On the Enhanced Impact Ionization in Uniaxial Strained p-MOSFETs

Pin Su, *Member, IEEE*, and Jack J.-Y. Kuo

*Abstract***—This letter reports a new mechanism for the** enhanced impact-ionization rate (I_{sub}/I_d) present in short**channel uniaxial strained p-MOSFETs. Through the pinch-off** voltage (V_{dsat}) , we have assessed the impact of strain on the **maximum channel electric field. Due to the strain-enhanced mobility,** V_{dsat} becomes lower, resulting in the observed V_q -dependent enhancement in I_{sub}/I_d . This mechanism needs to be considered **when one-to-one comparisons of the hot-carrier effect between strained and unstrained devices are made.**

*Index Terms***—Hot-carrier effect, impact ionization, strainedsilicon, substrate current.**

I. INTRODUCTION

AS STRAINED-silicon is widely used in state-of-the-art CMOS technologies [1]–[4] to enable the mobility scaling [5], the hot-carrier effect is another important scaling issue that has to be considered for strained MOSFETs.

II. RESULTS AND DISCUSSION

The hot-carrier effect is usually monitored by the substrate current (I_{sub}) [6]. I_{sub} results from the impact ionization caused by energetic carriers in the channel. Several authors [7]–[9] have reported the strain-induced enhancement of impact-ionization rate (I_{sub}/I_d) . Irisawa *et al.* [7] examined long-channel strained MOSFETs and attributed the enhanced I_{sub}/I_d to the reduced bandgap energy. Whether there is any other physical mechanism responsible for the strain-enhanced impact ionization merits further examination.

 I_{sub} has long been closely related to the maximum channel electric field (E_m) near the drain [6]. With the strain-induced enhancement of carrier mobility, E*^m* may vary and may play a crucial role in one-to-one comparisons of the hot-carrier effect between strained and unstrained devices. In this letter, we investigate the substrate current in short-channel uniaxial strained p-MOSFETs and report a new mechanism responsible for the strain-enhanced impact ionization.

The authors are with the Department of Electronics Engineering, National Chiao Tung University, Hsinchu 300, Taiwan, R.O.C. (e-mail: pinsu@mail. nctu.edu.tw).

Color versions of one or more of the figures in this letter are available online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LED.2007.900297

Co-processed strained and unstrained p-MOSFETs are investigated in this study. The strained devices were fabricated by state-of-the-art process-induced uniaxial strained-silicon technology featuring SiGe source/drain and compressive contact etch stop layer (CESL) [10]. For the transistors with gate length $L_{\text{gate}} = 65$ nm, the saturation drain current (I_d) of the strained device is improved more than 85% as compared with its control counterpart.

Fig. 1(a) shows the gate-bias dependence of the measured I_{sub} for the strained and control devices. Typical bell-shape characteristics can be seen. Fig. 1(b) shows that the impactionization rate of the strained device is larger than that of the unstrained one. The strain-induced enhancement in I_{sub}/I_d increases with gate bias.

According to the lucky electron model [11]

$$
\frac{I_{\text{sub}}}{I_d} \propto e^{-\frac{\varphi_i}{q\lambda E_m}}
$$
 (1)

where φ_i is the energy required for impact ionization, and λ is the mean-free path. Although the strain-induced reduction in bandgap energy (hence, φ_i) may raise the impact-ionization rate for the strained device [7], it cannot explain the gatebias dependence of the enhancement in I_{sub}/I_d as observed in Fig. 1(b).

The V_g dependence of I_{sub}/I_d stems from E_m , the maximum channel electric field. E*^m* can be modeled [6] as

$$
E_m = \frac{V_d - V_{\text{dsat}}}{l} \tag{2}
$$

where V_{dsat} is the potential at the pinch-off (i.e., saturation) point in the channel, and l is the characteristic length in the pinch-off region. Although E*^m* cannot be directly measured, the impact of strain on E_m can be assessed through V_{dsat} . From the output resistance (R_{out}) versus V_d plot (Fig. 2), V_{dsat} can be extracted by linear extrapolation because R_{out} is proportional to $V_d - V_{\text{dsat}}$ in the channel-length modulation region [12], [13]. It can be seen from Fig. 2 that the strained device has a smaller V_{dsat} than its control counterpart for a given gate voltage overdrive (V_{gst}) .

Fig. 3 shows the V_{gst} dependence of the extracted V_{dsat} . The strain-induced reduction (i.e., the discrepancy between the control and strained devices) in V_{dsat} increases with gate bias. It explains why in Fig. 1(b) the strain-induced enhancement in $I_{\rm sub}/I_d$ increases with gate bias.

The strain-reduced V_{dsat} results from the enhanced mobility in the strained device. The enhancement in mobility

Manuscript received March 26, 2007; revised May 4, 2007. This work was supported in part by the National Science Council of Taiwan, R.O.C., under Contract NSC95-2221-E-009-327-MY2 and in part by the MoE ATU Program 95W803. The review of this letter was arranged by Editor K. De Meyer.

 $1E-6$ PFET =65nm aate $1E-7$ $1E-8$ $\int_{sub}(\mathsf{A})$ $1E-9$ 1.81 $1E-10$ $|V_{d}|$ =1.6V solid: Control $|V_{d}|$ =1.4V dash: Strained $1E-11$ $\overline{0.8}$ 0.6 0.0 0.2 0.4 1.0 1.2 1.4 $|V_{est}|$ (V) (a) $1E-3$ **PFET** $L_{\text{gate}} = 65$ nm $1E-4$ $|V_{d}|$ =1.8 $1E-5$ $\frac{1}{\sqrt{2}}$ $1E-6$ $1E-7$ $|V_{d}| = 1.61$ solid: Control dash: Strained V_{d} =1.4V $1E$ 0.6 0.8 1.0 1.2 0.0 0.2 0.4 1.4 $|V_{\text{gst}}|$ (V) (b)

Fig. 1. (a) I_{sub} versus gate voltage overdrive (V_{gst}) for the strained and control devices with various drain biases. (b) I_{sub}/I_d versus V_{gst} showing the strain-enhanced impact ionization.

corresponds to an increase in slope of the carrier velocity versus lateral field characteristic [14] and a reduction in the critical field (E_{sat}) for velocity saturation [15], [16]. Since V_{dsat} is essentially determined by E_{sat} in the high V_{gst} regime [6], [16], the impact of strain on V_{dsat} , as shown in Fig. 3, becomes significant with increasing gate bias.

The strain-reduced V_{dsat} enhances the impact-ionization rate and needs to be considered in monitoring the hot-carrier effect of the strained device. Fig. 4 shows that, with the extracted V_{dsat} from Fig. 3, the same I_{sub} data (Fig. 1) reduce to a single straight line for the control and strained devices, respectively, when $\ln(I_{\text{sub}}/I_d)$ is plotted against $1/(V_d - V_{\text{dsat}})$ as predicted by (1) and (2). In Fig. 4, the slope of the strained device is about 9.5% smaller than that of the unstrained device. Since the slope is proportional to $\varphi_i l / \lambda$, we can estimate from Fig. 4 that the upper bound of the bandgap change due to strain is 9.5%. The reduced slope for the strained device has also been reported by Irisawa *et al.* [7], who attributed it mainly to the reduced

Fig. 2. R_{out} versus V_d plot can be used to determine V_{dsat} . The strained device has a smaller V_{dsat} than its control counterpart for a given V_{gst} .

Fig. 3. Impact of strain on V_{dsat} increases with V_{gst} .

bandgap energy. Our expected value of the bandgap change is between 5% to 10%.

III. CONCLUSION

In conclusion, we report a new mechanism for the enhanced impact ionization present in short-channel uniaxial strained p-MOSFETs. Due to the strain-enhanced mobility, V_{dsat} becomes lower, resulting in the observed V_q -dependent enhancement in I_{sub}/I_d . This mechanism is important and needs to be considered when one-to-one comparisons of the hot-carrier effect between strained and unstrained devices are made.

Fig. 4. Strained-reduced V_{dsat} needs to be considered in the construction of the $\ln(I_{\text{sub}}/I_d)$ versus $1/(V_d - V_{\text{dsat}})$ plot for monitoring the hot-carrier effect of the strained device.

ACKNOWLEDGMENT

The authors would like to thank W. P.-N. Chen for the help during the work.

REFERENCES

- [1] S. Tyagi, C. Auth, P. Bai, G. Curello, H. Deshpande, S. Gannavaram, O. Golonzka, R. Heussner, R. James, C. Kenyon, S.H. Lee, N. Lindert, M. Liu, R. Nagisetty, S. Natarajan, C. Parker, J. Sebastian, B. Sell, S. Sivakumar, A. St Amour, and K. Tone, "An advanced low power, high performance, strained channel 65 nm technology," in *IEDM Tech. Dig.*, 2005, pp. 245–248.
- [2] S. E. Thompson, G. Sun, Y. S. Choi, and T. Nishida, "Uniaxial-processinduced strained-Si: Extending the CMOS roadmap," *IEEE Trans. Electron Devices*, vol. 53, no. 5, pp. 1010–1020, May 2006.
- [3] E. X. Wang, P. Matagne, L. Shifren, B. Obradovic, R. Kotlyar, S. Cea, M. Sterrler, and M. D. Giles, "Physics of hole transport in strained silicon MOSFET inversion layers," *IEEE Trans. Electron Devices*, vol. 53, no. 8, pp. 1840–1843, Aug. 2006.
- [4] X. Chen, S. Fang, W. Gao, T. Dyer, Y. W. Teh, S. S. Tan, Y. Ko, C. Baiocco, A. Ajmera, J. Park, J. Kim, R. Stierstorfer, D. Chidambarrao, Z. Luo, N. Nivo, P. Nguyen, J. Yuan, S. Panda, O. Kwon, N. Edleman, T. Tjoa, J. Widodo, M. Belyansky, M. Sherony, R. Amos, H. Ng, and M. Hierlemann, "Stress proximity technique for performance improvement with dual stress linear at 45 nm technology and beyond," in *VLSI Symp. Tech. Dig.*, 2006, pp. 60–61.
- [5] C. Hu, "Device challenges and opportunities," in *VLSI Symp. Tech. Dig.*, 2004, p. 4.
- [6] C. Hu, S. C. Tam, F. C. Hsu, P. K. Ko, T. Y. Chan, and K. W. Terrill, "Hotelectron-induced MOSFET degradation—Model, monitor, and improvement," *IEEE Trans. Electron Devices*, vol. ED-32, no. 8, pp. 375–385, Aug. 1985.
- [7] T. Irisawa, T. Numata, N. Sugiyama, and S. Takagi, "On the origin of increase in substrate and impact ionization efficiency in strained-Si n- and p-MOSFETs," *IEEE Trans. Electron Devices*, vol. 52, no. 5, pp. 993–998, May 2005.
- [8] N. Watanabe, T. Kojima, Y. Maeda, M. Nishisaka, and T. Asano, "Breakdown voltage in uniaxially strained n-channel SOI MOSFET," *Jpn. J. Appl. Phys.*, vol. 43, no. 4B, pp. 2134–2139, Apr. 2004.
- [9] S. S. Chung, D. C. Huang, Y. J. Tsai, C. S. Lai, C. H. Tsai, P. W. Liu, Y. H. Lin, C. T. Tsai, G. H. Ma, S. C. Chien, and S. W. Sun, "New observation on the uniaxial and biaxial strain-induced hot carrier and NBTI reliabilities for 65 nm node CMOS devices and beyond," in *IEDM Tech. Dig.*, 2006, pp. 1–4.
- [10] J. Kuo, W. Chen, and P. Su, "Investigation of analog performance for process-induced-strained pMOSFETs," *Semicond. Sci. Technol.*, vol. 22, no. 4, pp. 404–407, Apr. 2007.
- [11] Y. A. El Mansy and D. M. Caughey, "Modeling weak avalanche multiplication currents in IGFETs and SOS transistors for CAD," in *IEDM Tech. Dig.*, 1975, p. 31.
- [12] J. H. Huang, Z. H. Liu, M. C. Jeng, P. K. Ko, and C. Hu, "A physical model for MOSFET output resistance," in *IEDM Tech. Dig.*, 1992, pp. 569–572.
- [13] Y. Cheng and C. Hu, *MOSFET Modeling & BSIM3 User's Guide*. Norwell, MA: Kluwer, 1999. KAP.
- [14] M. Saitoh and K. Uchida, "Universal relationship between low-field mobility and high-field carrier velocity in high- κ and SiO₂ gate dielectric MOSFETs," in *IEDM Tech. Dig.*, 2006, pp. 261–264.
- [15] C. Sodini, P. Ko, and J. Moll, "The effect of high fields on MOS device and circuit performance," *IEEE Trans. Electron Devices*, vol. ED-31, no. 10, p. 1386, Oct. 1984.
- [16] Y. Taur and T. H. Ning, *Fundamentals of Modern VLSI Devices*. Cambridge, U.K.: Cambridge Univ. Press, 1998, p. 150.