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From the fact that the derivatives of H(Z) with respect to " are uni-
formly bounded on [0; 1=2] (see [6], also implied by Theorem 1.1 of
[4] and the computation of H"(Z)j"=0), we draw the conclusion that
the second coefficient of H(Z) is equal to

H 00(Z)j"=1=2 = �4
�10 � �01
�10 + �01

2
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Abstract—In this correspondence, we derive the fading number of mul-
tiple-input multiple-output (MIMO) flat-fading channels of general (not
necessarily Gaussian) regular law without temporal memory. The channel
is assumed to be noncoherent, i.e., neither receiver nor transmitter have
knowledge about the channel state, but they only know the probability law
of the fading process. The fading number is the second term, after the
double-logarithmic term, of the high signal-to-noise ratio (SNR) expansion
of channel capacity. Hence, the asymptotic channel capacity of memory-
less MIMO fading channels is derived exactly. The result is then specialized
to the known cases of single-input–multiple-output (SIMO), multiple-input
single-output (MISO), and single-input–single-output (SISO) fading chan-
nels, as well as to the situation of Gaussian fading.

Index Terms—Channel capacity, fading number, Gaussian fading, gen-
eral flat fading, high signal-to-noise ratio (SNR), multiple antenna, mul-
tiple-input multiple-output (MIMO), noncoherent.

I. INTRODUCTION

It has been recently shown in [1], [2] that, whenever the matrix-
valued fading process is of finite differential entropy rate (a so-called
regular process), the capacity of noncoherent multiple-input multiple-
output (MIMO) fading channels typically grows only double-logarith-
mically in the signal-to-noise ratio (SNR).

This is in stark contrast to both, the coherent fading channel where
the receiver has perfect knowledge about the channel state, and to
the noncoherent fading channel with nonregular channel law, i.e.,
the differential entropy rate of the fading process is not finite. In the
former case the capacity grows logarithmically in the SNR with a
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factor in front of the logarithm that is related to the number of receive
and transmit antennas [3].

In the latter case, the asymptotic growth rate of the capacity de-
pends highly on the specific details of the fading process. In the case of
Gaussian fading, nonregularity means that the present fading realiza-
tion can be predicted precisely from the past realizations. However, in
every noncoherent system the past realizations are not known a priori,
but need to be estimated either by known past channel inputs and out-
puts or by means of special training signals. Depending on the spectral
distribution of the fading process, the dependence of such estimations
on the available power can vary largely which gives rise to a huge va-
riety of possible high-SNR capacity behaviors: it is shown in [4], [5],
and [6] that depending on the spectrum of the nonregular Gaussian
fading process, the asymptotic behavior of the channel capacity can
be varied in a large range: it is possible to have very slow double-loga-
rithmic growth, fast logarithmic growth, or even exotic situations where
the capacity grows proportionally to a fractional power of log SNR.

Similarly, Liang and Veeravalli show in [7] that the capacity of a
Gaussian block-fading channel depends critically on the assumptions
one makes about the time-correlation of the fading process: if the cor-
relation matrix is rank deficient, the capacity grows logarithmically in
the SNR, otherwise double-logarithmically.

In this correspondence we will only consider noncoherent channels
with regular fading processes, i.e., the capacity at high SNR will be
growing double-logarithmically. To quantify the rates at which this
poor power efficiency begins, [1], [2] introduce the fading number as
the second term in the high-SNR asymptotic expansion of channel ca-
pacity. Hence, the capacity can be written as

C(SNR) = log(1 + log(1 + SNR)) + �+ o(1) (1)

where o(1) tends to zero as the SNR tends to infinity, and where � is a
constant, denoted fading number, that does not depend on the SNR.

Explicit expressions of the fading number are known for a number
of fading models. For channels with memory, the fading number of
single-input–single-output (SISO) fading channels is derived in [1], [2]
and the single-input–multiple-output (SIMO) case is derived in [8] and
[2].

For memoryless fading channels, the fading number is known in the
situation of only one antenna at transmitter and receiver (SISO)

�(H) = log � + log jHj2 � h(H) (2)

in the situation of a SIMO fading channel1

�(H) = h�(Ĥe
�) + nR log kHk2 � log 2� h(H) (3)

(both are special cases from the corresponding situation with memory),
and also in the case of a multiple-input single-output (MISO) fading
channel [1], [2]

�(H ) = sup
x̂

log � + log jH x̂j2 � h(H x̂) : (4)

The most general situation of multiple antennas at both transmitter and
receiver, however, has been solved so far only in the special case of a
particular rotational symmetry of the fading process: if every rotation
of the input vector of the channel can be “undone” by a corresponding
rotation of the output vector, and vice-versa, then the fading number
has been shown in [1], [2] to be

�( ) = log
�n

�(nR)
+ nR log k êk2 � h( ê) (5)

1For a precise definition of the notation used in this corrspondence, we refer
to Section II.

where ê 2 n is an arbitrary constant vector of unit length, and where
nR denotes the number of receive antennas. Such fading channels are
called rotation-commutative in the generalized sense (for a detailed
definition see Section V).

In this correspondence, we will extend these results and derive the
fading number of general memoryless MIMO fading channels.

The remainder of this correspondence is structured as follows. Be-
fore we proceed in Section III to introduce the channel model in detail,
the following section will clarify our notation. We will then present the
main result, i.e., the fading number of the general memoryless MIMO
fading channel in Section IV. The corresponding proof is found in Sec-
tion VII.

In Section V, the known fading numbers of SISO, SIMO, MISO, and
rotation-commutative MIMO fading channels are derived once more as
special cases of the new general result from Section IV. In Section VI,
we investigate the situation of Gaussian fading processes. We will con-
clude in Section VIII.

II. NOTATION

We try to use uppercase letters for random quantities and lower-
case letters for their realizations. This rule, however, is broken when
dealing with matrices and some constants. To better differentiate be-
tween scalars, vectors, and matrices we have resorted to using different
fonts for the different quantities. Uppercase letters such as X are used
to denote scalar random variables taking value in the reals or in
the complex plane . Their realizations are typically written in low-
ercase, e.g., x. For random vectors we use bold face capitals, e.g., X
and bold lowercase for their realizations, e.g., x. Deterministic ma-
trices are denoted by uppercase letters but of a special font, e.g., ;
and random matrices are denoted using another special uppercase font,
e.g., . The capacity is denoted by C, the energy per symbol by E , and
the signal-to-noise ratio is denoted by SNR.

We use the shorthand Hb

a for (Ha; Ha+1; . . . ; Hb). For more

complicated expressions, such as Ha x̂a;Ha+1x̂a+1; . . . ;Hb x̂b ,

we use the dummy variable ` to clarify notation: H` x̂`

b

`=a
.

Hermitian conjugation is denoted by (�)y, and (�) stands for the
transpose (without conjugation) of a matrix or vector. The trace of a
matrix is denoted by tr (�).

We use k�k to denote the Euclidean norm of vectors or the Euclidean
operator norm of matrices. That is

kxk

m

t=1

jx(t)j2; x 2 m (6)

k k max
kŵk=1

k ŵk: (7)

Thus, k k is the maximal singular value of the matrix .
The Frobenius norm of matrices is denoted by k � kF and is given by

the square root of the sum of the squared magnitudes of the elements
of the matrix, i.e.,

k kF tr ( y ): (8)

Note that for every matrix

k k � k kF (9)

as can be verified by upper bounding the squared magnitude of each of
the components of ŵ using the Cauchy–Schwarz inequality.

We will often split a complex vector v 2 m up into its magnitude
kvk and its direction

v̂
v

kvk
(10)
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where we reserve this notation exclusively for unit vectors, i.e.,
throughout the correspondence every vector carrying a hat, v̂ or V̂,
denotes a (deterministic or random, respectively) vector of unit length

kv̂k = kV̂k = 1: (11)

To be able to work with such direction vectors we shall need a differ-
ential entropy-like quantity for random vectors that take value on the
unit sphere in m: let � denote the area measure on the unit sphere in
m. If a random vector V̂ takes value in the unit sphere and has the

density p�
V̂
(v̂) with respect to �, then we shall let

h�(V̂) � log p�
V̂
(V̂) (12)

if the expectation is defined.
We note that just as ordinary differential entropy is invariant under

translation, so is h�(V̂) invariant under rotation. That is, if is a de-
terministic unitary matrix, then

h�( V̂) = h�(V̂): (13)

Also note that h�(V̂) is maximized if V̂ is uniformly distributed on
the unit sphere, in which case

h�(V̂) = log cm (14)

where cm denotes the surface area of the unit sphere in m

cm =
2�m

�(m)
: (15)

The definition (12) can be easily extended to conditional entropies: if
W is some random vector, and if conditional onW = w the random
vector V̂ has density p�

V̂jW
(v̂jw) then we can define

h�(V̂ jW = w) � log p�
V̂jW(V̂jW)W = w (16)

and we can define h�(V̂jW) as the expectation (with respect to W)
of h�(V̂ j W = w).

Based on these definitions, we have the following lemma.

Lemma 1: Let V be a complex random vector taking value in m

and having differential entropy h(V). Let kVk denote its norm and V̂
denote its direction as in (10). Then

h(V) =h(kVk) + h�(V̂ j kVk)

+ (2m� 1) [log kVk] (17)

=h�(V̂) + h(kVk j V̂) + (2m� 1) [log kVk] (18)

whenever all the quantities in (17) and (18), respectively, are defined.
Here h(kVk) is the differential entropy of kVk when viewed as a real
(scalar) random variable.

Proof: Omitted.

We shall write X � N (���; ) if X � ��� is a circularly sym-
metric, zero-mean, Gaussian random vector of covariance matrix

(X� ���)(X� ���)y = . By X � U ([a; b]) we denote a random
variable that is uniformly distributed on the interval [a; b]. The prob-
ability distribution of a random variable X or random vector X is
denoted by QX or QX, respectively.

Throughout the correspondence e� denotes a complex random vari-
able that is uniformly distributed over the unit circle

e
� � Uniform on fz 2 : jzj = 1g: (19)

When it appears in formulas with other random variables, e� is always
assumed to be independent of these other variables.

All rates specified in this correspondence are in nats per channel use,
i.e., log(�) denotes the natural logarithmic function.

III. THE CHANNEL MODEL

We consider a channel with nT transmit antennas and nR receive
antennas whose time-k output Yk 2

n is given by

Yk = kxk + Zk: (20)

Here xk 2 n denotes the time-k input vector; the random matrix
k 2 n �n denotes the time-k fading matrix; and the random

vector Zk 2 n denotes the time-k additive noise vector.
We assume that the random vectors fZkg are spatially and tem-

porally white, zero-mean, circularly symmetric, complex Gaussian
random vectors, i.e., fZkg � IID N 0; �2 for some �2 > 0.
Here denotes the identity matrix.

As for the matrix-valued fading process f kg we will not specify
a particular distribution, but shall only assume that it is stationary, er-
godic, of a finite-energy fading gain, i.e.,

k kk
2
F <1 (21)

and regular, i.e., its differential entropy rate is finite

h(f kg) lim
n"1

1

n
h( 1; . . . ; n) > �1: (22)

Furthermore, we will restrict ourselves to the memoryless case, i.e.,
we assume that f kg is independetn and identically distributed (IID)
with respect to time k. Since there is no memory in the channel, an IID
input process fXkg will be sufficient to achieve capacity and we will
therefore drop the time index k hereafter, i.e., (20) simplifies to

Y = x+ Z: (23)

Note that while we assume that there is no temporal memory in the
channel, we do not restrict the spatial memory, i.e., the different fading
components H(i;j) of the fading matrix may be dependent.

We assume that the fading and the additive noise Z are indepen-
dent and of a joint law that does not depend on the channel input x.

As for the input, we consider two different constraints: a peak-power
constraint and an average-power constraint. We use E to denote the
maximal allowed instantaneous power in the former case, and to denote
the allowed average power in the latter case. For both cases we set

SNR
E

�2
: (24)

The capacity C(SNR) of the channel (23) is given by

C(SNR) = sup
Q

I(X;Y) (25)

where the supremum is over the set of all probability distributions on
X satisfying the constraints, i.e.

kXk2 � E ; almost surely (26)

for a peak-power constraint, or

kXk2 � E (27)

for an average-power constraint.
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Specializing [1, Theorem 4.2], [2, Theorem 6.10] to memoryless
MIMO fading, we have

lim
SNR"1

fC(SNR)� log log SNRg <1: (28)

Note that [1, Theorem 4.2], [2, Theorem 6.10] is stated under the as-
sumption of an average-power constraint only. However, since a peak-
power constraint is more stringent than an average-power constraint,
(28) also holds in the situation of a peak-power constraint.

The fading number � is now defined as in [1, Definition 4.6], [2,
Definition 6.13] by

�( ) lim
SNR"1

fC(SNR)� log log SNRg: (29)

Prima facie the fading number depends on whether a peak-power con-
straint (26) or an average-power constraint (27) is imposed on the input.
However, it will turn out that the memoryless MIMO fading number is
identical for both cases.

IV. MAIN RESULT

A. Preliminaries

Before we can state our main result, we need to introduce three con-
cepts: The first concerns probability distributions that escape to infinity,
the second a technique of upper bounding mutual information, and the
third concept concerns circular symmetry.

1) Escaping to Infinity: We start with a discussion about the concept
of capacity-achieving input distributions that escape to infinity.

A sequence of input distributions parameterized by the allowed cost
(in our case of fading channels the cost is the available power or SNR)
is said to escape to infinity if it assigns to every fixed compact set a
probability that tends to zero as the allowed cost tends to infinity. In
other words this means that in the limit—when the allowed cost tends
to infinity—such a distribution does not use finite-cost symbols.

This notion is important because the asymptotic capacity of many
channels of interest can only be achieved by input distributions that es-
cape to infinity. As a matter of fact one can show that every input distri-
bution that only achieves a mutual information of identical asymptotic
growth rate as the capacity must escape to infinity. Loosely speaking,
for many channels it is not favorable to use finite-cost input symbols
whenever the cost constraint is loosened completely.

In the following we will only state this result specialized to the situa-
tion at hand. For a more general description and for all proofs we refer
to [8, Sec. VII.C.3], [2, Sec. 2.6].

Definition 2: Let fQX;EgE�0 be a family of input distributions for
the memoryless fading channel (23), where this family is parameterized
by the available average power E such that

Q kXk2 � E ; E � 0: (30)

We say that the input distributions fQX;EgE�0 escape to infinity if for
every E0 > 0

lim
E"1

QX;E(kXk
2 � E0) = 0: (31)

We now have the following lemma.

Lemma 3: Let the memoryless MIMO fading channel be given as
in (23) and let fQX;EgE�0 be a family of distributions on the channel
input that satisfy the power constraint (30). Let I(QX;E) denote the
mutual information between input and output of channel (23) when the

input is distributed according to the law QX;E . Assume that the family
of input distributions fQX;EgE�0 is such that the following condition
is satisfied:

lim
E"1

I(QX;E)

log log E
= 1: (32)

Then fQX;EgE�0 must escape to infinity.
Proof: A proof can be found in [8, Theorem 8, Remark 9], [2,

Corollary 2.8].

2) An Upper Bound on Channel Capacity: In [1] and [2] a new
approach of deriving upper bounds to channel capacity has been intro-
duced. Since capacity is by definition a maximization of mutual infor-
mation, it is implicitly difficult to find upper bounds to it. The proposed
technique bases on a dual expression of mutual information that leads
to an expression of capacity as a minimization instead of a maximiza-
tion. This way it becomes much easier to find upper bounds.

Again, here we only state the upper bound in a form needed in the
derivation of Theorem 7. For a more general form, for more mathemat-
ical details, and for all proofs we refer to [1, Sec. IV], [2, Sec. 2.4].

Lemma 4: Consider a memoryless channel with input s 2 n and
output T 2 . Then for an arbitrary distribution on the input S the
mutual information between input and output of the channel is upper
bounded as follows:

I(S;T ) � �h(T jS) + log � + � log � + log� �;
�

�

+(1� �) log(jT j2 + �) +
1

�
jT j2 +

�

�
(33)

where �; � > 0 and � � 0 are parameters that can be chosen freely,
but must not depend on the distribution of S.

Proof: A proof can be found in [1, Sec. IV], [2, Sec. 2.4].

3) Capacity-Achieving Input Distributions and Circular Symmetry:
The final preliminary remark concerns circular symmetry. We say that
a random vector W is circularly symmetric if

W
L
=W � e� (34)

where � � U ([0; 2�]) is independent of W and where
L
= stands for

“equal in law”. Note that this is not to be confused with isotropically
distributed, which means that a vector has equal probability to point
in every direction. Circular symmetry only concerns the phase of the
components of a vector, not the vector’s direction.

The following lemma says that for our channel model an optimal
input can be assumed to be circularly symmetric.

Lemma 5: Assume a channel as given in (23). Then the ca-
pacity-achieving input distribution can be assumed to be circularly
symmetric, i.e., the input vector X can be replaced by Xe �, where
� � U ([0; 2�]) is independent of every other random quantity.

Proof: A proof is given in Appendix A.

Remark 6: Note that the proof of Lemma 5 relies only on the fact
that the additive noise is assumed to be circularly symmetric.

B. Fading Number of General Memoryless MIMO Fading Channels

We are now ready for the main result, i.e., the fading number of a
memoryless MIMO fading channel.

Theorem 7: Consider a memoryless MIMO fading channel (23)
where the random fading matrix takes value in n �n and satisfies

h( ) > �1 (35)
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and

k k2F <1: (36)

Then, irrespective of whether a peak-power constraint (26) or an av-
erage-power constraint (27) is imposed on the input, the fading number
�( ) is given by (37) shown at the bottom of the page. Here X̂ denotes
a random vector of unit length and Q

X̂
denotes its probability law, i.e.,

the supremum is taken over all distributions of the random unit-vector
X̂. Note that the expectation in the second term is understood jointly
over and X̂.

Moreover, this fading number is achievable by a random vectorX =
X̂ �R where X̂ is distributed according to the distribution that achieves
the fading number in (37) and where R is a nonnegative random vari-
able independent of X̂ such that

logR2 � U ([log log E ; log E ]) : (38)

Proof: A proof is given in Section VII.
Note that—even if it might not be obvious at first sight—it is not

hard to show that the distribution Q
X̂

that achieves the supremum in
(37) is circularly symmetric. This is in agreement with Lemma 5.

The evaluation of (37) can be pretty awkward mainly due to the first
term, i.e., the differential entropy with respect to the surface area mea-
sure �. We therefore will derive next an upper bound to the fading
number that is easier to evaluate.

To that goal firstly note that for an arbitrary constant nonsingular
nR � nR matrix and an arbitrary constant nonsingular nT � nT
matrix

�( ) = �( ); (39)

see [1, Lemma 4.7], [2, Lemma 6.14]. Second, note that for an arbitrary
random unit vector Ŷ 2 n

h�(Ŷ) � log cn = log
2�n

�(nR)
(40)

where cn denotes the surface area of the unit sphere in n as defined
in (15) and where the upper bound is achieved with equality only if Ŷ is
uniformly distributed on the sphere, i.e., Ŷ is isotropically distributed.

Using these two observations we get the following upper bound on
the fading number.

Corollary 8: The fading number of a memoryless MIMO fading
channel as given in Theorem 7 can be upper bounded as follows:

�( ) � nR log � � log �(nR)

+ inf
;
sup
x̂

nR log k x̂k2 � h( x̂) (41)

where the infimum is over all nonsingular nR � nR complex matrices
and nonsingular nT � nT complex matrices .

Proof: Using the two observations (39) and (40), we immediately
get from Theorem 7

�( ) � inf
;
sup
Q

X̂
nR log � � log �(nR)

+ nR [log k X̂k2 j X̂ = x̂]

� h( X̂ j X̂ = x̂) : (42)

The result now follows by noting that (41) can always be achieved by
choosing Q

X̂
in (42) to be the distribution which with probability 1

takes on the value x̂ that achieves the maximum in (41).

This upper bound is possibly tighter than the upper bound given in
[1, Lemma 4.14], [2, Lemma 6.16] because of the additional infimum
over .

V. SOME KNOWN SPECIAL CASES

In this section we will briefly show how some already known results
of various fading numbers can be derived as special cases from this new
more general result.

We start with the situation of a fading matrix that is rotation-com-
mutative in the generalized sense, i.e., the fading matrix is such that
for every constant unitary nT�nT matrix t there exists an nR�nR
constant unitary matrix r such that

r
L
= t (43)

where
L
= stands for “has the same law”; and for every constant unitary

nR�nR matrix r there exists a constant unitary nT�nT matrix t

such that (43) holds [1, Definition 4.37], [2, Definition 6.37].
The property of rotation-commutativity for random matrices is a

generalization of the isotropic distribution of random vectors, i.e., we
have the following lemma.

Lemma 9: Let be rotation-commutative in the generalized sense.
Then the following two statements hold.

• If X̂ 2 n is an isotropically distributed random vector that is
independent of , then X̂ 2 n is isotropically distributed.

• If ê; ê0 2 n are two constant unit vectors, then

k êk
L
= k ê

0k; kêk = kê0k = 1 (44)

h( ê) =h( ê
0); kêk = kê0k = 1: (45)

Proof: For a proof see, e.g., [1, Lemma 4.38], [2, Lemma 6.38].

From Lemma 9 it immediately follows that in the situation of rota-
tion-commutative fading the only term in the expression of the fading
number (37) that depends on Q

X̂
is

h�
X̂

k X̂k
:

This entropy is maximized if X̂

k X̂k
is uniformly distributed on the

surface of the nR-dimensional complex unit sphere, which can be
achieved according to Lemma 9 by the choice of an isotropic distribu-
tion for Q

X̂
. Then according to (14) and (15)

h�
X̂

k X̂k
= log

2�n

�(nR)
: (46)

�( ) = sup
Q

h�
X̂

k X̂k
+ nR log k X̂k2 � log 2� h( X̂ j X̂) : (37)



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 7, JULY 2007 2657

The expression of the fading number (37) then reduces to (5)

�( ) = log
2�n

�(nR)
� log 2 + nR log k êk2 � h( ê) (47)

where ê is an arbitrary constant unit vector in n .
In case of a SIMO fading channel, the direction vector X̂ reduces to

a phase term e �. From Lemma 5 we know that an optimal choice of
e � is circularly symmetric, such that (37) becomes

�(H) = h�(Ĥe
�) + nR log kHk2 � log 2� h(H): (48)

Before we continue with the MISO case, we would like to remark
that the only term in (37) that depends on the distribution of the phase
of each component of X is

h�
X̂

k X̂k
:

Since we know from Lemma 5 that X̂ is circularly symmetric, we can
therefore equivalently write

h�
X̂

k X̂k
= h�

X̂

k X̂k
e
�

: (49)

Turning to the MISO case now note that the distribution of

H X̂

jH X̂j
e
�

is identical to the distribution of e�, independently of the distribution
of H and X̂. Hence,

h�
H X̂

jH X̂j
e
� = h�(e

�) = log 2�: (50)

The fading number (37) then becomes

�(H ) = sup
Q

log 2� + log jH X̂j2 � log 2

� h(H X̂ j X̂) (51)

= sup
Q

X̂
log � + log jH x̂j2 j X̂ = x̂

� h(H x̂ X̂ = x̂) (52)

� sup
x̂

log� + log jH x̂j2 � h(H x̂) (53)

which can be achieved for a distribution of Q
X̂

that with probability 1
takes on the value x̂ that achieves the fading number in (53).

Finally, the SISO case is a combination of the arguments of the SIMO
and MISO case, i.e., using

h�(e
�) = log 2� (54)

we get

�(H) = log 2� + log jHj2 � log 2� h(H) (55)

= log � + log jHj2 � h(H): (56)

VI. GAUSSIAN FADING

The evaluation of the fading number is rather difficult even for the
usually simpler situation of Gaussian fading processes. However, we
are able to give the exact value for some important special cases, and
we will give bounds on some others.

Throughout this section we assume that the fading matrix can be
written as

= + ~ (57)

where all components of ~ are independent of each other and zero-
mean, unit-variance Gaussian distributed, and where denotes a con-
stant line-of-sight matrix.

Note that for some constant unitary nR � nR matrix and some
constant unitary nT � nT matrix the law of ~ is identical to
the law of ~ . Therefore, without loss of generality, we may restrict
ourselves to matrices that are “diagonal,” i.e., for nR � nT

= ( ~ n �(n �n ) ) (58)

or, for nR > nT

=
~

(n �n )�n
(59)

where ~ is a minfnR; nTg�minfnR; nTg diagonal matrix with the
singular values of on the diagonal.

A. Scalar Line-of-Sight Matrix

We start with a scalar line-of-sight matrix, i.e., we assume ~ = d

where denotes the identity matrix.
Under these assumptions the fading number has been known already

for nR = nT = m, in which case the fading matrix is rotation
commutative [1], [2]:

�( ) = mgm(jdj
2)�m� log �(m): (60)

Here gm(�) is a continuous, monotonically increasing, concave func-
tion defined as shown in (61) at the bottom of the page, for m 2 ,
where Ei (�) denotes the exponential integral function defined as

Ei (�x) �
1

x

e�t

t
dt; x > 0 (62)

and  (�) is Euler’s psi function given by

 (m) � +

m�1

j=1

1

j
(63)

with  � 0:577 denoting Euler’s constant. This function gm(�) is the
expected value of the logarithm of a noncentral chi-square random

gm(�)
log(�)� Ei (��) +

m�1

j=1

(�1)j e��(j � 1)!� (m�1)!
j(m�1�j)!

1
�

j

; � > 0

 (m); � = 0

(61)
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variable, i.e., for some Gaussian random variables fUjgmj=1 IID �
N (0; 1) and for some complex constants f�jgmj=1 we have

log

m

j=1

jUj + �j j
2 = gm(s

2) (64)

where

s
2

m

j=1

j�j j
2 (65)

(see [9], [1, Lemma 10.1], [2, Lemma A.6] for more details and a
proof). We would like to emphasize that gm(�) is continuous for all
� � 0, i.e., in particular

lim
�#0

log(�)� Ei (��) +
m�1

j=1

(�1)j

� e
��(j � 1)!�

(m� 1)!

j(m� 1� j)!

1

�

j

=  (m) (66)

for all m 2 . Moreover, for all m 2 and � � 0

log � � Ei (��) � gm(�) � log(m+ �): (67)

A derivation of (67) can be found in Appendix B.
We now consider the case where nR � nT:

Corollary 10: Assume nR � nT and a Gaussian fading matrix as
given in (57). Let the line-of-sight matrix be given as

= d ( n n �(n �n ) ) : (68)

Then

�( ) = nRgn (jdj2)� nR � log �(nR) (69)

where gm(�) is defined in (61).
Proof: We write for the unit vector X̂

X̂ =
���

���0
(70)

where ��� 2 n and ���0 2 n �n . Then

X̂ = X̂+ ~X̂ = d���+ ~H (71)

where ~H � N (0; n ). Hence

h( X̂ j X̂) =h( ~H) = nR log �e (72)

nR log k X̂k2 =nRgn (jdj2k���k2) � nRgn (jdj2) (73)

h�
X̂

k X̂k
� log

2�n

�(nR)
: (74)

Here, the equality in (73) follows from the fact that kd��� + ~Hk2 is
noncentral chi-square distributed and from (64); the inequality in (73)
follows from the monotonicity of gm(�) and is tight if k���k = 1, i.e.,
���0 = 0; and the inequality in (74) follows from (14) and (15) and is
tight if��� is uniformly distributed on the unit sphere in n so that X̂

is isotropically distributed. The result now follows from Theorem 7.
The case nR > nT is more difficult since then (74) is in general not

tight. We will only state an upper bound.

Proposition 11: Assume nR > nT and a Gaussian fading matrix as
given in (57). Let the line-of-sight matrix be given as

= d
n

(n �n )�n
: (75)

Then

�( ) � nT log 1 +
jdj2

nT
+ nR lognR � nR � log �(nR): (76)

Proof: This result is a special case of Proposition 13 and has been
published before in [1, Eq. (128)], [2, Eq. (6.224)].

B. General Line-of-Sight Matrix

Next we assume Gaussian fading as defined in (57) with a general
line-of-sight matrix having singular values d1; . . . ; dminfn ;n g.
Hence, ~ , defined in (58) and (59), is given as

~ = diag d1; . . . ; dminfn ;n g (77)

where jd1j � jd2j � � � � � jdminfn ;n gj > 0.
We again start with the case nR � nT.

Corollary 12: Assume nR � nT and a Gaussian fading matrix
as given in (57). Let the line-of-sight matrix have singular values
d1; . . . ; dn , where jd1j � jd2j � � � � � jdn j > 0. Then

�( ) � nRgn (k k2)� nR � log �(nR) (78)

where gm(�) is given in (61) and where k k2 = jd1j
2.

Proof: A proof is given in Appendix C.

The situation nR > nT is again more complicated. We include this
case in a new upper bound based on (41) which holds independently of
the particular relation between nR and nT.

Proposition 13: Assume a Gaussian fading matrix as given in
(57) and let the line-of-sight matrix be general with singular values
d1; . . . ; dminfn ;n g, where jd1j � jd2j � � � � � jdminfn ;n gj > 0.
Then the fading number is upper bounded as follows:

�( ) � minfnR; nTg log
�2

minfnR; nTg

+nR lognR � nR � log �(nR) (79)

where

�
2 jd1j

2 � � � � � jdminfn ;n gj
2 1=minfn ;n g

� 1 +
1

jd1j2
+ � � �+

1

jdminfn ;n gj2
: (80)

Proof: A proof is given in Appendix D.

VII. PROOF OF THE MAIN RESULT

The proof of Theorem 7 consists of two parts. First, we derive an
upper bound to the fading number assuming an average-power con-
straint (27) on the input. The key ingredients here are the preliminary
results from Section IV-A.

In a second part we then show that this upper bound can actually be
achieved by an input that satisfies the peak-power constraint (26). Since
a peak-power constraint is more restrictive than the corresponding av-
erage-power constraint, the theorem follows.
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Because the proof is rather technical, we will give a short overview
to clarify the main ideas.

The upper bound relies strongly on Lemma 3 which says that the
input can be assumed to take on large values only, i.e., at high SNR the
additive noise will become negligible so that we can bound

I(X;Y) I(X; X): (81)

This term is then split into a term that only considers the magnitude of
X and a term that takes into account the direction:

I(X; X) = I(X; k Xk) + I X;
X̂

k X̂k
k Xk : (82)

For the first term—which is related to MISO fading—we then use the
bounding technique of Lemma 4.

Because Lemma 3 only holds in the limit when E tends to infinity,
we introduce an event kXk2 > E0 for some fixed E0 � 0 and condition
everything on this event.

To derive a lower bound on capacity we choose a specific input dis-
tribution of the form

X = R � X̂ (83)

where the distribution ofR is such that it achieves the fading number of
an SIMO fading channel and where the distribution of X̂ is independent
of R and will be only specified at the very end of the derivation (it will
be chosen to maximize the fading number). We then split the mutual
information into two terms:

I(X;Y) = I(R;Y j X̂) + I(X̂;Y): (84)

The first term (almost) corresponds to an SIMO fading channel with
side-information for which the fading number is known. The second
term is treated separately.

A. Derivation of an Upper Bound

In the following we will use the notation R kXk to denote the
magnitude of the input vectorX, i.e., we haveX = R � X̂. Note that in
this section we are not allowed to assume that R is independent of X̂.

From Lemma 3, we know that the capacity-achieving input distribu-
tion must escape to infinity. Hence, we fix an arbitrary finite E0 � 0
and define an indicator random variable as follows:

E
1; if kXk2 � E0
0; otherwise.

(85)

Let

p Pr [E = 1] = Pr kXk2 � E0 (86)

where we know from Lemma 3 that

lim
E"1

p = 1: (87)

We now bound as follows:

I(X;Y) � I(X; E;Y) (88)

= I(E;Y) + I(X;Y j E) (89)

=H(E)�H(E j Y) + I(X;Y j E) (90)

�H(E) + I(X;Y j E) (91)

=Hb(p) + pI(X;Y j E = 1)

+ (1� p)I(X;Y j E = 0) (92)

�Hb(p) + I(X;Y j E = 1) + (1� p)C(E0) (93)

where

Hb(�) �� log � � (1� �) log(1� �) (94)

is the binary entropy function. Here, (88) follows from adding an ad-
ditional random variable to mutual information; the subsequent two
equalities follow from the chain rule and from the definition of mutual
information (notice that we use entropy and not differential entropy
because E is a binary random variable); in the subsequent inequality
we rely on the nonnegativity of entropy; and the last inequality follows
from bounding p � 1 and from upper bounding the mutual information
term by the capacity C for the available power which—conditional on
E = 0—is E0.

We remark that even though C(E0) is unknown, we know that it is
finite and independent of E so that from (87) we have

lim
E"1

fHb(p) + (1� p)C(E0)g = 0: (95)

We continue with the second term of (93) as follows:

I(X;Y j E = 1) = I(X; X+ Z j E = 1) (96)

� I(X; X+ Z;Z j E = 1) (97)

= I(X; X;Z j E = 1) (98)

= I(X; X j E = 1)

+ I(X;Z j X; E = 1) (99)

= I(X; X j E = 1) (100)

= I X; k Xk;
X

k Xk
E = 1 (101)

= I X; k Xk;
X̂

k X̂k
E = 1 (102)

= I(X; k Xk j E = 1)

+ I X;
X̂

k X̂k
k Xk; E = 1 (103)

� I(X; k Xk; e� j E = 1)

+ I X;
X̂

k X̂k
k Xk; E = 1 (104)

= I(X; k Xke� j E = 1)

+ I X;
X̂

k X̂k
k Xk; E = 1 : (105)

Here, (97) follows from adding an additional random vector Z to the
argument of the mutual information; the subsequent equality from sub-
tracting the known vector Z from Y; the subsequent two equalities
follow from the chain rule and the independence between the noise and
all other random quantities; then we split X into magnitude and di-
rection vector and use the chain rule again; (104) follows from adding
a random variable to mutual information: we introduce e� that is in-
dependent of all the other random quantities and that is uniformly dis-
tributed on the complex unit circle; and the last equality holds because
from k Xke� we can easily get back k Xk and e�.

We next apply Lemma 4 to the first term in (105), i.e., we choose
S = X and T = k Xke�. Note that we need to condition everything
on the event E = 1. We get

I(X; k Xke� j E = 1)

� �h(k Xke� j X; E = 1) + log � + � log �

+ log � �;
�

�
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+ (1� �) log k Xk2 + � E = 1

+
1

�
k Xk2 E = 1 +

�

�
(106)

where �; � > 0, and � � 0 can be chosen freely, but must not depend
on X.

Notice that from a conditional version of Lemma 1 with m = 1
follows that

h(k Xke� j X = x; E = 1)

= h�(e
� j X = x; E = 1)

+ h(k Xk j e�;X = x; E = 1)

+ [log k Xk j X = x; E = 1] (107)

= log 2� + h(k Xk j X = x; E = 1)

+ [log k Xk j X = x; E = 1] (108)

where we have used that e � is independent of all other random quanti-
ties and uniformly distributed on the unit circle. Taking the expectation
over X conditional on E = 1 we then yield

h(k Xke� j X; E = 1)

= log 2� + h(k Xk j X; E = 1)

+ [log k Xk j E = 1] (109)

= log 2� + h(k X̂k � R j X̂; R; E = 1)

+ log k X̂k � R E = 1 (110)

= log 2� + h(k X̂k j X̂; R; E = 1)

+ logR E = 1

+ log k X̂k j E = 1

+ [logRjE = 1] (111)

= log 2� + h(k X̂k j X̂; E = 1)

+ 2 [logR j E = 1]

+ log k X̂k E = 1 (112)

where the second equality follows from the definition of R kXk;
where the third equality follows from the scaling property of entropy
with a real argument; and where the last equality follows because given
X̂, k X̂k is independent of R.

Next we assume 0 < � < 1 such that 1� � > 0. Then we define

�� sup
kxk �E

log k xk2 + � � log k xk2 (113)

such that

(1� �) log(k Xk2 + �) E = 1

= (1� �) log(k Xk2 + �)� log k Xk2 E = 1

+ (1� �) log k Xk2 E = 1 (114)

� (1� �) sup
kxk �E

log(k xk2 + �) � log k xk2

+ (1� �) log k Xk2 E = 1 (115)

= (1� �)�� + (1� �) log k Xk2 E = 1 (116)

� �� + (1� �) log k Xk2 E = 1 : (117)

Note that in the first inequality we have made use of the fact thatE = 1,
i.e., that kXk2 � E0. Finally, we bound

1

�
k Xk2 E = 1

=
1

�
k X̂k2 �R2 E = 1 (118)

�
1

�
sup
x̂

k x̂k2 � R2 E = 1 (119)

=
1

�
sup
x̂

k x̂k2 � R2 E = 1 (120)

�
1

�
sup
x̂

k x̂k2 �
E

p
(121)

where we have used the fact that R needs to satisfy the average-power
constraint (27) to get the following bound:

E � R2 (122)

= p R2 E = 1 + (1� p) R2 E = 0 (123)

� p R2 E = 1 : (124)

Plugging (112), (117), and (121) into (106) we yield

I(X; k Xke� j E = 1)

� � log 2� h(k X̂k j X̂; E = 1)� 2 [logR j E = 1]

� log k X̂k E = 1 + � log � + log � �;
�

�

+ (1� �) log k Xk2 E = 1 + ��

+
1

�
sup
x̂

k x̂k2
E

p
+

�

�
: (125)

Next, we continue with the second term in (105):

I X;
X̂

k X̂k
k Xk; E = 1

= h�
X̂

k X̂k
k Xk; E = 1

� h�
X̂

k X̂k
k X̂k �R; X̂; R;E = 1 (126)

= h�
X̂

k X̂k
k Xk; E = 1

� h�
X̂

k X̂k
k X̂k; X̂; R; E = 1 (127)

� h�
X̂

k X̂k
E = 1

� h�
X̂

k X̂k
k X̂k; X̂; E = 1 : (128)

Here, the last inequality follows because conditioning cannot increase
entropy and because given X̂ and k X̂k, the term X̂=k X̂k does
not depend on R.
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Hence, using (128), (125), and (105) in (93), we get

I(X;Y)

�Hb(p) + (1� p)C(E0)� log 2� h(k X̂k j X̂; E = 1)

� 2 [logR j E = 1]� log k X̂k E = 1 + � log �

+ log � �;
�

�
+ (1� �) log k Xk2 E = 1

+ �� +
1

�
sup
x̂

k x̂k2
E

p
+

�

�
+ h�

X̂

k X̂k
E = 1

� h�
X̂

k X̂k
k X̂k; X̂; E = 1 (129)

=Hb(p) + (1� p)C(E0)� log 2� h( X̂ j X̂; E = 1)

+ (2nR � 1) log k X̂k E = 1 � 2 logR E = 1

� log k X̂k jE = 1 + � log � + log � �;
�

�

+ 2 [log k Xk j E = 1]� � log k Xk2 j E = 1 + ��

+
1

�
sup
x̂

k x̂k2
E

p
+

�

�
+ h�

X̂

k X̂k
E = 1 (130)

=h�
X̂

k X̂k
E = 1 � h( X̂ j X̂; E = 1)

+ nR log k X̂k2jE = 1 � log 2 + log � �;
�

�

+
1

�
sup
x̂

k x̂k2
E

p
+

�

�
+ �� +Hb(p) + (1� p)C(E0)

+ � log � � log k Xk2 E = 1 (131)

�h�
X̂

k X̂k
E = 1 � h( X̂ j X̂; E = 1)

+ nR log k X̂k2 E = 1 � log 2 + log � �;
�

�

+
1

�
sup
x̂

k x̂k2
E

p
+

�

�
+ �� +Hb(p) + (1� p)C(E0)

+ �(log � � log E0 � �): (132)

Here, (130) follows again from a conditional version of Lemma 1 sim-
ilar to (107)–(112) which allows us to combine the fourth and the last
term in (129); in the subsequent equality we arithmetically rearrange
the terms; and the final inequality follows from the following bound:

log k Xk2 E = 1 � inf
kxk �E

log k xk2 (133)

= log E0 + inf
x̂

log k x̂k2 (134)

log E0 + � (135)

where the last line should be taken as a definition for �. Notice that

�1 < � <1 (136)

as can be argued as follows: the lower bound on � follows from
[1, Lemma 6.7f)], [2, Lemma A.15f)] because h( ) > �1 and
k k2F < 1. The upper bound on � can be verified using the

concavity of the logarithm function and Jensen’s inequality.
Note that (132) does not depend on the distribution of R anymore,

but only on X̂! Hence, we can get an upper bound on capacity by taking
the supremum over all possible distributionsQ

X̂
. This then gives us the

following upper bound on the fading number:

�( ) = lim
E"1

C(E)� log 1 + log 1 +
E

�2
(137)

= lim
E"1

sup
Q

I(X;Y)� log 1 + log 1 +
E

�2
(138)

� lim
E"1

sup
Q

h�
X̂

k X̂k
� h( X̂ j X̂)� log 2

+ nR log k X̂k2 + log � �;
�

�

+
1

�
sup
x̂

k x̂k2
E

p
+

�

�
+ �� +Hb(p)

+ (1� p)C(E0) + �(log � � log E0 � �)

� log 1 + log 1 +
E

�2
(139)

= lim
E"1

sup
Q

h�
X̂

k X̂k
� h( X̂ j X̂)� log 2

+ nR log k X̂k2 + log � �;
�

�

+
1

�
sup
x̂

k x̂k2
E

p
+

�

�
+ �� +Hb(p)

+ (1� p)C(E0) + �(log � � log E0 � �)

� log 1 + log 1 +
E

�2
(140)

= sup
Q

h�
X̂

k X̂k
� h( X̂ j X̂)� log 2

+ nR log k X̂k2

+ lim
E"1

log � �;
�

�
� log

1

�

+
1

�
sup
x̂

k x̂k2
E

p
+

�

�
+ �� +Hb(p)

+ (1� p)C(E0) + �(log � � log E0 � �)

+ log
1

�
� log 1 + log 1 +

E

�2
(141)

= sup
Q

h�
X̂

k X̂k
� h( X̂ j X̂) + nR log k X̂k2

� log 2 + log(1� e
��) + � + �� � log �: (142)

Here, the first two equalities follows from the definition of the fading
number (29); the subsequent inequality from (132); (140) follows be-
cause the parameters �, �, and � must not depend on the input distribu-
tion Q

X̂
(however, note that we are allowed to let them depend on E );

the subsequent equality follows since the first four terms do not depend
on E ; and in the last equality we have used (95) and made the following
choices on the free parameters � and �

� �(E) =
�

log E + log sup
x̂

[k x̂k2]
(143)
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� �(E) =
1

�(E)
e
�=� (144)

for some constant � � 0. For this choice, note that

lim
E"1

log � �;
�

�
� log

1

�
= log(1� e

��)

(145)

lim
E"1

�(log � � log E0 � �) = � (146)

lim
E"1

1

�
sup
x̂

k x̂k2
E

p
+

�

�
=0 (147)

lim
E"1

log
1

�
� log 1 + log 1 +

E

�2
= � log �: (148)

(Compare with [1, App. VII], [2, Sec. B.5.9].)
To finish the derivation of the upper bound, we let � go to zero. Note

that �� ! 0 as � # 0 as can be seen from (113). Note further that

lim
�#0

flog(1� e
��)� log �g = 0: (149)

Therefore, we get

�( ) � sup
Q

h�
X̂

k X̂k

�h( X̂ j X̂) + nR log k X̂k2 � log 2 : (150)

B. Derivation of a Lower Bound

To derive a lower bound on capacity (or the fading number, respec-
tively) we choose a specific input distribution. LetX be of the form

X = R � X̂: (151)

Here X̂ 2 n is assumed to be a random unit-vector that is circularly
symmetric, but whose exact distribution will be specified later. The
random variable R 2 +

0 is chosen to be independent of X̂ and such
that

logR2 � U [log x2min; log E ] (152)

where we choose x2min as

x
2
min log E : (153)

Note that this choice of R satisfies the peak-power constraint (26) and
therefore also the average-power constraint (27).

Using such an input to our MIMO fading channel we get the fol-
lowing lower bound to channel capacity:

C(E) � I(X;Y) (154)

= I(R; X̂;Y) (155)

= I(X̂;Y) + I(R;Y j X̂) (156)

= I(X̂;Y) + I(R;Ye
� j X̂)� I(R;Ye

� j X̂)

+ I(R;Y j X̂) (157)

= I(X̂;Y) + I(R; e�;Ye
� j X̂)

� I(e�;Ye
� j X̂; R)

� I(R;Ye
� j X̂) + I(R;Y j X̂): (158)

Here we have introduced a new random variable � � U ([0; 2�])
which is assumed to be independent of every other random quantity.

The last two terms can be rearranged as follows:

�I(R;Ye
� j X̂) + I(R;Y j X̂)

= �h(Ye
� j X̂) + h(Ye

� j X̂; R) + h(Y j X̂)

� h(Y j X̂; R) (159)

= �h(Ye
� j X̂) + h(Ye

� j X̂; R) + h(Ye
� j X̂; e

�)

� h(Ye
� j X̂; R; e

�) (160)

= �I(e�;Ye
� j X̂) + I(e�;Ye

� j X̂; R): (161)

Here the second equality follows because e� is independent of every-
thing else so that we can add it to the conditioning part of the entropy
without changing its values, and because differential entropy remains
unchanged if its argument is multiplied by a constant complex number
of magnitude 1.

Combining this with (158), we yield

C(E) � I(X̂;Y) + I(R; e�;Ye
� j X̂)� I(e�;Ye

� j X̂)

(162)

= I(X̂;Y) + I(Re�;Ye
� j X̂)� I(e�;Ye

� j X̂)

(163)

where the last equality follows because from Re� the random vari-
ables R and e� can be gained back.

We continue with bounding the first term in (163)

I(X̂;Y) = I(X̂;Y;Z)� I(X̂;Z j Y)

��(x )

(164)

� I(X̂;Y;Z)� �(xmin) (165)

= I(X̂; X̂R)� �(xmin) (166)

= I X̂;
X̂

k X̂k
; k X̂k � R � �(xmin) (167)

= I X̂;
X̂

k X̂k
+ I X̂; k X̂k � R

X̂

k X̂k

� �(xmin): (168)

Here the first equality follows from the chain rule; in the subsequent in-
equality we lower bound the second term by��(xmin)which is defined
in Appendix E and is shown there to be independent of the input distri-
bution QX and to tend to zero as xmin " 1; in the subsequent equality
we use Z in order to extract X̂R fromY and then drop (Y;Z) since
given X̂R it is independent of the other random variables; and the
last equality follows again from the chain rule.

Similarly, we bound the third term in (163)

I(e�;Ye
� j X̂) � I(e�;Ye

�
;Ze

� j X̂) (169)

= I(e�; Xe
�
;Ze

� j X̂) (170)

= I(e�; Xe
� j X̂) + I(e�;Ze� j Xe

�
; X̂)

(171)

= I(e�; Xe
� j X̂) (172)

= I e
�; k X̂k �R;

X̂

k X̂k
e
�
X̂ (173)
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= I e
�;

X̂

k X̂k
e
�
X̂

+ I e
�; k X̂k � R

X̂

k X̂k
e
�
; X̂ : (174)

Hence, plugging these results into (163), we get

C(E) � I(Re�;Ye
� j X̂) + I X̂;

X̂

k X̂k

+ I X̂; k X̂k � R
X̂

k X̂k

� I e
�;

X̂

k X̂k
e
�
X̂

� I e
�; k X̂k � R

X̂

k X̂k
e
�
; X̂

� �(xmin): (175)

We next bound the third and fifth mutual information term in (175)

I X̂; k X̂k � R
X̂

k X̂k
� I e

�; k X̂k � R
X̂e �

k X̂k
; X̂

= h k X̂k � R
X̂

k X̂k
� h k X̂k � R

X̂

k X̂k
; X̂

� h k X̂k � R
X̂

k X̂k
e
�
; X̂

+ h k X̂k � R
X̂

k X̂k
e
�
; X̂; e

� (176)

= h k X̂k � R
X̂

k X̂k
� h k X̂k � R

X̂

k X̂k
; X̂

� h k X̂k � R
X̂

k X̂k
e
�
; X̂

+ h k X̂k � R
X̂

k X̂k
; X̂ (177)

= h k X̂k � R
X̂

k X̂k
� h k X̂k � R

X̂

k X̂k
e
�
; X̂

(178)

� h k X̂k � R
X̂

k X̂k
� h k X̂k � R

X̂e �

k X̂k
(179)

= h k X̂k �R
X̂

k X̂k
� h k X̂k � R

X̂

k X̂k
(180)

= 0: (181)

Here, the inequality follows from conditioning that reduces entropy;
and the second last equality holds because we have assumed X̂ to be
circularly symmetric, i.e., X̂ “destroys” the random phase shift of e�.

Therefore, we are left with the following bound:

C(E) � I(Re�;Ye
� j X̂) + I X̂;

X̂

k X̂k

�I e
�;

X̂

k X̂k
e
�
X̂ � �(xmin): (182)

Now, we rewrite the second and third term as follows:

I X̂;
X̂

k X̂k
� I e

�;
X̂

k X̂k
e
�
X̂

= h�
X̂

k X̂k

� h�
X̂

k X̂k
X̂ � h�

X̂

k X̂k
e
�
X̂

+ h�
X̂

k X̂k
e
�
X̂; e

� (183)

= h�
X̂

k X̂k
� h�

X̂

k X̂k
X̂ � h�

X̂

k X̂k
e
�
X̂

+ h�
X̂

k X̂k
X̂ (184)

= h�
X̂

k X̂k
� h�

X̂

k X̂k
e
�
X̂ (185)

where the second equality follows from (13) with a choice
= e� �

n and from the fact that e� is independent of all
other random quantities.

This leaves us with

C(E) � I(Re�;Ye
� j X̂) + h�

X̂

k X̂k

�h�
X̂

k X̂k
e
�
X̂ � �(xmin): (186)

Next, we let the power grow to infinity E ! 1 and use the defi-
nition of the fading number (29). Since Re� is circularly symmetric
with a magnitude distributed according to (152), we know from [1, Eq.
(108) and Theorem 4.8], [2, Eq. (6.194) and Theorem 6.15], that Re�

achieves the fading number of a memoryless SIMO fading channel with
partial side-information. In our situation we have

I(Re�;Ye
� j X̂) = I(Re�; X̂Re

� + Z j X̂) (187)

= I(Re�; X̂Re
� + Z; X̂) (188)

where X̂ serves as partial receiver side-information (that is independent
of the SIMO inputRe�). Note that a random vectorA is said to contain
only partial side-information about B if h(BjA) > �1, i.e., in our
case we need

h( X̂ j X̂) > �1 (189)

which is satisfied since we assume that h( ) > �1 and k k2F <

1 (see [1, Lemma 6.6], [2, Lemma A.14]).
Hence

�( ) � lim
E"1

I(Re�; X̂Re
� + Z j X̂) + h�

X̂

k X̂k

� h�
X̂

k X̂k
e
�
X̂ � �(xmin)

� log 1 + log 1 +
E

�2
(190)

= lim
E"1

I(Re�; X̂Re
� + Z j X̂)
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� log 1 + log 1 +
E

�2
� �(xmin)

+ h�
X̂

k X̂k
� h�

X̂

k X̂k
e
�
X̂ (191)

=�( X̂ j X̂) + h�
X̂

k X̂k
� h�

X̂

k X̂k
e
�
X̂ (192)

=h�
X̂

k X̂k
e
�
X̂ + nR log k X̂k2 � log 2

� h( X̂ j X̂) + h�
X̂

k X̂k
� h�

X̂

k X̂k
e
�
X̂

(193)

=h�
X̂

k X̂k
+ nR log k X̂k2 � log 2� h( X̂ j X̂):

(194)

Here in (192), we have used the fact that our choice (153) guarantees
that �(xmin) tends to zero as E ! 1 (see Appendix E) and that we
achieve the SIMO fading number for a channel with input Re� and
output x̂Re � + Z; the subsequent equality follows from the fading
number of a memoryless SIMO fading channel where the receiver has
access to some partial side-information [1, Eq. (108)], [2, Eq. (6.194)]:

�(HjS) = h�(Ĥe
� j S) + nR log kHk2 � log 2� h(HjS):

(195)

The result now follows by choosing the distribution Q
X̂

such as to
maximize the lower bound (194) to the fading number.

VIII. CONCLUSION

We have derived the fading number of a MIMO fading channel of
general fading law including spatial, but without temporal memory.
Since the fading number is the second term after the double-logarithmic
term of the high-SNR expansion of channel capacity, this means that we
have precisely specified the behavior of the channel capacity asymp-
totically when the power grows to infinity. The result shows that the
asymptotic capacity can be achieved by an input that consists of the
product of two independent random quantities: a circularly symmetric
random unit vector (the direction) and a nonnegative (i.e., real) random
variable (the magnitude). The distribution of the random direction is
chosen such as to maximize the fading number and therefore depends
on the particular law of the fading process. The nonnegative random
variable is such that (38) is satisfied. This is the well-known choice that
also achieves the fading number in the SISO and SIMO case and is also
used in the MISO case where it is multiplied by a constant beam-direc-
tion x̂. All these special cases follow nicely from this new result.

We have then derived some new results for the important special sit-
uation of Gaussian fading. For the case of a scalar line-of-sight matrix
(68) assuming at least as many transmit as receive antennas nR � nT
we have been able to state the fading number precisely

� = nRgn (jdj2)� nR � log �(nR) (196)

where gm(�) denotes the expected value of a noncentral chi-square
random variable (see (61)). We see that the asymptotic capacity only
depends on the number of receive antennas and is growing proportion-
ally to nR log jdj2.

For a general line-of-sight matrix, we have shown an upper bound
that grows like minfnR; nTg log �

2 where �2 is a certain kind of av-

erage of all singular values of the line-of-sight matrix (see (79) and
(80)).

We would like to emphasize that even though all results on the fading
number are asymptotic results for the theoretical situation of infinite
power, they are still of relevance for finite SNR values: it has been
shown that the approximation

C(SNR) � log(1 + log(1 + SNR)) + � (197)

holds already for moderate values of the SNR. Actually, pulling our-
selves by our bootstraps, let us consider for the moment that (197) starts
to be valid for an SNR somewhere in the range of 30 to 80 dB. In this
case log(1 + log(1 + SNR)) will have a value between 2 and 3 nats.
Hence, once the capacity is appreciably above �+ 2 nats, the approx-
imation (197) is likely to be valid [10], [11].

Therefore, the fading number can be seen as an indicator of the max-
imal rate at which power efficient communication is possible on the
channel. For a further discussion about the practical relevance of the
fading number we refer to [10] and [12].

APPENDIX A
PROOF OF LEMMA 5

Assume that � � U ([0; 2�]), independent of every other random
quantity. Then

I(X;Y) = I(X;Y j e �) (198)

= I(Xe�;Ye
� j e�) (199)

= I(Xe�; Xe
� + Z j e�) (200)

= I( ~X; ~X+ Z j e�) (201)

=h( ~X+ Z j e�)� h( ~X+ Z j ~X; e�) (202)

=h( ~X+ Z j e�)� h( ~X+ Z j ~X) (203)

�h( ~X+ Z)� h( ~X+ Z j ~X) (204)

= I( ~X; ~X+ Z): (205)

Here the first equality follows because � is independent of every other
random quantity; the third equality follows becauseZ is circularly sym-
metric; in the subsequent equality we substitute ~X = Xe �; and the
inequality follows since conditioning reduces entropy.

Hence, a circularly symmetric input achieves a mutual information
that is at least as big as the original mutual information.

APPENDIX B
DERIVATION OF BOUNDS (67)

In this appendix we will derive the bounds (67) on gm(�). We start
with the upper bound which follows directly from (64) and (65) and
from Jensen’s inequality:

gm(s
2) = log

m

j=1

jUj + �j j
2 (206)

� log

m

j=1

jUj + �j j
2 (207)

= log

m

j=1

(1 + j�j j
2) (208)

= log(m+ s
2): (209)

For the lower bound we also start with (64) and choose �1 = s and
�2 = � � � = �m = 0. Then we get

gm(s
2) = log

m

j=1

jUj + �j j
2 (210)
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� log jU1 + �1j
2 (211)

= g1(s
2) (212)

= log s2 � Ei �s2 : (213)

Here, (211) follows from dropping some nonnegative terms in the sum;
and in the subsequent two equalities we use the definition of g1(�).

APPENDIX C
PROOF OF COROLLARY 12

We choose a constant nT � nT matrix as follows:

diag
1

d1
; . . . ;

1

dn
;
1

d1
; . . . ;

1

d1
(214)

and then we note that for a unit vector x̂ = (x̂(1); . . . ; x̂(n ))

x̂ = x̂+ ~ x̂ =

x̂(1)

...
x̂(n )

+ ~ x̂ ��� + ~H (215)

where ~H � N 0; �2(x̂) n with

�
2(x̂)

jx̂(1)j2

jd1j2
+ � � �+

jx̂(n )j2

jdn j2
+
jx̂(n +1)j2

jd1j2
+ � � �+

jx̂(n )j2

jd1j2

(216)

and where ��� 2 n with k���k � 1. Therefore

h( X̂ j X̂ = x̂) =nR log �e�2(x̂) (217)

log k x̂k2 = log �2(x̂) + gn
k���k2

�2(x̂)
(218)

(where the last equality follows from (64)) and hence

nR log k X̂k2 � h( X̂ j X̂)

= nR gn
jX̂(1)j2 + � � �+ jX̂(n )j2

�2(X̂)

� nR log �e: (219)

The upper bound on the fading number now follows from (39); from
Theorem 7 by upper bounding the h�-term by log cn ; and from the
additional observations that gm(�) is a monotonically increasing func-
tion, that

jX̂(1)j2 + � � �+ jX̂(n )j2 � 1 (220)

and that

�
2(X̂) =

jX̂(1)j2

jd1j2
+ � � �+

jX̂(n )j2

jdn j2

+
jX̂(n +1)j2

jd1j2
+ � � �+

jX̂(n )j2

jd1j2
(221)

�
jX̂(1)j2

jd1j2
+ � � �+

jX̂(n )j2

jd1j2
(222)

=
1

jd1j2
jX̂(1)j2 + � � �+ jX̂(n )j2 (223)

=
1

jd1j2
=

1

k k2
(224)

where the inequality follows since jd1j � jd2j � � � � � jdn j.

APPENDIX D
PROOF OF PROPOSITION 13

This upper bound is based on the upper bound given in Corollary 8
for a choice of = n . If nR > nT we choose for

diag
a

d1
; . . . ;

a

dn
; b; . . . ; b (225)

with

b
�2

nT
(226)

for � as given in (80), and with a such that det = 1, i.e.,

a (d1 � � � � � dn ) � b : (227)

For such a choice we note that

x̂ = a
x̂

0
+ N 0;

jaj2

jd1j2
; . . . ;N 0;

jaj2

jdn j2
;

N 0; b2 ; . . . ;N 0; b2 (228)

so that

k x̂k2 = �
2

b
2 + (nR � nT)b

2 (229)

=nR
�2

nT
: (230)

Hence, using Jensen’s inequality and the fact that det = 1 we get

nR log k x̂k2 � h( x̂)

� nR log k x̂k2 � log det � h( x̂) (231)

= nR log nR
�2

nT

n =n

� nR log �e: (232)

Plugging this into the upper bound (41) of Corollary 8, we yield

� �nR log � � log �(nR) + nR lognR

+ nT log
�2

nT
� nR log �e (233)

=nT log
�2

nT
+ nR lognR � log �(nR)� nR:

(234)

If nR � nT we choose for

= diag
a

d1
; . . . ;

a

dn
(235)

with a such that det = 1, i.e.,

a (d1 � � � � � dn ) : (236)

For such a choice we note that

x̂ = a x̂
(1)

; . . . ; x̂(n )

+ N 0;
jaj2

jd1j2
; . . . ;N 0;

jaj2

jdn j2
(237)
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so that

k x̂k2 = jaj2 jx̂(1)j2 + � � �+ jx̂(n )j2

+
jaj2

jd1j2
+ � � �+

jaj2

jdn j2
(238)

� �
2 (239)

where we have bounded jx̂(1)j2 + � � � + jx̂(n )j2 � 1. Hence, using
Jensen’s inequality and the fact that det = 1 we get

nR log k x̂k2 � h( x̂)

� nR log k x̂k2 � log det � h( x̂) (240)

� nR log �2 � nR log �e: (241)

Plugging this into the upper bound (41) of Corollary 8, we yield

� �nR log � � log �(nR) + nR log �2 � nR log �e

(242)

=nR log
�2

nR
+ nR lognR � log �(nR)� nR: (243)

The result now follows by combining (234) and (243).

APPENDIX E
ADDITIONAL DERIVATION FOR THE PROOF OF THE LOWER BOUND

In the derivation of the lower bound to the fading number we need
to find the following upper bound

I(X̂;Z j Y) � �(xmin) (244)

and to show that �(xmin) does not depend on the input distribution QX
and tends to zero as xmin tends to infinity.

Such a bound can be found as follows:

I(X̂;Z j Y) =h(ZjY)� h(Z j Y; X̂) (245)

�h(Z)� h(Z j Y; X̂; R) (246)

=h(Z)� h(Z j X̂R+ Z; X̂; R) (247)

�h(Z)� inf
x̂

inf
r�x

h(Z j x̂r + Z) (248)

=h(Z)� inf
x̂

h(Z j x̂xmin + Z) (249)

= sup
x̂

I(Z; x̂xmin + Z) (250)

= sup
x̂

I
Z

xmin
; x̂ +

Z

xmin
(251)

= sup
x̂

h x̂+
Z

xmin
� h( x̂) (252)

�(xmin) (253)

where we have used the fact that we have chosen R such that R �
xmin. Note that (252) does not depend on the input X anymore. The
convergence

lim
x "1

�(xmin) = 0 (254)

follows from [1, Lemma 6.11], [2, Lemma A.19].
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