framework of LLL Ginzburg-
Landau �GL� model was utilized in both three dimensions
and two dimensions15,16 to obtain the irreversibility line
along with other properties of the disordered vortex matter.
The irreversibility lines of YBCO and a two-dimensional
�2D� organic superconductor were found to be in good agree-
ment with experiment.16 Tesanovic and Herbut used super-
symmetry �for columnar defects in layered materials�.17 Dy-
namics in the presence of thermal fluctuations and disorder is
phenomenologically described using the time dependent
Ginzburg-Landau �TDGL� model, in which the coefficients
have random components.2,18 Such an attempt was made by
Dorsey et al.1 in the homogeneous �liquid� phase using a
dynamic Martin-Siggia-Rose �MSR� formalism.19,20 They
obtained the irreversibility line and formulated the linear re-
sponse theory of the vortex matter.

The main purpose of this paper is to study the dynamics
of three-dimensional vortex matter beyond linear response

using the dynamical approach1 within the TDGL model at
finite electric field. In strongly type-II superconductors �for
which the Ginzburg-Landau ratio �=� /� is large�, magnetic
and electric fields inside the superconductor are homoge-
neous over a wide range of parameters. As mentioned above,
high homogeneity of magnetic field in the mixed state origi-
nates from superposition of many �B̃ /Hc1�1� vortices. The
same argument is valid for an electric field which arises due
to vortex motion. Indeed, the electric field is related by Lor-
entz transformation to the homogeneous magnetic field ap-
pearing in the frame moving with vortices. Linear response,
namely, conductivity in the limit of zero current, is typically
obtained using the Kubo formula.1,21–23 A theory with a finite
electric field allows one to obtain the I-V curve beyond the
linear response. Finite electric fields without disorder have
been considered within the framework of TDGL in Refs. 4,
21, and 24.

Complex motion of vortex matter featuring mesoscopic
avalanches, channels, and islands of pinned flux described
above, which might exist, are not probed directly in our
method of averaging over the white noise disorder. Analyti-
cally, one preforms the disorder average of conductivity and
magnetization, and does not directly see the picture above.
To get a glimpse into the dynamics, time dependent correla-
tion functions are calculated. We study the dynamic correla-
tion function C�r ,� ,r� ,��� and the response functions
R�r ,� ,r� ,��� �averaged over disorder and thermal fluctua-
tions� of the order parameter � within an appropriately gen-
eralized Gaussian approximation in both the flux flow and
the pinned phases. We consider the stationary case only,1

namely, when the correlation function depends on the time
difference and is therefore characterized by the spectrum C	.
The critical surface Tg�H ,J� in the three-dimensional space
T-H-J, separating the pinned and unpinned phases, is ob-
tained as a surface at which C	→
 for 	→0. Above this
surface, the real space correlator decays exponentially, while
below it is a constant at large time scales. The constant is
proportional to the Edwards-Anderson order parameter char-
acterizing transition to a glassy state.25 Approaching critical-
ity in the parameter space T→Tg, various quantities diverge
powerwise in �T−Tg�, with critical exponents calculated in
mean field. The static glass transition line, namely, the line at
zero electric field, coincides with the one obtained using the
replica method.16 A relation between the dynamical and rep-
lica methods, which is important for understanding the na-
ture of any glass transition, is discussed.

We show that the leading contribution to conductivity
near the glass line comes from the first Landau level rather
than from the LLL. The conductivity diverges on the static
glass line. This has important physical consequences. It is
well known that within LLL both magnetization and conduc-
tivity are proportional to the superfluid density ���2. Magne-
tization is generally proportional to the superfluid density in
the first order in 1/�2 �see Ref. 26�, while for arbitrary LLL
configuration �, the electric current can be written as J� �ẑ
������2. This relation does not hold for higher Landau lev-
els �LLs�. Experimentally, however, while magnetization is
continuous across the line, the conductivity diverges. This is
known to happen in a wide range of materials and param-
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eters. Compare, for example, a recent experiment27 on mag-
netization in BSCCO and an earlier transport measurement
in the same material and the same range of parameters.28 The
fact that near the glass line contribution from higher LL
�HLL� takes over removes this difficulty of the LLL theory.
The exponentially small vortex creep is not included �it cor-
responds to instanton contribution in the formulation
adopted�, and therefore, is not general in this respect.

The main result of the present paper is the calculation of
the I-V curves in a wide range of parameters. The I-V looks
often as a shifted straight line, rather different from the
smooth power-like behavior seen in many experiments.
However, as mentioned above, it is consistent with recent
measurements in which the edge contribution was mini-
mized.13,14,29 In addition, we provide an alternative theory of
the peak effect in the critical current. A sharp increase of the
critical current is not considered as gradual, due to softening
of the vortex lattice before melting, but rather an abrupt jump
into the homogeneous vortex glass state, in which we obtain
large current diminishing fast while approaching the glass
line.

The paper is organized as follows. The disordered TDGL
model at a constant electric field is defined in Sec. II. The
Martin-Siggia-Rose formalism is applied to it using the basis
of Landau levels in electric field. In Sec. III, we briefly de-
scribe a variant of the Gaussian approximation functional
integral method30,31 and apply it to the MSR action for the
LLL sector. We find the dynamical glass transition surface
and calculate various critical exponents. The stationary cor-
relations in the pinned phase are also found. It is shown in
Sec. IV that the main contribution to the current near the
glass transition line comes from higher Landau levels, and
their leading contribution is calculated. The rest of the paper
deals with applications of the obtained general results to ex-
periments. The irreversibility line and the I-V curves are con-
sidered in Sec. V, while the critical current and the theory of
the peak effect are discussed in Sec. VI. A brief discussion of
the applicability of the theory and conclusions are the sub-
jects of Sec. VII.

II. TIME DEPENDENT GL MODEL IN THE
PRESENCE OF BOTH DISORDER AND

THERMAL FLUCTUATIONS

A. Basic equations and assumptions

Our starting point is the TDGL equation26 in the presence
of thermal fluctuations, which on the mesoscopic scale are
represented by a �complex� white noise21,24 
:

�2�

4m*D�� = −
�

��*F + 
 , �1�

where m* is the effective mass of the Cooper pair. The co-
variant time derivative is D�� �

�� + ie*

� �, where � is the sca-
lar electric potential describing the driving force in a purely
dissipative dynamics. We assume that the charge of the Coo-
per pairs is negative −e*, with positive e*=2e. The inverse
diffusion constant � /2 controlling the time scale of dynami-
cal processes via dissipation is real, although a small imagi-

nary �Hall� part is generally present.32 The variance of the
thermal noise 
 determines the temperature T= tTc:

�
�r,��
*�r�,���� = ��� − �����r − r��
�2�

2m*T . �2�

The static GL free energy including the �Tc disorder1,2 is

F =	 d3r
 �2

2m*��� +
ie*

�c
A
��2

+
�2

2mc
* ��z��2

− �Tc�1 − t��1 + U�r�����2 +
b�

2
���4� . �3�

The random component of Tc, U�r�, will be modeled by a
white noise characterized by variance depending on the pin-
ning:

U�r�U�r�� = ��r − r���2�znp. �4�

The dimensionless pinning strength np is proportional to the
density of pinning centers in units of the coherence volume

�2�z, where �z=�a� with anisotropy parameter �a=�m*

mc
* . We

neglect possible random components of other coefficients in
TDGL. These might lead to important physical consequences
and were considered using replica formalism in statics in
Ref. 16. The space covariant derivative D��+ ie*

�c A, de-
scribes magnetic field, and the coefficients are related to the
coherence length and the magnetic penetration depth � via
�Tc= �2

2m*�2 and b�= 2��2�2e*2

�2c2m*2 . The TDGL equations, therefore,
can be written in a form

L̂� = �Tc�1 − t�U� − b����2� + 
 , �5�

where a �non-Hermitian� linear operator is defined by

L̂ �
�2�

4m*D� −
�2

2m*D2 −
�2

2mc
*�z

2 − �Tc�1 − t� . �6�

We make several assumptions �identical to those made in
Ref. 21 and major parts of Ref. 4� to simplify the problem.
As was discussed in the Introduction, in strongly type-II su-
perconductors, �=� /��1; magnetic and electric fields are
very homogeneous since fields of vortices overlap. Therefore
the Maxwell type equations for electromagnetic field are not
considered. The axes are chosen in such a way that the mag-
netic and electric fields are oriented along the negative z
direction and the negative y direction, respectively. The vor-
tices are moving along the positive x direction due to the
Lorentz force. The electric and magnetic fields E=−��

− �
�tA; B=��A are written in the Landau gauge, with the

vector potential A= �By ,0 ,0� and the scalar potential �
=Ey, respectively. Temperatures, currents, and magnetic
fields should be close “enough” to the dynamical phase tran-
sition line Hc2�T ,E� in order to apply the GL approach based
on an assumption that the order parameter � is small.

B. Martin-Siggia-Rose formalism for TDGL model

A Langevin type dynamics can be formulated as a func-
tional problem with the dynamical “partition function,” de-
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fined by the MSR functional integral19 over the order param-
eter � and an additional “ghost” field33 �. The ghost field
allows exact integration over the white noise 
. As was no-
ticed by Sompolinsky and Zippelius,20 who considered a
similar model in the context of the spin glass theory, this
allows one to exactly average over disorder by performing a
Gaussian integration over the random field U�x� correlated
according to Eq. �4� without invoking the replica trick:

Z =	 D�*D�D�*D� exp�− AMSR��,��� . �7�

Since �a rather nontrivial� derivation is closely analogous to
the one presented in detail in Ref. 20, with certain aspects
further clarified in Ref. 34, we just presented the resulting
action AMSR�� ,��. This choice is more convenient for per-
forming Gaussian approximation and does not lead to any
mathematical complications.

The functional approach enables us to calculate both the
dynamics correlators and response function of the system in
close analogy to the calculation of the static correlators in
statistical physics. For example, the dynamical correlator and
the response function are

C�r,�,r�,��� = ��r����r�
* ����� = Z−1	 D�*D�D�*D��r���

��r�
* ����exp�− AMSR��,��� , �8�

R�r,�,r�,��� = ��r����r�
* ����� = Z−1	 D�*D�D�*D��r���

��r�
* ����exp�− AMSR��,��� . �9�

From now on, �¯� will denote both the thermal and disorder
averages. The dimensionless “action” contains a quadratic
part and two quartic parts �omitting certain counterterms that
will be mentioned below in Sec. III B�,

A free =
1

T��2	
r,�

��r
*���L̂�r��� + c.c.�

−
�2

2Tm*��4	
r,�

�r����r
*��� −

4b�l2�z

��2�Tc
	

r,�
�r����r

*��� ,

�10�

Adis = −
2�z

�2�2np
��1 − t�
t

�2	
r,�,�

��r
*����r��� + �r����r

*����

���r
*����r��� + �r����r

*���� , �11�

Aint =
b�

T��2	
r,�

�r����r
*�����r

*����r��� + �r����r
*���� , �12�

where the operator L̂ was defined in Eq. �6�. The second term
in Eq. �10� appears due to thermal noise averaging, while the
last one represents a functional Jacobian arising from nor-
malization of the ghost field integration.19,34 The two quartic
parts describe the disorder and the interactions, respectively.

In the theoretical part of this paper, we will use appropri-
ate units of time ��=� /�GL with characteristic GL time scale
�GL=��2 and coordinates x�=x / l, y�=y / l, z�=z /�z, where
magnetic length is l=�b−1/2 with b=B /Bc2. It is convenient
to combine the fields in a dimensionless two component col-
umn

� = ��l2�z

t

1/2��

�

 ,

in terms of which the action takes the form

A free = 	
r,�

�r
*���D−1�r��� ,

Adis = − ng	
r

	

�

�r
*����x�r����2

,

Aint =
g

2
	

r�

��r
*����↑�r������r

*����x�r���� . �13�

Here, we introduced two dimensionless couplings

n =
np

4��2Gi

�1 − t�2

t
, �14�

characterizing the relative strength of disorder compared to
interactions, and

g = 8�bt�2Gi , �15�

characterizing the interactions compared to thermal fluctua-
tions with �2Gi= b�

4��2Tc�
2�z

. The inverse propagator matrix is

D−1 = �− 2g L̂+

L̂ − 1

 , �16�

where the operator L̂ of Eq. �6� has the form

L̂ =
1

2
��� + 4ibvy� − b���x − iy�2 + �y

2� − �z
2 − �1 − t� ,

�17�

with velocity of fluxons

v =
e*�El3

4�
�18�

given in units of c. We make use of Pauli matrices �x, �y, �z,
and �↑,↓= 1

2 �1±�z�.
Since the spectrum of the operator L̂ is discrete �the Lan-

dau quantization�, in a certain range of parameters, one can
significantly simplify the problem by considering the “low
energy” states only. It is therefore advantageous to reexpress
the model in the Landau level basis.

C. Landau level basis in the presence of electric field

The moving Landau harmonics are solutions of linearized
time dependent GL equation in the presence of electric field.
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Mathematically, we define them as the right eigenfunctions
of the operator L̂, Eq. �17�, with eigenvalues LNk,kz

:

L̂�e−i	��Nk,kz
�=LNk,kz

�e−i	��Nk,kz
�, where

�Nk,kz
=

1
�2NN!�1/2

e−v2/2HN�y − k + iv�exp�ikzz�

�exp�ikx�exp
−
1

2
�y − k + iv�2� , �19�

and HN�y� are Hermit polynomials. The basis functions are
normalized as

	
r

�̄Nk��r��Mk�r� = �2��2�k�k�N,M �20�

and �k�k is the 2D � function with k= �k ,kz�. Since the op-
erator is not Hermitian, they are different from the left eigen-

functions �̄Nk,kz
defined as L̂†�ei	��̄Nk,kz

�=LNk,kz

* �ei	��̄Nk,kz
�,

see Ref. 24.
The order parameter and the ghost fields are expanded,

therefore, via the moving Landau harmonics as

�r��� =
1

�2��3/2 �
N=0
	

	k
e−i	��Nk�r��Nk,	. �21�

We will use in Sec. III the LLL subspace, although higher
levels will be necessary for the calculation of supercurrent
and will be considered in Sec. IV. It will be convenient to
separate the presumably more important LLL subspace from
the rest, the HLL part:

�r��� = �r��� + �r��� , �22�

where �k,	��0k,	 and �k,	��N=1�Nk,	. As will become
clear in Sec. IV, it will be sufficient for our purposes to
consider effects up to first order in �r���, and now, we con-
centrate on the LLL sector.

In the LLL sector, the quadratic part of the action takes
the form

A free = 	
k,	

�k,	
* Dk	

−1 �k,	,

Dk	
−1 =� − 2g

i	�

2
+ kz

2 + 2ah

− i	�

2
+ kz

2 + 2ah − 1 � , �23�

where 	�=	−4bvk and ah=−�1− t−b−bv2� /2 is the “dis-
tance” on the dynamical phase diagram from the mean field
normal-superconductor transition line. The quartic terms are

Adis = −
ng

�2��5/2	
�k�,	,�

�k1−k2+k3−k4
f0��k����k1,	

* �x�k2,	�

���k3,�
* �x�k4,�� , �24�

Aint =
g

2�2��7/2	
�k�,�	�

�	1−	2+	3−	4

k1−k2+k3−k4 f0��k����k1,	1

* �↑�k2,	2
�

���k3,	3

* �x�k4,	4
� , �25�

where �k� and �	� denote a set of all variables �k1 ,k2 ,k3 ,k4�
and �	1 ,	2 ,	3 ,	4�, respectively, and �	1−	2+	3−	4

k1−k2+k3−k4 is a
product of Dirac � functions ��	1−	2+	3−	4���k1−k2

+k3−k4�. The Gaussian damping factor f0��k��

=exp�−
�k2−k1�2+�k4−k1�2

2
� arises from matrix elements of four

LLL functions.

III. CONSISTENT GAUSSIAN APPROXIMATION
FOR THE MSR ACTION

Since the model is highly nontrivial even in the simplest
cases, one has to use an approximation scheme. We utilize a
method which evolved from the Gaussian variational ap-
proach to quantum mechanics, referred to here as Gaussian
approximation.31 Generally, it captures the basic physical as-
pects, although its precision might not be very high �perhaps
similar to a dynamical mean field theory in the band struc-
ture calculations�.

Since we will calculate higher correlators using well
known, sometimes inconsistently, Gaussian approximation,
we start with a brief description of the general method intro-
duced in detail in Ref. 30, utilizing the so-called Gaussian
effective action and “truncated” Dyson-Schwinger equations.
Naively using the Hartree-Fock procedure �Wick contrac-
tions� to calculate correlators leads to several important in-
consistencies. For example, approximate correlators of Gold-
stone bosons are not massless, contrary to the Goldstone
theorem. This is crucial in calculating effects dependent on
massless modes like the divergence of conductivity on the
glass line. An additional advantage of this approach over the
resummation of the diagram technique used in Refs. 1 and 23
�borrowed from the physics of weak localization� is that it is
systematic and unambiguous, without any reference to the
“large number of components” limit.

A. Gaussian effective action and correlators

The exact effective action A��̄ ,G� introduced by Corn-
wall et al.35 is defined as the functional of two variational
parameters, a “classical” �or shift� field

�̄A = ��A� = Z−1	
�,�*

�A exp�− AMSR��,�*�� �26�

and a two-field connected correlator

GAB = ���A − �̄A���B
* − �̄B

*��

= Z−1	
�,�*

��A − �̄A���B
* − �̄B

*�exp�− AMSR��,�*�� .

�27�

Here, indices of the field � stand for the full set of variables
and parameters: A= �	 ,k , i�, where i=1,2 is the � column
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index. Minimization of the effective action yields the “shift”
and the “gap” equations

�A��̄,G�

��̄A

= 0,
�A��̄,G�

�GAB
= 0, �28�

respectively.

In the Gaussian approximation, A��̄ ,G� is approximated
�up to an unimportant constant� by

A��̄,G� � AG��̄,G� = A free��̄� − Tr log G + Tr�D−1G�

+ �Adis�G + �Aint�G, �29�

where A free��̄� is the quadratic part of AMSR��̄� action in
Eq. �10� and �Adis�G, �Aint�G are calculated as the Gaussian

averages with the field shifted by �̄:

�O�G =

	
�,�*

O��,�*�exp�− ��* − �̄*�G−1�� − �̄��

	
�,�*

exp�− ��* − �̄*�G−1�� − �̄��
.

This allows calculation of correlators of the fields via func-
tional differentiation with respect to the shift fields. In the
rest of this section, we will solve the gap equations for the
MSR action, while correlators �including the four-point func-
tions� are considered in Sec. IV.

B. Application to the LLL model: The gap equation

The Gaussian approximation has been applied to the
LLL time dependent Ginzburg-Landau model in the absence
of electric field using diagram resummation in Ref. 1. Here,
we use the Gaussian effective action approach leading
to an identical gap equation. Assuming that the gauge
�electric charge� U�1� symmetry is unbroken, the one-
field averages ���, ��� and the “charged” two-field cor-
relators like ���� should vanish. The invariant �“neutral”�
two-point Green functions include the correlator C�r ,� ,
r� ,������r����r�

* �����, the response function R�r ,� ,r� ,���
���r����r�

* �����, and the auxiliary field correlator
B�r ,� ,r� ,������r����r�

* ����� �which will vanish; see be-
low�. In a homogeneous dynamical phase �physically corre-
sponding to a stationary flux flow�, the correlators depend on
the differences �−�� and r�−r only. Therefore, in the �	 ,k�
space, one has

GAA� = �		��kk�G	k, G	k = �C	k R	k

R	k
* B	k


 , �30�

where �		���	−	� and �kk�=�k−k� are the one- and two-
dimensional Dirac delta functions ��	−	�� and ��k
−k����kz−kz��, respectively.

Making use of the above relation, the quartic terms in Eq.
�29� become

�Adis�g = −
ng

�2��5/2�	�k	
�k�,�k��,	

fR�k� − k�Tr��xG	k�xG	k�� ,

�31�

�Aint�g =
g�	�k

2�2��7/2	
�k�,�k��,	,�

fR�k� − k��Tr��↑G	k�xG�k��

+ Tr��↑G	k�Tr��xG�k��� , �32�

where �	= 1
2��� and �k= 1

�2��2 �r are infinite constants, and

fR�k�=exp�− k2

2
� is a reduced version of the damping factor

f0��k�� due to the momentum conservation. In the disorder
term, we omitted the Wick contractions within the curly
brackets in Eq. �24�, since they are canceled exactly by the
disorder “counterterms” in the MSR action, see Ref. 34. Cal-

culating the functional derivative of Ag��̄ ,G�, the gap equa-
tion is written in a well known form

GAB
−1 = DAB

−1 + MAB, MAB =
�

�GAB
��Adis�gauss + �Aint�gauss� .

Note that GAB is a symmetric function with respect to trans-
position of all its indices. Substituting the matrix MAB as a
function of GAB into the gap equation, we arrive at

G	k
−1 = D̃	k

−1 −
2ng

�2��5/2	
�k��

fR�k� − k��xG	k��x �33�

with

D̃	k
−1 = D	k

−1 +
g

�2��7/2	
�k��,�

fR�k� − k�

���↑ Tr��xG�k�� + �x Tr��↑G�k��� . �34�

Here, one clearly sees the difference between the disorder
and the interaction contributions in the Gaussian approxima-
tion. The interaction term just renormalizes the quadratic
term in the action, while the disorder term is both frequency
and wave vector dependent. We make use of this observation
to simplify the gap equation.

1. Simplification of the gap equation for response
function and correlator

To allow a solution of the gap equation in a closed form,
we expand correlation functions �of k�� in Eqs. �33� and �34�,
�xG	k��x and �↑ Tr��xG�k��+�x Tr��↑G�k��, near the point
k�=k and retain only the first two terms. The correlation
function depends analytically on electric field, and the lead-

ing correction
�2G�k

�k2 is proportional to the square of the elec-
tric field. Furthermore, one can neglect it due to the typical
smallness of the velocity parameter �defined in Eq. �18��, v
�1. This approximation does not mean that we will not be
interested in important nonanalytic nonlinearities later on.
For justification of the above statement, one observes that,
according to Eq. �23�, the inverse propagator D	k

−1 depends
only on the combination 	�=	−4bvk of 	 and k. Since in
the zero order of the expansion all the dependencies on 	
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and k come from D	k, the exact Green function, G	k, also

depends on 	� only and, therefore,
�2G	k

�k2 �v2
�2G	�kz

�	�2 . Here, we
have used the fact that G	�kz

and its second derivative are of
the same order in v �see the solution obtained below� and are
analytic. We also have solved the full equation numerically
by iterations and verified that the errors are exponentially
negligible. In this approximation, the gap equation is trans-
formed into the following form �in what follows, we drop
“primes” in 	� using notation G	kz

for G	k=G	−4bvk,kz
�:

G	kz

−1 = D̃	kz

−1 −
2ng

�2��2	
kz�

�xG	kz�
�x, �35�

D̃	kz

−1 = D	kz

−1 +
g

�2��3	
kz�,�

��↑ Tr��xG�kz�
� + �x Tr��↑G�kz�

�� .

�36�

Equation �35� is satisfied for vanishing correlator of the
ghost fields, B	=0, because the Eq. �11� matrix elements in
both G	kz

−1 and �xG	kz�
�x are proportional to B	 as it should be

generally.34 The correspondent matrix element of D̃	kz

−1 is
equal to zero if the following condition is valid:

1

�2��3	
	kz

Tr��xG	kz
� =

1

�2��3	
	kz

�R	kz
+ R	kz

* � = 2.

�37�

The above self-consistency condition should be checked for
a solution of the gap equation. The dependence on momen-
tum along the magnetic field direction z is rather trivial and
will be treated first.

2. Integrating out the direction along the magnetic field

As a next step, we factor out the kz dependence. Note that

the last term in Eq. �35� and the interaction correction in D̃	kz

−1

are both kz independent, so that the dependence of G	kz

−1 on kz

is determined, according to Eq. �23�, solely by an additive kz
dependent term in D	kz

−1 . Therefore, the solution has the form

D̃	kz

−1 = D̃	
−1 + kz

2�x, G	kz

−1 = G	
−1 + kz

2�x, �38�

in which a matrix valued function of one variable 	,

G	 = G	kz=0 � �C	 R	

R	
* 0


 , �39�

remains to be determined. In terms of elements of G	, the
correlators integrated over kz are given by

1

�
	

kz

G	kz
= �x��xG	�1/2 = � C	

R	
1/2 + R	

*1/2 R	
1/2

R	
*1/2 0

� . �40�

Substituting Eq. �38� into Eq. �35�, we arrive, after inte-
gration over kz,

G	
−1 = D̃	

−1 −
ng

2�
��xG	�1/2�x, �41�

at a cubic equation for a matrix variable ��xG	�1/2:

ng

2�
��xG	�3/2 − A	��xG	� + 1 = 0. �42�

Here, the matrix

A	 = D̃	
−1�x =�i

	

2
+ 2aint 0

− 1 − i
	

2
+ 2aint

� ,

aint = ah +
g

�2��3	
	kz

C	kz
, �43�

as well as �xG	 and its powers in Eq. �42� are triangular
matrices with zero �12� component. The �22� component of
Eq. �42�,

ng

2�
R	

3/2 − �− i
	

2
+ 2aint
R	 + 1 = 0, �44�

determines R	 in terms of aint, while the �21� component
expresses C	 via R	:

C	 =
R	R	

* �R	
1/2 + R	

*1/2�

R	
1/2 + R	

*1/2 −
ng

2�
R	R	

*

. �45�

The remaining �11� component yields the complex conjugate
equation to the first one, Eq. �44�. The constant aint, in turn,
depends exclusively on C	, so the loop closes. It is important
to emphasize that the only effect of interaction in the gap
equations �44� and �45� is to renormalize ah upward to aint.
This allows one to consider the excitations of the vortex
liquid for negative ah since aint is always positive.3

It is convenient to rescale the correlation functions as

g	kz
� �c	kz

�	kz

�	kz

* 0

 = � g

8�

2/3

G	kz
,

c	 = � g

8�

2/3

C	, �	 = � g

8�

2/3

R	, �46�

and define a new parameter, the conventional LLL scaled
temperature3,17 aT=2�8� /g�2/3ah. In this variable, the gap
equation for the correlation functions is reduced to

4r�	
3/2 − 
aT +

4

2�
	

�

c�

��
1/2 + ��

*1/2 −
i

2
�8�

g

2/3

	��	 + 1 = 0,

�47�

c	 = �8�

g

2/3 �	

* �	��	
1/2 + �	

*1/2�
�	

1/2 + �	
*1/2 − 4n�	

* �	

, �48�

where g was defined in Eq. �15�. In a certain range of the
parameters, namely, in the “liquid” phase in which disorder
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does not alter the vacuum structure significantly, the solution
can be found assuming the validity of the dissipation-
fluctuation theorem �DFT�, which subsequently can be
checked by substitution back into the gap equation. In a more
complicated “glass” phase, the DFT is violated and a solu-
tion is found later using a different method.

C. Solution of the gap equations, the glass line, and
critical exponents

1. Unpinned phase

Let us assume the validity of the DFT,

	
v

Cqz�
= 2�Rqz	=0,

which, after integration over qz, yields

1

2�
	

�

c�

��
1/2 + ��

*1/2 = �0
1/2, �49�

with �0 defined as �0��	=0. Combining the above relation
with Eq. �47� at 	=0, one obtains a cubic equation for �0
�which is a function of external parameters r and aT�:

− 4�1 − n��0
3/2 − aT�0 + 1 = 0. �50�

The solution is

�0�aT� = −
aT + aT

2d−1/3 + d1/3

12�1 − n�4/3 ,

d = aT
3 + 12�1 − n��324�1 − n�2 − 3aT

3 − 216�1 − n�2.

�51�

In what follows, we will need its asymptotic form for large
negative aT in the clean limit, n→0,

�0
1/2 = −

aT

4
. �52�

Further, solving Eq. �50�, one can substitute the solution
into Eq. �47� to obtain a closed form cubic equation for the
frequency dependent response function �	,

4n�	
3/2 − 4�0

1/2�	 − aT�1 −
i	

4ah

�	 + 1 = 0. �53�

It should be noted that, according to Eq. �48�, �	 determines
the correlator c	 completing the solution of the set of the gap
equations. Obviously, both the response function and the cor-
relator can be written in an explicit form. A characteristic
shape of the correlators is shown in Fig. 1. We also made use
of these explicit functions for a numerical check of DFT.
However, below we are mainly interested in analytic proper-
ties of the correlation functions, which can be investigated
without using the explicit expressions.

The result for the integral over frequency of the correlator
coincides with the static correlator calculated using the rep-
lica formalism in Gaussian approximation.15,16 As was dis-
cussed in these papers, n�1 corresponds to a case in which

disorder overpowers “repulsive” interaction and destabilizes
the system.

2. Glass line and critical behavior

The critical surface in the “space” of dimensionless scaled
parameters �t ,b ,v� is defined as a set of values of the param-
eters for which the correlator C	 at 	=0 diverges. The static
glass line is a line on this surface for zero electric field, �
=0. We will argue later that below this line the supercon-
ductor acquires certain “glassy” properties.

According to the gap equation, Eq. �48�, the correlator
c	=0 becomes infinite when

�0 =
1

�2n�2/3 . �54�

Here, �0 as a function of the external parameters �r ,aT� is
given by Eq. �50�. Excluding �0, one arrives at a simple
formula for the glass surface:

aT
g = �2n�2/3�3 −

2

n

 , �55�

which, in terms of scaled parameters �t ,b ,v�, is equivalent to

bvg
2 = 1 − t − b + � ng

4�

2/3�3 −

2

n

 . �56�

The critical velocity vg determines the critical electric field
Eg, which destroys the glassy state, forcing vortices to move
in a direction perpendicular to the field. The static glass line
is described by Eq. �56� for zero electric field, vg=0. This
result is consistent with the one obtained using the replica
method16 in a similar Gaussian approximation.

Note that for n= 2
3 , the glass line coincides with the dy-

namic superconductor-normal metal transition line4 ah=0,
whereas for a stronger disorder, 2

3 �n�1, it lies in the nor-
mal state, and for n�1, the Gaussian effective action be-
comes unstable, signaling breakdown of the approximation.
Similar phenomena occur in the �4 theory.30,31 In the static
�B-T� phase diagram, the glass line, Bg�T�, begins from the

point �B=0, T=Tc�, with zero derivative,
dBg�Tc�

dT =0 �see Fig.

FIG. 1. �Color online� A typical form of the dimensionless cor-
relator �the brown solid line�, and the real �the blue dash line� and
imaginary �green dot line� parts of the response function above the
glass transition. ��0 are shown as a function of frequency 	.
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2�, and crosses Bc2�T� line at some intermediate temperature.
The expansion of the correlation functions near the glass

line in a small parameter

�T = aT − aT
g = �8�/g�2/3� �57�

and a small frequency leads to the following critical behav-
ior:

�	 =
1

�2n�2/3
1 −
�2n�1/3

2
�1 − i�rel	�T� , �58�

c	 =
�rel

�2�2n�1/3
�1 + �1 + ��rel	�2�1/2�−1/2�T, �59�

where the characteristic time,

�rel =
8

3�T
2� 2�

n2g

2/3

, �60�

determines a long scale decay of the correlator.
On the critical surface, where �T=0 and �rel diverges, the

correlator and response function,

�	
g =

1

�2n�2/3
1 −
2e−i�/4

�6
�4�

ng

1/3

	1/2� , �61�

c	
g =�1

3
�8�

g

1/31

n
	−1/2, �62�

both have a fractional power dependence on 	. One, there-
fore, observes criticality with exponent 1

2 . In the static limit
near transition, the response function

�0 =
1

�2n�2/3 −
�T

2�2n�1/3 �63�

is continuous, while the correlator

c0 =
8

3�2
�8�

g

2/3 1

�2n�5/3�T
�64�

diverges with critical exponent 1.
Away from criticality, the correlator decays exponentially

at large time differences, C����e−�/�rel, with relaxation time
determined by the singularity in the complex 	 plane nearest
to the origin. It, therefore, diverges with critical exponent 2.

3. Solution of the gap equation in the amorphous phase

In the glass phase, namely, when aT�aT
g, a regular solu-

tion to Eqs. �47� and �48� does not exist. This should not
come as a surprise since similar phenomenon occurs in other
glassy systems like spin glass.20 In the static limit, the glassy
solution takes over via continuous transition.15,16 The same is
true in dynamics. Equation �42� for C	 component of the
correlator matrix allows a more general discontinuous solu-
tion,

c	 = �8�

g

2/3 �	

* �	��	
1/2 + �	

*1/2�
�	

1/2 + �	
*1/2 − 4n�	�	

* + ���	� , �65�

where the constant � is the Edwards-Anderson �EA� order
parameter. Indeed, in addition to a regular part �at nonzero
	� obeying the DFT, Eq. �49�, which is exactly the same as
on the critical line, there appears an equation for a singular
�at zero 	� contribution expressing the persistent correlation
c��−���→�−��→
�. Substituting Eq. �54� into Eq. �47� for
	=0,

4n�0
3/2 − �aT +

2

�
	

�

c�

��
1/2 + ��

*1/2
�0 + 1 = 0,

one obtains

FIG. 2. �Color online� Phase diagram at high
temperatures �t=T /Tc�0.5�. The static glass
transition �the magenta solid line�, Eq. �96�, is
given for Gi=1.25�10−5 and n=0.001. A sche-
matic behavior of the order-disorder transition is
shown by a dashed line. It separates crystalline
from homogeneous phases. Below the intersec-
tion with the glass line, it is the “melting line,”
while above it, it becomes a “peak effect line.” In
the inset, we present the best fit for the irrevers-
ibility line in NbSe2 �see Ref. 36�, with param-
eters given in the text.
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4n�0
3/2 − �aT�0 + 4�0

3/2 +
�

�
�0

1/2
 + 1 = 0,

resulting in

� =
�

�2n�1/3 �aT
g − aT� = −

�

�2n�1/3�T. �66�

The EA order parameter vanishes on the dynamical glass line
and increases below it. In real space, the second term in Eq.
�65� corresponds to a constant �the persistent component�.20

The expression for �	 is given by a solution of Eq. �53� with
�0= �2n�−2/3,

4n�	
3/2 − 4�2n�−1/3�	 − aT�1 −

i	

4ah

�	 + 1 = 0. �67�

The regular component of the correlator in the � space, there-
fore, decreases as a power C���� �� /�GL�−1/2.

Having completed the solution of the gap equation, we
now use it to calculate physical quantities other than the
correlator.

IV. dc SUPERCURRENT

A. LLL contribution

In the homogeneous phase, the current density after dis-
order averaging is independent of both � and r. The average
supercurrent density, therefore, is �in the geometry consid-
ered in this paper, the current flows in the y direction�

jLLL �
JLLL

J�
= −

i

2

�2��3

VT 	
�r

��r
*����+�y�r���

− ��y�r
*�����+�r���� = v	

	kz

C	kz
, �68�

where �¯� denotes both thermal and disorder averages, and
J�= �e*

�2��3m*l
t

�l2�z
= 2b1/2g

�8��4 J0 with J0= e*

�2Gi

16Tc�a

��2 , using the solu-

tions of the gap equation and integrating over kz. In the liquid
and glass phases, the supercurrent is given by

jLLL
liq = 2��8�

g

1/3

�0
1/2v , �69�

jLLL
glass = 2��8�

g

1/3
 1

�2n�1/3 +
aT

g − aT

4
�v , �70�

respectively. Here, �0 is a solution to Eq. �50� given in Eq.
�51�.

Therefore, within the LLL approximation, the supercur-
rent is proportional to velocity times an expression analytic
in velocity. Consequently, even at criticality, there exists fi-
nite conductivity jLLL

liq /v=2�� 4�
ng

�1/3, which is determined
solely by disorder on the mesoscopic scale ng. The Ohmic
behavior implies that there apparently is flux flow in both
liquid and glass phases. On the glass transition, the LLL
conductivity is continuous, although not a smooth function.
In the glass state, we clearly see that there is no expected

vortex pinning and the conductivity is finite. On the liquid
side, despite the critical divergencies in correlation function
discussed in Sec. III C, the conductivity does not diverge,
again in contrast to experiment. The only piece of physics
that the LLL approximation is able to capture is the Bardeen-
Stephen flux flow conductivity far from the glass transition
line and the fluctuation conductivity in normal phase.18 In the
clean limit32 �no disorder on the mesoscopic scale�, n→0
with �0

1/2=−
aT

4 �see Eq. �52�� and one obtains

�LLL =
JLLL

E
= �n

1 − t − b

b
, �71�

where �n is conductivity in the normal state. The full for-
mula provides a disorder correction.

As was mentioned in the Introduction, it is quite clear
physically why the LLL approximation contains the Ohmic
contribution only. The current generally is proportional to a
gradient of the superfluid density, which, in turn, is propor-
tional to the electric field. The pinning effects, therefore, ap-
pear due to higher Landau levels only. We, therefore, gener-
alize the discussion to the lowest states at which the pinning
appears.

B. Higher Landau level contribution to current

The argument above leading to an Ohmic dependence of
the current on electric field in LLL �confirmed by the direct
calculation in the previous section� is not valid already for
the first LL, N=1: the current is no longer a curl of the
superfluid density. It is natural to assume that the HLL cor-
rections to fields in Eq. �22� can be considered as a pertur-
bation. Furthermore, to leading order in the perturbation, a
nonzero contribution to current comes solely from the first
LL �1LL�:

j = jLLL + jHLL,

jHLL = −
i

2

�2��3

VT 	
r�

��r
*����+�y�r���

− ��y�r
*�����+�r��� + c.c.� . �72�

This is due to the fact that the operator �y contains just one,
raising or lowering the Landau number operator �in addition
to a constant proportional to v�. Thus one needs the wave
function up to the first LL only,

�r��� = �r��� + �r��� ,

and considers it to first order in �r���.
In this section, we use a simplified model compared to

that used in the derivation of the gap equation in the previous
section. The difference consists in the application of the
steepest descent approximation �similar to that which was
utilized and discussed in Sec. III B� already in the MSR ac-
tion. As in Sec. III B, due to the Gaussian damping factor in
quartic terms �see Eq. �24��, we neglect all the terms off-
diagonal in momenta k both in the LLL and the HLL contri-
butions:
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A free = 	
k,	

��k,	
* Dk	

−1 �k,	 + �k,	
* D1k	

−1 �k,	� ,

Adis = −
rg

�2��2�	�k	
k,�kz�,	,�

�k1z−k2z+k3z−k4z
��k,k1z,	

* �x�k,k2z,	
�

���k,k3z,�
* �x�k,k4z,�

� + �Adis,

�Adis = − 23/2iv
rg

�2��2�	�k	
k,�kz�,	,�

�k1z−k2z+k3z−k4z

����k,k1z,	
* �x�k,k2z,	

���k,k3z,�
* �x�k,k4z,�

� − c.c.� .

�73�

Here, the inverse propagator for 1LL is

D1k	
−1 =� 0

i	�

2
+ kz

2 + 2ah
1

− i	�

2
+ kz

2 + 2ah
1 − 1 � , �74�

where ah
1=ah+b is the large “mass” of the first LL excita-

tions. The coefficient in the disorder term is chosen in such a
way that the LLL gap equation obtained from this action
coincides with Eq. �35�. Physically, this assumption is
equivalent to replacing an approximate Landau degeneracy
by an exact one. In addition, we ignore the interaction term
since, as was noted in Sec. III C, the interaction effects can
be accounted for by renormalization of the free part of LLL
action, where ah is replaced by aint.

The correction term �Adis is already proportional to the
electric field via the factor v due to the fact that the integral
of a product of three LLL Landau harmonics and one 1LL
harmonic, Eq. �19�, vanishes at zero electric field. Since
A free does not “mix” LLL with 1LL, the leading contribution
to jHLL, Eq. �72�, will be of the second order in HLL � and
will come from all the connected diagrams proportional to
�Adis.

The HLL contribution to the current from the disorder
part is

jHLL =
2ng�1 + 2v2�

�2��2ah
1 v	

k�kz�	�

�k1z−k2z+k3z−k4z
���kk1z	

* �x�kk2z	
�

���kk3z�
* �↑�kk2z�

�� . �75�

One, therefore, faces a problem of a consistent calculation of
the four-point Green’s function. Diagrammatically, within
the linear response theory, it was approximated by a resum-
mation of the “diffusion” and “Cooperon” chains.1 We cal-
culate this function using a systematic approach by differen-
tiating four times the Gaussian effective action defined in
Sec. II.

Factorization of the action and of the current with respect
to index k leads to proportionality of all physical quantities
to the Landau degeneracy. Dropping below the index k and
denoting kz simply by k, one can express the HLL current as

jHLL =
2ng�1 + 2v2�

�2��2ah
1 v�HLL, �76�

with the HLL contribution to the conductivity,

�HLL = 	
� prqs

	� �
�p+q−r−q2�x

u1,v1�↑
u2,v2��p	

*u1�q�
*u2�r	

v1�s�
v2�c,

�77�

proportional to the connected part of the four-point correla-
tion function.

C. Four-point correlators

The calculation of the four-point correlators is quite
lengthy, so we first describe the general structure of the terms
appearing in it. The gap equation derived in Sec. III B for
Green’s function GAB= ��A�B

*� �where indices A and B de-
note the full index set of the order parameter� can be gener-
alized to include the rest of Green’s functions FAB= ��A�B�
and FAB

* = ��A
*�B

*�. In U�1� symmetric theories, like the one
we consider, the last propagators are identically equal to zero
due to the symmetry. However, their functional derivatives
do contribute to equations for the higher vertex functions and
will be necessary for our discussion.

We write the generalized gap equations in a standard
form30,31

�FB1A1

* GA1B1

GA1B1

* FB1A1


��
�2Ag��̄,G�

��̄A1

* ��̄A2

* �Tr � �2Ag��̄,G�

��̄A1

* ��̄A2

�Tr

��2Ag��̄,G�

��̄A1
��̄A2

* �Tr ��2Ag��̄,G�

��̄A1
��̄A2

�Tr �
= �B1A2

, �78�

where under the truncated part we understand functional de-

rivatives of the Gaussian action AG��̄ ,G�, with propagators

G regarded as independent of the shift fields �̄. Summation
over repeated indices is assumed. The equations for a four-
point vertex function are derived from Eq. �78� by differen-

tiating it twice with respect to the shift field �̄. The field

dependence of the propagators, G��̄� or F��̄�, determined
by the gap equation �with external “source” present�, should
be taken into account. It provides the “chain” parts propor-
tional to �G

��̄
, �F

��̄
, �2G

��̄��̄
, . . .. From the U�1� symmetry, one can

infer that there are two nontrivial vertex contributions: the
diffuson and the Cooperon parts defined by the �G

��̄��̄*
and

�F

��̄��̄
second derivatives, respectively.

The diffusion and the Cooperon equations can be obtained
from Eq. �78�, differentiating its �11� component with respect

to �̄C2
and �̄C1

* and differentiating the �21� component with
respect to �C2

and �C1
:
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�B1�A1��A2�B2�
�2

��̄C2
��̄C1

* ��2Ag��̄,G�

��̄A1
��̄A2

* �Tr

+ �B1�B2;C1�C2�

= 0, �79�

�2

��̄C2
��̄C1

��2Ag��̄,G�

��̄A1

* ��̄A2

* �Tr

�A1�B1��A2�B2� + ��B1B2; �C1C2�

= 0, �80�

where the Dirac notations,

�B1�A1� = ��B1

* �A1
� ,

�B1�B2;C1�C2� =
�GB2B1

��̄C2
��̄C1

*
,

� �B1B2; �C1C2� =
�FB2B1

��̄C2
��̄C1

,

have been used.
Calculating the derivatives of the Gaussian action, one

obtains �specifying the full set of indices�:

� r,�
l � s,	

k ; t,�
m � u,	

n � =
2gn

�2��2 � r,�
l � p,	2

j �� q,	1

i � s,	
k �

���q+p−q−p�x
i,k1�x

l1,j� p,	2

l1 � q,	1

k1 ; t,�
m � u,	

n �

+ �q+t−p−u�x
i,j�x

m,n�	1−	2
��−	

+ �q+t−u−p�x
i,n�x

m,j�	−	1
��−	2

� , �81�

� � r,	
k , s,�

m ; � t,	
l , u,�

n � =
2gn

�2��2 � p,	1

i � r,	
k �� q,�1

j � s,�
m �

���p+q−v−w�x
i,g�x

j,h�� v,	1

g , w,�1

h ; � t,	
l , u,�

n �

+ �p+q−t−u�x
i,l�x

j,n�	−	1
��−�1

+ �p+q−u−t�x
i,n�x

j,l�	−�1
��−	1

� . �82�

Disconnected parts do not contribute, since they cancel with
corresponding terms in action, which were discarded in Eq.
�31�, as we have mentioned in Sec. III A. The translational
invariance allows one to define the reduced diffusion and
Cooperon functions:

� p,�
l � q,	

k � = �	−�
q−p Gp,�

k,l ,

� r,�
l � s,	

k ; q,�
n � p,	

m � = �0�	−�
r−s−p+qQ�r,s;q�	

l,k;n,m ,

�� q,	
k , p,�

m ; � r,	
l , s,�

n � = �0�	−�
q+p−r−sK�q,p;r�	

k,m;l,n . �83�

Substituting this into Eqs. �81� and �82�, one observes that
only integrals over momenta of these quantities are required:

Q̄�p;q�,	
l,k;n,m = 	

s

Q�p+s,s;q�	
l,k;n,m , K̄�q;r�	

k,m;l,n = 	
t

K�t,q−t;r�	
k,m;l,n . �84�

These obey the following linear equations:

Q̄�p;q�,	
l,k;n,m −

gn

2�
Fp,	

lj,ik�x
i,g�x

h,jQ̄�p;q�,	
h,g;n,m =

gn

2�
Fp,	

lj,ik�x
i,j�x

n,m,

�85�

K̄�p;r2�	
k,l;n,m −

gn

2�
Fp,	

k,g;l,h�x
h,i�x

g,jK̄�p;r2�	
i,j;n,m =

gn

2�
Fp,	

k,g;l,h�x
h,n�x

g,m,

�86�

where the “fish” integrals

Fp,	
k,l;m,n =

1

�
	

q

Gq,	
k,l Gp−q,	

m,n �87�

are similar to the “bubble” diagrams defined in Eq. �40�. In
the above formulas, only the summation over repeated ma-
trix indices is assumed, whereas integrations over frequen-
cies and momenta are all written explicitly.

As in Sec. III C, it is convenient to rescale the correlators
like in Eq. �46� and momenta p̃= �g /8��−1/3p, since for these
variables the response function �	 depends on a single pa-
rameter n. The above rescaling leads to the same equations,
Eqs. �85� and �86�, with the following replacements: gn

2�

→4n, p→ p̃, and Fp,	
k,i;m,n→ f p̃,	

k,i;m,n= 1
��q̃gq̃,	

k,i gp̃−q̃,	
m,n , with gq̃,	

=g	+�xq̃
2. Using an explicit dependence of the Green’s

functions on q �i.e., on the z component of the momentum�,
Eq. �38�, it is easy to calculate all 16 components of fp,	

k,i;m,n.
Nonzero ones are listed in the Appendix.

Further using these expressions for the fish integrals we
find an analytical solution for the linear chain equations, Eqs.
�85� and �86�, in terms of Green’s functions derived above
from the gap equation. Nonzero elements can also be found
in the Appendix. Note that at criticality, i.e., for aT=aT

g,

where �	=0=1/ �2n�2/3, all the functions K̄ and Q̄ are singular
at 	= pz=0. Having calculated the four-point correlator, we
return now to the HLL contribution to current.

D. Lowest order non-Ohmic contribution to current

The expression for the current density Eq. �72� in terms of
the partial derivatives calculated in the previous section
reads

�HLL = �C + �D = 	
�	�;prqs�

�p+q−r−s�x
k,l�+

m,nGp,	
k,a Gq,�

m,bGr,	
c,l Gs,�

d,n

�
�AG

dis

��̄p,	
a ��̄q,�

b ��̄r,	
*c ��̄s,�

*d
, �88�

where the Cooperon and diffusion terms are given in terms
of the chain functions:

�C = 4�n�8�

g

2/3	

	p̃

�x
a,b�↑

c,d�x
i,k�x

j,l f p̃
a,m;c,nf p̃

i,b;j,dK̄p̃,	
k,l;m,n,
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�D = 4�n�8�

g

2/3	

	p̃

��x
a,b�↑

c,d + �x
c,b�↑

a,d�

��x
m,k�x

l,nf p̃
c,n;m,bf p̃

a,j;i,dQ̄p̃,	
l,k;i,j . �89�

Integration over the z component of momentum was per-
formed in a closed form. However, the result is rather bulky,
and here, we present two asymptotic expressions only. As we
observed in Sec. III, the LLL contribution to the current fails
to account for the diverging resistivity on the glass line.
Therefore we are mostly interested in the HLL “correction”
near the glass line. The integral over 	 in Eq. �89� is domi-
nated by small frequencies. Let us first consider the correc-
tion right on the glass line. Using the relevant asymptotic
expressions for solutions of the gap equation �	 and c	 given
in Eq. �59�, one obtains

�C = �D =
�

8
�4�

rg

1/2	

	

1

	5/4 , �90�

where �= 1
�223/2

��2−1
6 �0.01. One should emphasize that the

integral diverges at the glass line, leading to an infinite con-
ductivity on the glass line.

Near the glass line on the liquid side aT=aT
g +�T, the in-

tegral, although no longer divergent, is still dominated for
small enough �T by infrared. The integrand saturates at
	cut�	min= 1

�rel
when the frequency decreases with the relax-

ation time �rel given in Eq. �60�. As a consequence, the con-
ductivity diverges near the glass line as

�HLL =
�

�2n�5/6�8�

g

1/3 1

�1/2 . �91�

Assuming that parameters of the system �temperature and
magnetic field� are on the static critical surface, we increase
the electric field from zero to a small value �=bv2. Substi-
tuting Eq. �91� into the HLL contribution to the current, Eq.
�76�, one obtains near the glass transition

jHLL = 2�
�1 + 2v2�
�ah

1b1/2 �2n�1/6� g

8�

2/3 v

�v�
. �92�

This nonanalytic dependence is the main result of the present
paper. Limits from positive and negative v at v=0 are con-
stants of opposite signs due to the “friction” effect of disor-
der.

In the vortex glass phase, the dc conductivity is infinite
throughout. The reason is that the response function �	=0 is
equal to its value at criticality everywhere, see Eq. �54�.
Therefore the diffusion and Cooperon chains have the same
singularity at criticality, and the integral over 	 diverges.

Above the static glass line in the unpinned phase, we still
can write an approximate expression,

jHLL = 2�
�1 + 2v2�

�ah
1

�2n�1/6� g

8�

2/3

v

�2ah
g − �1 − t − b� + bv2

,

which shows that far from the transition, the HLL current
becomes Ohmic and gives a small correction to the dominant

LLL contribution. Now we turn to phenomenological conse-
quences of the analysis of previous sections.

V. IRREVERSIBILITY LINE, TIME CORRELATIONS,
AND THE I-V CURVE

In this section, we provide expressions and discuss the dc
conductivity and the nonlinear I-V curves as functions of
both the material parameters �the coherence length, the pen-
etration depth, anisotropy, Tc, the disorder strength, and the
relaxation time� and the external parameters �magnetic and
electric fields, temperature�. We return to conventional nota-
tions.

We use the following basic units: length, �; time, �GL

=��2� �

4Tc
; energy, Tc; magnetic and electric fields, Hc2�0�

=
�0

2��2 and E0= 4�

e*��3 �
16Tc

e*�
, respectively; the current density,

J0= 4
�2Gi

�ae*

��4 ; and conductivity, �0=
E0

J0
�

�n

16�2��2 , where �n is a

normal state conductivity according to the clean case of BCS
theory. Dimensionless material parameters characterizing the
strength of thermal fluctuations, type-II property, anisotropy,

and disorder are Gi, �, �a=�mc

m* , and np, respectively. The
last is proportional to the pinning site density and the
strength of a pinning center.2 The time scales are determined
by the TDGL coefficient �, which, according to the BCS
based estimates, is twice the diffusion constant of the
material.26 Temperature and magnetic and electric fields are
measured in the above units: t=T /Tc, b=B /Hc2�0�, and E
=E /E0. We also make use of additional dimensionless pa-
rameters: the vortex velocity v=Eb−3/2 and the disorder
strength np. Sometimes we will also use temperature and
field dependent functions: the mean field superfluid fraction
ah=− 1

2 �1− t−b−E2 /b2�, the LLL scaled temperature aT

=24/3Gi−1/3�bt�−2/3ah, and the disorder parameter n=
ah

2

��2Git
np

characterizing the ratio between the disorder and the interac-
tion strength.

A. Irreversibility line and correlations in the disordered
vortex liquid

There are two homogeneous dynamical phases of the sys-
tem in the three-dimensional external parameter space
�T ,H ,J�. The inhomogeneous phases were not considered in
the present work and will be commented on in Sec. VI. The
Fourier transform of the correlator of the order parameter �,
as it appears in TDGL equations, Eqs. �1� and �3�, is

C�	� � 	 d��ei	�����r,� + ����*�r,����

=
Tcm

*�a�GL

2��2�
�tb�2/3�2Gi�−1/6 c	

�	
1/2 + �	

*1/2 . �93�

An explicit LLL expression for dimensionless rescaled c	 is
given by Eq. �48� via response function of Eq. �47�. A dy-
namical critical surface is defined as a set of values of the
parameters for which the correlator C�	� diverges at 	→0.
One observes a pole in Eq. �48� when the response function
�	 approaches a constant �2n�−2/3. This leads to the following
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equation for the dynamic transition line �it is more conve-
nient to use instead dimensionless scaled parameters
�t ,b ,E��:

Eg
2/b2 = 1 − t − b + 2ah

g�t,b� , �94�

where

ah
g�t,b� = 
np�1 − t�2b

4�
�2/3
3

2
−

4�t�2Gi

np�1 − t�2� . �95�

The last term represents the effects of disorder, while the rest
appear already on the mean field level.4,16 In the static case,
E=0 and the glass line is given by the equation �see Fig. 2�

1 − t − b + 2ah
g�t,b� = 0. �96�

At small disorder, the line approaches the b=0 line and the
glass phase disappears. In the opposite limit, the glass phase
expands beyond the mean field normal-superconducting
boundary 1− t−b=0.

The dynamical correlator exposes the temporal relaxation
of the order parameter due to an overall effect of dissipation,
mesoscopic disorder, and thermal fluctuations. Asymptoti-
cally, the long time dependence of the correlator is exponen-
tial, C�t− t���exp�− t−t�

�rel
�. The singularity closest to the ori-

gin in the complex plane of the correlator c	 determines the
relaxation time �see Eq. �60��

�rel

�GL
=

8

3
Gi1/3 �bt�2/3

n4/3�2 , �97�

��t,b,E� = 2ah
g�t,b� − 1 + t + b + E2/b2. �98�

The correlator and the response function as functions of fre-
quency are given in Fig. 1. The correlator decreases as 1/	2

at large frequencies. The relaxation time diverges as one ap-
proaches the critical surface determined next. Critical expo-
nents are summarized in Table I.

The statics and the linear response within disordered GL
model have been discussed in numerous theoretical, numeri-
cal, and experimental works. The glass line was first deter-
mined, to our knowledge, using the Martin-Siggia-Rose dy-
namical approach in Gaussian approximation1 and was
claimed to be obtained using resummation of diagram in
Kubo formula in Ref. 23. Comparison with experiment on
YBCO at relatively low field was made in Ref. 1 and that at
very high magnetic fields �up to 50 T� was made in Ref. 16.
It was found to be in a reasonably good agreement with the
experiments. In the previous section, we extended the com-
parison to a low Tc strongly type-II superconductor NbSe2.
Other types of relatively strongly fluctuating type-II low Tc
superconductors �like borocarbides37� exhibit similar glass
line and the peak effect.

The glass transition line for the �Tc disorder was obtained
using the replica formalism �within similar Gaussian ap-
proximation� by Lopatin,15 and the result is identical to ours.
This was generalized to other types of disorder �the mean
free path disorder� in Ref. 16. The common wisdom is that
the “replica” symmetry is generally broken in the glass �ei-
ther via “steps” or via “hierarchical” continuous process� as
in most of the spin glass theories.25 The replica method ap-
plied to the static LLL model with the �Tc disorder within
Gaussian approximation16 indicates that there is no replica
symmetry breaking in the homogeneous phase. However, the
Edwards-Anderson parameter vanishes above the glass tran-
sition, while it is nonzero below it. This is in agreement with
the original approach to the glass transition of Edwards and
Anderson �see Ref. 38 for a discussion�. The results obtained
here demonstrate dynamical criticality in this case, in close
analogy with the corresponding analysis in the spin glass
theory.20

Finite electric fields �namely, transport beyond linear re-
sponse� were also considered analytically in Ref. 21, and our
result in the clean limit agrees with theirs. The elastic me-
dium and the vortex dynamics within the London approxi-
mation were discussed beyond linear response in numerous
analytic and numerical works. Although qualitatively the
glass lines obtained here resemble the ones in phenomeno-
logical approaches based on comparison of disorder strength
with thermal fluctuations and interaction,39,40 the detailed
form is different.

B. Relaxation of the order parameter in the vortex glass phase

In the glass phase, the Fourier transform of the correlator
is

C�	� =
Tcm

*�a�GL

2��2��2Gi�1/2
 �	
* �	

�	
1/2 + �	

*1/2 − 4n�	�	
* −

�

2
���	�� ,

�99�

where �	 is a solution of Eq. �67�. In this phase, the electric
field is zero and the value of aT in this equation should be
taken at E=0. In addition to the DFT regular part, there is an
additional contribution proportional to the Edwards-
Anderson order parameter: �

2 �. It indeed approaches zero
�linearly in �� near the glass transition surface. For small 	,
the regular part of the correlator decreases as 	−1/2. In real
space, they correspond to a constant �the persistent
component20� and a powerwise decreasing component C���
� �� /�GL�−1/2, respectively. The last is not critical and is very
different from the time scale in the unpinned phase, �rel,
which determines an exponential decay of the correlator. The
long time scale response leads to irreversibility in the glass
phase. Note here that we did not consider more general non-
stationary solutions of the gap equations depending on two
times C�� ,���= ������*�����.

C. I-V curve and pinning force

In the unpinned �vortex liquid� phase, we obtain the fol-
lowing contributions to the supercurrent. The LLL part domi-
nant above the glass line is

TABLE I. Critical exponents of the glass transition.

c	
g c0 �rel �HLL �HLL

g

	−1/2 �−1 �−2 �−1 	−1/4
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jLLL =
JLLL

J0
=

1

213/3�
Gi1/3�0

1/2t2/3b−1/3E , �100�

where the dimensionless response function �0 is given in Eq.
�50� as a function of aT�t ,b ,E�. Note the small numerical
factor �consistent with the Bardeen-Stephen law, see below�.
The HLL contribution �containing the pinning force�, domi-
nant not very far from the static glass line, was calculated in
Sec. IV:

jHLL =
JHLL

J0
= fHGi3/4np

1/6t3/2�1 − t�1/3

b1/3�1/2 E , �101�

where the constant is fH= 23/4

�2/3
��2−1

3 �0.29. Upon approach-
ing the static glass line, E→0 and �→E2 /b2. In this limit,
jHLL tends to a constant value, which is the depinning cur-
rent:

jHLL
g = fHGi3/4np

1/6t3/2�1 − t�1/3b2/3, �102�

while the LLL contribution vanishes, jLLL
g � E

8�2��2

t�2Gi�1/3

�nbt�1/3 →0.

Note the low power of the disorder strength in this expres-
sion. This is in contrast to both single vortex and collective
pinning models in the London limit, which have the np

2/3

dependence. Of course, we stress that our calculation is not
done in the vortex solid phase. Since the homogeneous phase
exists due to thermal fluctuation along with disorder, the de-
pendence on the pinning strength is expected to be weaker.

In addition to the supercurrent, there are the normal elec-
tron’s contribution to the current. It is contained in the GL
free energy �not written explicitly in Eq. �3�� independent of
the order parameter field. In the I-V curve in Fig. 3, the clean
limit current,2 jn= E

16�2��2 , is shown by a dashed line.

D. Conductivity in the flux flow regime

Differential conductivity in units of �0 is obtained by dif-
ferentiating the current in Eqs. �100� and �101� over the elec-
tric field:

djLLL

dE
=

Gi1/3

213/3�2 t2/3b−1/3�0
1/2

�
1 −
1

3Gi1/3�2bt�2/3�1 − n��0
1/2 + 2ah

E
b2� ,

�103�

djHLL

dE
= fHGi3/4np

1/6t3/2�1 − t�1/3b−1/3�−3/2�2ah
g − 1 + t + b� ,

�104�

where the nonlinear part was derived by differentiating the
gap equation:

d�0
1/2

dE
= −

�0
1/2

3Gi1/3�2bt�2/3�1 − n��0
1/2 + 2ah

E
b2 .

Function �0�aT� is given explicitly in Eq. �50�, while the
constant ah

g can be found in Eq. �95�. One observes that the
LLL contribution has a small positive nonlinear part. There
is a weak singularity �due to the appearance of the persistent
part in the correlator� on the glass line, but it remains finite
and continuous in the glass phase. On the other hand, the
HLL part is infinite inside the glass phase, and therefore,
electric fields cannot penetrate.

Conductivity is obtained in the limit E→0:

�LLL

�0
=

Gi1/3

213/3�2 t2/3b−1/3�0
1/2, �105�

�HLL

�0
= fHGi3/4np

1/6�1 − t�1/3t3/2

b1/3 �2ah
g − 1 + t + b�−1/2.

�106�

Near the glass line, the HLL contribution to conductivity
diverges as �−1/2 �the deviation from criticality parameter �
was defined in Eq. �98�� due to HLL part. However, above
the glass transition �where the nonlinear corrections are gen-
erally small�, the HLL contribution decreases rapidly and the
LLL contribution takes over. In the clean limit np→0 �no
disorder on the mesoscopic scale�, the last one transforms
into the Bardeen-Stephen law:32 �= 1

16�2��2
1−t−b

b .

The divergence of conductivity on the glass line that we
obtained in Sec. IV was assumed in Ref. 1 and linked phe-
nomenologically to the general scaling theory of the vortex
glass proposed in Ref. 5. The divergence was claimed to be
derived on the basis of the calculation of the higher order
diagrams in Ref. 41, however, this seems doubtful to us due
to the fact that an important imaginary �the relaxation� part
in the basic propagator G0 was omitted. We were unable to
reproduce their glass lines or the flux flow resistivity even in
the liquid phase.

FIG. 3. �Color online� Typical I-V curves of the disordered su-
perconductor above �the cyan line�, on �the magenta line�, and be-
low �the blue line� the glass transition for Gi=1.25�10−5, n
=0.001, and b=0.2. Above the glass line, t� tcr=0.683, the I-V
curve �the brown solid line� approaches the LLL result only �the
blue dash line�. On the glass line, t= tcr, there appears a nonvanish-
ing HLL contribution given by Eq. �102�. In the glass phase, t
� tcr, the I-V curve becomes unstable �the dash-dotted red line� for
current less than a critical value, Eq. �107�, and electric field drops
to zero value. The Bardeen-Stephen limit for a clean material is
shown by a dashed line.
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In the extreme case, when the current is large enough, the
system is depinned. We discuss now the critical current in
both the homogeneous and crystalline vortex phases, and dis-
cuss the theory of the so-called peak effect in critical current.

VI. THEORY OF THE DISCONTINUOUS PEAK
EFFECT

Critical current is one of the most important characteris-
tics of the superconducting materials. It has been known for
a long time that in magnetic fields, the critical current rather
counterintuitively rises when the field �or temperature� ap-
proaches Hc2�T�.42 The phenomenon was linked early on to
softening of the vortex lattice and its eventual melting. We,
therefore, start with the critical current in the homogeneous
phase in the presence of mesoscopic thermal fluctuations.

A. Critical current in the uniform amorphous (vortex glass)
state and the dynamical phase diagram

The vortices are pinned in the regions below the dynami-
cal glass line on T-H phase diagram, and the conductivity is
infinite. However, at a sufficiently large current j, the vorti-
ces become mobile and the vortex system jumps from super-
conducting state into a dissipative Ohmic state, with the non-
zero electric field inside. The transition occurs when, for a
given temperature t and magnetic field b, the electric field E
approaches the value on the dynamical glass line given by
Eq. �94�. The critical current at which the system depins is
obtained from Eqs. �100� and �101� for E=Eg, in which case
�0= �2n�−2/3,

jLLL
cr �t,b� =

JLLL
cr

J0
=

21/6

24�2/3Gi1/2np
−1/3tb2/3�1 − t�−2/3

��1 − t − b + 2ah
g�t,b��1/2,

jHLL
cr �t,b� = fHGi3/4np

1/6t3/2�1 − t�1/3b2/3

��1 − t − b + 2ah
g�t,b��−1/2. �107�

The current is proportional to the “pinning force.” This dy-
namical transition surface is shown in Fig. 4 for Gi=1.25
�10−5 and n=0.01. The line separating liquid and glass
phases is similar to the static glass line �except for the small
magnetic field region�, but it lies below the last one.

As will be discussed next, one cannot use the formulas
presented here below the dynamical melting line �at low tem-
peratures and fields�, where the vortex matter is not homo-
geneous.

B. Inhomogeneous phases

We did not consider crystalline disordered phases or dy-
namical melting line43 in this work �although the line was
discussed in statics in Refs. 27 and 44�. Nevertheless, one
can use the expression for the critical current, Eq. �107�, and
for the glass line, Eq. �96�, to qualitatively discuss the peak
effect, namely, a maximum of the critical current �estimated
typically from magnetization measurements� observed both
in low42 and high45 Tc materials. Typically in low Tc materi-
als, both the melting line and the glass line lie in the vicinity
of the mean field normal-superconductor line; see Fig. 2 for
NbSe2.

We fit the irreversibility line using the measurements of
Banerjee et al.36 in the inset of Fig. 2. The parameters used
are the dimensionless pinning strength, defined in Eq. �4�,
np=1.2�10−3, and the Ginzburg parameter Gi=5�10−8.
The value of Gi differs from that used in many papers �Refs.
29, 36, and 46, and references therein�, however, notice that
their definition of Gi is different. Using the obtained param-
eters, one can estimate the critical current in the homoge-
neous phase according to Eq. �107� �solid line in Fig. 5�. The
normalization factor was chosen from the best fit. Above the
intersection point, one observes the peak effect. Following
Ref. 47, we phenomenologically estimate the crystalline
phase critical current using the elasticity theory48 �dashed
line in Fig. 5�, while in the homogeneous amorphous phase
our result is used.

This description of the peak effect is qualitatively differ-
ent from the traditional one. The conventional explanation,
originally due to Pippard,47,49 invokes a gradual “softening”
of the vortex lattice when the temperature approaches melt-
ing. At the melting point, the critical current jumps to zero
�in practice, it might be smeared out by sample inhomoge-
neities�.

The present view, supported by recent experiments in
which Corbino geometry or width dependence were used to
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FIG. 4. �Color online� The J-b-t diagram of the critical current
at Gi=1.25�10−5 and n=0.01. The critical current �in arbitrary
units� is equal to zero above the static glass line.
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FIG. 5. �Color online� Magnetic field dependence of the critical
current in the vortex glass phase �solid line� and in the vortex crys-
talline phase �the dash line� in comparison with data on NbSe2 at
T=4.2 K obtained using the mode locking transport technique �Ref.
43� �points�. Dynamical melting occurs at Bpeak=bpeakHc2. Below
that point, the data follow a metastable amorphous state.
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minimize or subtract the edge effects,13,14,46 attributes the
peak to the amorphous homogeneous state. Critical current
actually jumps from a relatively low value in the crystalline
state to a very high value in the vortex glass. Qualitatively,
this is due to the fact that it is easier to pin a disordered
homogeneous state than a rigid crystalline one. The continu-
ous rise of the critical current observed in numerous earlier
experiments �see Refs. 43 and 47 as examples� was caused
by poor resolution due to overheating of the solid and over-
cooling of the homogeneous states. It was argued
theoretically50 that the supercooled liquid state exists and has
energy very close to the crystalline state. Experimentally, it
was convincingly shown51 that the states for fields below
Bpeak in Fig. 5 are metastable. Consequently, the system in
the experiment of Ref. 43 follows the crystalline critical cur-
rent �dashed line in Fig. 5� until it intersects the amorphous
line �solid line�. Our expression for the critical current in the
amorphous phase describes well the overcooled amorphous
state when the crystalline state is energetically favorable, see
Fig. 5. For B�Bpeak, the crystalline state becomes metastable
and the critical current, Eq. �107�, rapidly drops �as �T−Tg,
namely, with classical critical exponent� when temperature
approaches the glass temperature Tg. To summarize, the tra-
ditional picture predicts a gradual increase with subsequent
drop of the critical current, while our picture predicts a sud-
den increase followed by a fast but continuous decrease. It
would be important to further clarify experimentally which
picture is the correct one.

Of course, the very notion of the critical current should be
carefully defined due to the appearance of creep at elevated
temperatures.52 We comment on this and other related ques-
tions next.

VII. CONCLUSIONS

We start from brief comments on several loosely related
theoretical and phenomenological issues.

The strict vortex glass hypothesis5 assumes that, even at
finite temperatures, electric field does not penetrate the true
vortex glass phase. This is an idealization at a nonzero tem-
perature since thermal fluctuations generate the vortex
creep.52 In spite of the fact that the Gaussian approximation
used in the present work is a nonperturbative method, it has
limitations. The effects of creep are not seen, very much like
in the renormalized perturbation theory. The creep appears as
�exponentially small� “instantons” contributions, which cor-
respond to tunneling events of a single vortex. These effects
can be incorporated into the present discussion in a straight-
forward manner.2 Therefore the critical current, strictly
speaking, vanishes at nonzero temperatures; however, the I-V
curve exhibits a well defined crossover behavior53 �rounding
of the curve in Fig. 3�.

It was noted in Sec. IV that the LLL contribution to con-
ductivity is proportional to the superfluid density �= ���2 due
to an identity J� ẑ���. On the other hand, it is generally
known that magnetization, even beyond LLL �and to leading
order in very small parameter 1 /�2�, is also proportional to
���2.3,21,54 Phenomenologically, the behavior of the two quan-
tities near the glass transition line is very different. This was

considered to be a difficulty for the LLL approach to type-II
superconductivity in strong magnetic field. Here, we showed
explicitly what happens. The vortex pinning force respon-
sible for divergence of conductivity is solely due to the
higher Landau level contribution, for which the above iden-
tity does not hold. Consequently, the proportionality between
conductivity and the superfluid density is also violated.

Therefore, away from the glass line, the two quantities
have the LLL scaling as was demonstrated, for example, by
several experiments on YBCO for both magnetization55 and
conductivity,56 while near the glass line �experimentally de-
termined in Ref. 57�, the scaling is violated. Correspond-
ingly, the static correlator C�t= t��= 1

2��	C	 �proportional to
the magnetization within LLL� does not diverge at the criti-
cal surface, while the persistent part of the dynamical cor-
relator C	=0 does, see Eq. �99�, and stays infinite throughout
the glass phase. Thus the former cannot serve as an order
parameter for the “glass” transition, even in the static limit.
In our calculation, the magnetization is continuous across the
glass line but has a jump in derivative with respect to tem-
perature or other external parameters. This behavior was ob-
served in BSCCO using the “shaking” technique.27

The discussion can be easily generalized to incorporate
the Hall current as in Ref. 32 by including the nondissipative

�Gross-Pitaevsky� term i
�2�H

4m* D�� in the TDGL equation, Eq.
�1�, and to the 2D case. The generalization to essentially
layered material via Lawrence-Doniach model is much more
complicated. We did not attempt to study the ac transport or
relaxation. This is quite possible and many experimental re-
sults require such a generalization. For an excellent example
of the ac current-voltage characteristics, see Ref. 58. More-
over, the formalism presented in this work allows, in prin-
ciple, consideration of various time dependent phenomena
characteristic of a glass state: irreversibility, memory,…. For
this one will have to drop the assumption of stationarity,
within which the correlator and the response function depend
only on the difference of two times, C�t , t���C�t− t��.

The theory can also be generalized to the 2D case appro-
priate for description of thin films or strongly layered super-
conductors and compared to experiments. The comparison
for organic superconductor � type BEDT TTF �Ref. 59�
and BSCCO �Ref. 27� of the static glass line is quite satis-
factory. There exist, to our knowledge, just two Monte Carlo
simulations of the disordered GL model,60,61 both in 2D, in
which no clear irreversibility line was found. However, the
frustrated XY model was recently extensively simulated7,8

including the glass transition line and I-V curves. It shares
many common features with the GL model although disorder
is introduced in a different way, so that it is difficult to com-
pare the dependence of pinning. The I-V curves and the glass
line resemble our results. We plan to calculate the helicity
modulus and the structure factor, on which authors concen-
trate in most of these works.

To conclude, we quantitatively described the competition
between interactions, thermal fluctuations, and random
quenched disorder using the dynamical Martin-Siggia-Rose
approach to the Ginzburg-Landau model of the vortex mat-
ter. Within the Gaussian approximation, we characterized the
transition between pinned and unpinned vortex matter. The
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location of the glass transition line between the homoge-
neous phases was determined and compared to experiments.
The dynamic correlation and response functions of the order
parameter in homogeneous phases were found. This enables
one to estimate the relaxation properties of the vortex matter
due to the combined effect of pinning and thermal fluctua-
tion. It was shown that in the glass phase the correlator has a
persistent component, vanishing on the glass line. The relax-
ation time in the vortex liquid was calculated. By extending
the theory beyond the linear response, the non-Ohmic I-V
curves were found and the analytical expression for the criti-
cal current in both electric and magnetic fields was deter-
mined. The critical current as a function of field, tempera-
ture, and disorder strength was calculated and compared with
recent experiments. A quantitative theory of the peak effect
has been proposed.
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APPENDIX: COOPERON AND DIFFUSION CHAIN
INTEGRALS

Nonzero components of the “fish” integrals f p̃,	
k,i1;m,i2

= 1
��q̃gq̃,	

k,i1gp̃−q̃,	
m,i2 are given by

f p̃,	
11;11 =

8��	 + 3��	� + �	
�� + 2�	�	

� p̃2

��	
1/2 + �	

*1/2��4 + �	p̃2��4 + �	
� p̃2���	 + 2��	� + �	

� + �	�	
� p̃2�

c	
2 ,

fp,	
11;12 = �fp,	

11;21�* = fp,	
12;11 = �fp,	

21;11�*

=
6��	� + 4�	

� + 2�	 + �	�	
� p̃2

��	
1/2 + �	

*1/2��4 + �	p2���	 + 2��	� + �	
� + �	�	

� p̃2�

��	c	,

fp,	
12;21 = fp,	

21;12 =
�	�	

���	
1/2 + �	

*1/2�
��	 + 2��	� + �	

� + �	�	
� p̃2�

,

fp,	
12;12 = �fp,	

21;21�* =
�	

3/2

�4 + �	p̃2�
.

The integrals have been used to solve the linear “chain equa-
tions” �Eqs. �85� and �86��. Below we list explicitly nonzero
components of the solution

Q̄p̄,	
11;12 = Q̄p̄,	

11;21 =
8nc	�4��	�	

* �1/2 + 4��	 + �	
* � + �	�	

* p̃2�
��	

1/2 + �	
*1/2�Y	p̄Y	p̄

* ,

Q̄p̄,	
12;12 = Q̄p̄,	

12;21 = �Q̄p̄,	
21;12�* = �Q̄p̄,	

21;21�* =
8n�	

3/2

Y	p̄
, �A1�

K̄p̄,	
11;12 = K̄p̄,	

11;21 =
4nc	�	�6��	�	

* �1/2 + 2�	 + 4�	
* + �	�	

* p̃2�
��	

1/2 + �	
*1/2�Y	p̄X	p̄

,

�A2�

K̄p̄,	
12;12 = K̄p̄,	

21;21

=
16n2��	�	

* �2��	
1/2 + �	

*1/2�2

���	
1/2 + �	

*1/2���	
1/2 + �	

*1/2 + 4n�	�	
* � + �	�	

* p̃2�X	p̄

,

K̄p̄,	
21;21 = K̄p̄,	

21;21

=
4n��	�	

* ���	
1/2 + �	

*1/2����	
1/2 + �	

*1/2�2 + �	�	
* p̃2�

���	
1/2 + �	

*1/2���	
1/2 + �	

*1/2 + 4n�	�	
* � + �	�	

* p̃2�X	p̄

,

K̄p̄,	
11;22 =

4nc	�Z	 + �4�	�	
* + �	

*1/2 + �	
1/2��	�	

* p̃2�
��	

1/2 + �	
*1/2�2Y	p̄Y	p̄

* X	p̄

,

K̄p̄,	
11;11 = �K̄p̄,	

22;22�* =
8n�	

3/2

Y	p̄
,

K̄p̄,	
12;22 = K̄p̄,	

21;22 = −
4nc	�	

* �6�	
1/2�	

*1/2 + 4�	 + 2�	
* + �	�	

* p̃2�
��	

1/2 + �	
*1/2�Y	p̄

* X	p̄

,

where Z	=4��	
*3/2+�	

3/2+4�	�	
*1/2+4�	

1/2�	
* �+16n�	�	

* ��	
1/2

+�	
*1/2�2 and

X	p̄ = ��	
1/2 + �	

*1/2���	
1/2 + �	

*1/2 − 4n�	�	
* � + �	�	

* p̃2,

Y	p̄ = �4 − 8n�	
3/2 + �	p̃2� . �A3�

At criticality aT=aT
g, where �	=0=1/ �2n�2/3, all the functions

K̄ and Q̄ are singular at 	= pz=0.
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