
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 23, 1189-1211 (2007)

1189

Generating User Interface for Mobile Phone Devices Using
Template-Based Approach and Generic Software Framework*

MING-JYH TSAI AND DENG-JYI CHEN

Institute of Computer Science and Information Engineering
National Chiao Tung University

Hsinchu, 300 Taiwan

It has been shown that the major effort spent on the design and implementation of

the system software for mobile phone devices is the user interfaces (UI) (or man-ma-
chine interface, MMI) [15, 16]. If UI can be developed in a short time, it can be a great
help to reduce development time for application software system. Therefore, many re-
searchers in software engineering area have been seeking better solutions to aid UI de-
signers to crate UI.

In this paper, we propose a template-based approach to generate UI for mobile
phone devices. Specifically, a UI design templates generator is purposed for UI design-
ers to easily and quickly create the UI templates for mobile phone. Furthermore, the de-
veloped UI templates can be fine tune with a visual UI authoring tool to generate the UI
prototype of the target mobile phone system under consideration. Then, the programmer
takes the generated UI prototype as a guider for the program generator to glue the soft-
ware system architecture and associated functions together to produce the target applica-
tion system code. Finally, In order to demonstrate the feasibility and applicability of the
proposed UI design templates generator, a simulator is designed and implemented for
carrying out the software simulation The benefit of the template-based approach is that it
enables UI designers to generate UI prototype easily and quickly, and produces auto-
matically the target UI program without writing any textual code. Thus the proposed ap-
proach is very suitable for the UI designers (nonprogrammers). In addition, the devel-
oped UI templates can be reused by UI designers to generate target UI prototype. There-
fore, it can reduce development time.

Currently, UI design and implementation are tightly coupling under the operating
system (OS) and hardware specifications; any modifications in either one require UI re-
design and re-implementation. We also propose a generic software framework for de-
signing the software system architectures of mobile phone devices, which reduces the
need to re-design UI following OS or hardware device changes.

Keywords: user interface, UI design templates generator, generic UI template, UI proto-
type, visual UI authoring tool, program generator, generic software framework, simula-
tor

1. INTRODUCTION

Developing application software with sophisticated and elegant user interface is a
complex and time-consuming task. Studies have shown that near 80 percent of the code
of applications is devoted to the user interface (UI) [1], and that about 50 percent of the
implementation time is devoted to implementing the UI portion [2, 3]. Thus, UI plays a
significant role in the development of application software. For years, researches in soft-

Received May 1, 2006; revised October 11, 2006; accepted November 8, 2006.
Communicated by Kuo-Chin Fan.
* This research was supported in part by the National Science Council of Taiwan, R.O.C., under contract No.

NSC 95-2221-E-009-023 and CAISER 2004 project, NCTU.

MING-JYH TSAI AND DENG-JYI CHEN

1190

ware engineering area have been seeking better solutions to aid system developers to
build UI [4-7, 19-23].

In general, the process of developing a UI includes the following activities or steps:

(1) UI designers create the UI requirement specification using text, graphic, illustrations,

and relevant multimedia representation.
(2) UI programmers then implement it according to the defined specification.
(3) The created UI is verified against the UI requirement specification by UI designers

to see if it meets the specification.
(4) If it does not meet the UI requirement specification, one has to modify and re-im-

plement it till the requirements are fully met. This implies that both UI designers and
UI programmers have a long iteration process to go in order to meet the target UI
requirement specification. Fig. 1 depicts this iterative process.

Fig. 1. The general flow diagram for UI development process.

To reduce the UI designer’s heavy workload in this long iterative process, we pro-

pose a UI design templates generator for UI designers to easily design and author the UI
template. These created UI template can be reused easily to create the new UI prototype
for a new mobile phone device. To avoid UI programmer’s tedious workload in this long
iterative process, the UI design templates generator can automatically generate the UI
program according to the UI template. Based on this innovative approach, the UI de-
signer alone can complete the UI design and implementation without bothering the UI
programmers since the UI program will be generated automatically by using the UI de-
sign templates generator. Thus, the UI requirement and functional requirement can be
separated as shown in Fig. 2.

GENERATING USER INTERFACE FOR MOBILE PHONE DEVICES

1191

Fig. 2. The new flow diagram for UI development process.

Fig. 3. System architecture of mobile phone devices.

In [8-10], a visual based software construction model has been proposed for sup-

porting this UI development process. Here, we propose a UI design templates generator
to generate the UI prototype of mobile phone. The proposed UI design templates genera-
tor has integrated into the visual based software construction model. In order to demon-
strate the feasibility and applicability of the proposed UI design templates generator, a
simulator is designed and implemented for carrying out the software simulation. In sec-
tion 3, we will give a more detailed treatment on this methodology.

A mobile phone device basically contains a UI system, a real time operating system
(RTOS), and several hardware devices (Fig. 3). The UI system accepts input events and
executes corresponding functions, reacting to such external events as user input (key
presses), connections (outgoing and incoming calls), and changes in handset status (bat-
tery, antenna, timer, etc.). The RTOS provides resource management services to the ap-
plication system, including multithreading management, communication, synchroniza-
tion, and interrupt service routines (ISR). Most mobile phones contain a panel, keypad,
digital still camera (DSC), and global system for mobile communication (GSM) system.

As shown in Fig. 3, the UI, OS, and hardware devices must work together to ensure
proper mobile phone system operation. Any changes in an OS or hardware device require

MING-JYH TSAI AND DENG-JYI CHEN

1192

immediate UI re-design and re-implementation. This is usually a nightmare for system
designers and implementers while such kind of changes must be made. To streamline this
process, we proposed a generic software framework for designing mobile phone system
architectures.

2. RELATED WORK

There are a few specific tools available for creating the UI prototype for mobile
phone devices based on the visual authoring approach. The most common tools found in
industrial sectors for the UI development of mobile phone devices are eMbedded Visual
C++, Rapid, and Symbian’s Eclipse tools.

Microsoft Windows Mobile 2003 Second Edition (mobile phone operating system)
not only provides a complete developing tool on this platform such as GUI framework
and Visual developing environment, eMbedded Visual C++ [11, 12], but also a simulator
to verify the executing result from the machine. On creating the UI, it offers an authoring
environment for limited functions such as designing pull down menus. If users want to
create a more complicated design such as inserting a picture on the screen, they need to
write the script program.

Rapid is a crossed platform system, developed by e-SIM, for embedded system de-
sign, implementation, and simulating [12]. It provides object layout during UI develop-
ment for adding new objects onto the screen or defining the position of objects. It also
provides an object editor to modify screen of object, and a simulator to verify executing
result.

When one uses Rapid tool to develop the UI of mobile phone, he needs to clearly
define the object on screen, all of the states in the entire system, and conditions for trans-
ferring in each state. In order to effectively use the Rapid tool to design and implement
the target UI prototype for the system, users need to understand all the details of machine
state and operations in addition to designing the UI screen. Thus, it is probably only at
programming level that users can sort out these details. The Rapid tool is therefore suit-
able for UI programmers to use (not for UI designers).

Eclipse tools appear for Symbian C++ developers using the open source integrated
development environment from Eclipse foundation. Symbian C++ runs under Symbian
OS [12-14], its operation is similar as eMbedded Visual C++.

Consequently, the following problems will be faced when using the above men-
tioned UI developing tools:

(1) Writing textual program is still inevitable.
(2) UI Programmers have to work with UI designer in order to modify the changes of UI.

(UI designer alone cannot complete the UI task.)
(3) A long iterative process between UI designers and UI programmers cannot be

avoided while using the current approaches to design and implement the UI of the
mobile phone devices.

(4) No UI design templates generator supported in current UI developing tools. Thus, a
UI designer could not use it to generate various UI template for future reuse.

GENERATING USER INTERFACE FOR MOBILE PHONE DEVICES

1193

3. UI DESIGN TEMPLATES GENERATOR AND VISUAL BASED
SOFTWARE CONSTRUCTION MODEL

The visual based software construction (VBSC) model supports a visual require-
ment authoring tool that allows requirement facilitators to produce GUI based require-
ment scenario and specifications. It also supports a program generator that allows pro-
grammer to generate the target application system as specified in the visual requirement
scenario. The target application system code can be produced based on the function
binding features provided in the program generator to bind each UI component with the
associated application function.

3.1 The Framework of UI Design Templates Generator and Visual Based Software

Construction Model

In this section, the framework of a VBSC model is recalled and a UI design tem-
plates generator including generic UI template, UI template constructor, UI template
manager, and UI templates database is proposed as shown in Fig. 4.

Fig. 4. The framework of UI design templates generator and VBSC model.

The framework includes the following major parts: (1) The UI design templates

generator, which is used to create the UI templates; (2) The visual UI authoring tool,
which is used to modify or fine tune UI template (created by UI design templates gen-
erator) to generate UI prototype; (3) The program generator, which is used to produce
the target application system code according to the UI prototype generated; (4) The ge-
neric software framework, which is used to generate software system architecture for the
target application system; and (5) The simulator, which is used for software simulation.

• UI designer: A person who is responsible for the UI design of the software system. He

or she can use UI design templates generator to create a UI template and use the visual
UI authoring tool to modify or fine tune the UI template.

• Generic UI template: It is consisted of UI structure template, UI layout template, and
UI style template which will be elaborated in section 4.2.

• UI template constructor: A tool for making new UI Templates. It instantiates the ge-
neric UI template to construct the UI template and then stores it into UI templates da-

MING-JYH TSAI AND DENG-JYI CHEN

1194

tabase through the UI template manager.
• UI template manager: A database management system for managing UI templates; it

provides an interface for adding or deleting UI templates as well as for retrieving an
existing UI template.

• UI template database: A database for storing UI templates.
• Visual UI authoring tool: It can be considered as a multimedia authoring tool.
• UI prototype: We can fine tune the created UI template by visual UI authoring tool to

generate target UI prototype.
• Program generator: Binding software design framework and associated function with

each UI component (defined in the generated target UI prototype) to produce the tar-
geted application system code.

• Software system architecture: The software system architecture is generated by generic
software framework for the target application system.

• Associated function: Associated function developed based on application program in-
terface (API) library function developed by the functional programmers according to
the hardware specification.

• Simulator: It is used to simulate the functionalities of the produced target application
system on the target mobile phone.

UI designers use the UI design templates generator to construct an initial UI tem-

plate, and then use the visual UI authoring tool to modify or fine tune the initial UI tem-
plate to generate the UI prototype of target mobile phone system. The generated UI pro-
totype is then as a guider for the program generator, the function binding system, to glue
the software system architecture and associated functions together to produce the target
application system code. Finally, one uses the simulator to do software simulation.

4. GENERATING UI TEMPLATES USING UI DESIGN
TEMPLATES GENERATOR

We have discussed the framework of UI design templates generator for mobile
phone devices in section 3. In this section, we discuss how to use the UI design templates
generator to generate the UI templates for mobile phone. Specifically, a generic UI tem-
plate is introduced and its corresponding UI template constructor is implemented to con-
struct the UI template.

4.1 UI of Mobile Phone

When we operate a mobile phone, we will see the stand-by screen after power on
the mobile phone. Then, there will be several functional buttons ready for pressing to
initiate the desired function. To press a specific functional button, it takes us to the cor-
responding screen associated with the function. These functional buttons are usually or-
ganized into a tree style structure as shown in Fig. 5 and consists of two basic elements
(1) Node that represents a screen or a function and (2) Link that defines the relationship
between screen and screen or screen and function.

A screen (or node), which is not a leaf, can be considered as a container (or scene)

GENERATING USER INTERFACE FOR MOBILE PHONE DEVICES

1195

that may contains many actors (or UI components) including, text actor which provides
function of text representation, icon actor which provides function of drawing represen-
tation, input box actor which allows user to input data during execution of a specific
function such as pressing telephone number, and list box actor which represents function
of multiple data. A link provides a binding among nodes and functions, and control in-
formation for a screen to another screen (node to node) navigation.

A screen or node at leaf level will be considered as a function. There are many
common functions in most of the current mobile phones including the essential functions
(such as communication, phone books, and conversation records) and value-added func-
tions (such as recording, camera, Java game, infrared transmission). These functions usu-
ally are implemented by API programmers.

Thus, the UI of mobile phone can be quite different if the UI navigation structure is
different, the layout of actors in a container (or scene) is different, and the style of actors
(leave node) is different. In the following section, we investigate the UI of different mo-
bile phone devices to quest for the common presentation template of mobile phone.

4.2 Generic UI Template

After comparing the UI of different mobile phones, we find that there are some
similarities of appearance of user interface when these mobile phones are made by the
same manufacturer. Nevertheless, even though the mobile phone comes from different
manufacturers, the structure of the UI also has some similarity. Therefore, we factored
out the common parts from various UI structures, screen layouts, and actor styles to de-
fine the generic UI template. These will be defined as structure template, layout template,
and style template.

4.2.1 Structure template

The UI prototype is very dependent on the UI structure for screens to screens navi-
gation. The UI structure, based on topological point of views, can be a ring (or circle list),
tree, and ring of tree as shown in Fig. 5.

The complete UI structure data is stored in the structure template, which includes
actors in each scene, layout, and style. The layout and style are defined in layout tem-
plate and style template. Thus, the structure template consisted of (1) the structure of all
scenes and (2) actors information in scene.

Ring (or Circle list) structure Tree structure

Fig. 5. Various UI structures.

MING-JYH TSAI AND DENG-JYI CHEN

1196

Ring of tree structure

Fig. 5. (Cont’d) Various UI structures.

4.2.2 Layout template

The UI prototype is also sensitive to each actor’s position in a scene. This position-
ing is called Layout. We could define layout template according to the layout informa-
tion and then change the actor’s position according to a different layout template. For
example, in Layout1, the text is placed at the bottom and icons are placed at the top; in
Layout2, the text is at the top and icons are at the bottom as is shown in Fig. 6.

In general, the UI positioning arrangement has regularity. Taking an example of tree
structure of UI, the layout is almost the same in the same level of scene. We only needed
to define few of them then we could describe layout of each scene in the entire UI com-
pletely. Therefore, we could use a layout template to create the same layout for each
scene under consideration in UI design of a mobile phone. The layout template consisted
of layout data of each scene. Layout of scene is made of (1) name of layout and (2) each
actor’s information in the scene.

Layout1 Layout2 Appearance of icons Appearance icon with text
Fig. 6. Two different layouts. Fig. 7. Two different styles.

4.2.3 Style template

The other factor that affects the UI prototype of a mobile phone is the UI style. The
UI style considers the style of actor’s appearance. An actor’s appearance is decided by its
attributes in a scene. Even though it is the same actor, different attributes may produce
different appearances.

As shown in Fig. 7, appearance based on icons (left hand side) could be changed to
be appearance based on icon with text (right hand side) by changing its attributes. There-

GENERATING USER INTERFACE FOR MOBILE PHONE DEVICES

1197

fore, style template is used to change each actor’s appearance in the scene. The style tem-
plate consisted of each actor’s style data which is the relevant attributes of actor’s ap-
pearance.

4.3 Generic UI Template for Mobile Phone Devices

In previous subsections, we have defined three UI templates (structure template,
layout template, and style template). After combination of these three templates, we ob-
tain a generic UI Template. Furthermore, we use MVC models (model, view, control)
[17] to implement a generic UI template for the UI template generation of the mobile
phone device. The structure template produces model, layout template, and style tem-
plate provide view. It could generate different UI prototype by different combination of
these three templates as shown in Fig. 8. Structure template generates UI structure first,
layout template offers layout data of actor on the scene, and then style template provides
each actor’s style.

Fig. 8. Generic UI template for mobile phone devices.

Let these three templates be denoted by a, b, and c, then one can produce a * b * c

combinations of UI instantiations.

4.4 UI Templates Generation Procedures Using UI Template Constructor

How to use the UI template constructor to create different UI templates is summa-
rized below.

MING-JYH TSAI AND DENG-JYI CHEN

1198

Step 1: Select a generic UI template
The UI designer needs to select the required type of structure template, layout tem-

plate, and style template.

Step 2: Generate the complete UI structure from the chosen structure template

The system sets up all the scenes and actors according to the structure template cho-
sen by the UI designer and sets up the required file for the visual UI authoring tool such
as script file, multimedia file, and so forth. As shown in Fig. 9, we chose the tree struc-
ture template. From the “Stand By” scene, the system sets up all scenes, actors, and re-
quired files on each scene.

Fig. 9. Tree structure of UI. Fig. 10. Layout selection.

Step 3: Generate the desired layout based on the information in layout template for each
scene (or node in the tree structure)

According to the information of structure template, the system acquires the corre-
sponding information from the layout template chosen by the UI designer and then in-
putted into the scene. For the “Stand by” scene shown in Fig. 10, the system chooses a
layout from the layout template according to the information from the structure template;
it decides the position of each actor on the scene.

Step 4: Generate the desired style based on the information in style template for each
actor (or UI button) on each screen (or scene)

According to the information of structure template, the system acquires the corre-
sponding information from the style template chosen by the UI designer and then input-
ted into the actor. As shown in Fig. 11, the system chooses a style from the style template
according to the information from the structure template; it decides the style of each ac-
tor on this screen (or scene).

Step 5: Repeat steps 3 and 4 till all the scenes and actors chosen from the structure tem-
plate are defined

GENERATING USER INTERFACE FOR MOBILE PHONE DEVICES

1199

The system continuously repeats the actions in steps 3 and 4 till the entire UI proto-
type required layout and style information has been filled into the chosen structure tem-
plate. After setting up the scene of the phone book as shown in Fig. 12, the system con-
tinuously repeats steps 3 and 4 till all scenes of the tree structure is completed.

Fig. 11. Style choice. Fig. 12. UI of phone book generated

by UI template constructor.

After executing the above steps, we can construct the UI template for the mobile

phone device under consideration. Next, we can fine tune the created UI template by
visual UI authoring tool to generate target UI prototype. Then, we use program generator
to binding the associated function with UI component for producing the application sys-
tem code. After complied, the produced object code can be executed on the simulator.

5. THE PROPOSED GENERIC SOFTWARE FRAMEWORK

5.1 Architecture of the Proposed Generic Software Framework

Our proposed generic software framework (GSF) (see Fig. 13) consists of eight
parts: a generic kernel interface (GKI), UI kernel task, UI task, GSM task, DSC task,
keypad ISR, display application programming interfaces (APIs), and signaling protocol.
Generally, there are UI scenarios controlled by UI Task, and RTOS controlled by GKI.
Hardware device consists of GSM, DSC, keypad and panel. They are controlled by GSM
task, DSC task, keypad ISR, and display APIs respectively. The UI kernel task distrib-
utes the received signals to the related tasks (such as UI task or GSM task or DSC task)
for execution. The advantage of the GSF is that one just needs to modify the DSC task if
the hardware of DSC is changed or to modify GKI if the OS is changed. In both cases,
the generated UI system does not need to be modified.

MING-JYH TSAI AND DENG-JYI CHEN

1200

Fig. 13. Generic software framework for mobile phone devices.

Fig. 14. The relationship between UI kernel task and other components.

The relationship among UI kernel task, GKI, UI task, DSC task, GSM task, and

other components are depicted in Fig. 14.
There are eight major sub-components in the proposed framework:

1. The Signaling protocol. It is the communication and synchronization mechanism

that connects the UI task, UI kernel task, DSC task, and GSM task.
2. The UI kernel task. It distributes tasks that request to fulfill the execution of applica-

tion functions (UI task). The UI kernel task does not directly request driver functions,
which allows the generic software framework to serve as a hardware-independent
platform for software applications. Each task has a mailbox for storing signals. Signal
behavior is task-dependent.

3. The UI task. This task displays the current scene content on a handset panel based
on the requested signals received from the UI kernel task.

4. The GSM task. It is a software component that manages the GSM subsystem; this
task provides a stable interface via the signaling protocol. In response to the requested
signals from the UI kernel task, the GSM provides information on the current com-
munication status. The AT command interface provides a connection between the

GENERATING USER INTERFACE FOR MOBILE PHONE DEVICES

1201

GSM task and GSM sub-system; the GSM task must conform to the signaling proto-
col to provide GSM sub-system services.

5. The DSC task. It is a software component that manages the digital camera hardware;
this task controls the DSC module to perform the services of snapshot, image upload-
ing, and image previewing.

6. The keypad ISR. It is registered to the interrupt target system; this ISR manages key
press events and reports them to the UI kernel task.

7. The display API. It is consisted of a set of service routines that execute drawing
functions on a mobile phone device panel; the UI task uses the functions to draw pic-
tures, buttons and icons.

8. The GKI. This class library encapsulates OS implementations and provides a stable
interface for software applications. When programmers port an application to an OS
other than the original, they only need to rewrite the GKI library instead of modifying
the entire software application system. Each task in our proposed generic software
framework is a GKI task sub-class.

5.2 The Design and Implementation of the Proposed Generic Software Framework

5.2.1 GKI

A GKI is a class library that provides the functionalities of multitasking, inter-task
communication, and the synchronization of platform-dependent objects such as mutexes,
critical sections, locks, and semaphores. The multitasking thread approach for platform-
independent consideration is employed for the GKI implementation. When porting pro-
gram (constructed using the GKI) to another platform, we were required to rewrite syn-
chronized classes instead of completely restructuring our code. Signals, tasks, and mail-
boxes were the three synchronized objects used to construct the GKI class library. Each
GKI task has its own mailbox to store signals, with sendSignal and recvSignal for each
class relevant to the mailboxes.

• Signal

Our proposed generic software framework utilizes signals for task communication
and synchronization; the UI kernel task uses signals for coordinating event invocation
and execution. External events trigger the construction of a signal that is sent to the UI
kernel task, where it is processed and dispatched to other tasks. Signals are stored in task
mailboxes, with each task having a public sendSignal method and a private recvSignal
method for respectively transmitting and fetching signals to and from mailboxes.

Different signal types (e.g., KeypadSignal, UISignal, UISignal, and GSMSignal) de-
rived from the Signal class represent various external events. These signals overwrite a
virtual destructor defined in the base class; the signal class defines the pure virtual de-
structors for which the derived classes provide concrete implementation. When a signal
is deleted from a program, the signal destructor is invoked to release resources contained
in the signal.

• Task

The task class provides a blueprint for multitasking, inter-task communication, and

MING-JYH TSAI AND DENG-JYI CHEN

1202

synchronization routines. We used a template method pattern [18] to design the task class
and the four tasks in the generic software framework sub-classes (UI, UI kernel, DSC,
and GSM).

A task template defines concrete methods that a sub-class can utilize for overwriting
and primitive methods that task subclasses are required to implement. Primitive method
policies vary according to the OS and hardware device involved in a given situation.

• Mailbox

Each task in the generic software framework has its own mailbox for signal storage;
these mailboxes also provide interfaces for pushing and retrieving signals. We used a
strategy pattern [18] to design and implement the mailbox class. The mailbox (context)
has a reference to a queue object that is part of an abstract class (strategy) that defines
interfaces with all strategies. Win32Queue and NucleusQueue are subclasses of queue
(concrete strategy) that can be implemented for different operating systems. Queue sub-
classes express similar behaviors and provide various implementation strategies for the
mailbox class. This design makes it easy to port GKI mailboxes to different operating
systems.

The mailbox class (which establishes queues and delegates signal storage duties)
provides methods for pushing, fetching, and popping signals. Mailboxes provide “wait”
capabilities that prevent queue pooling, thus saving considerable amounts of computing
time. They also maintain atomic-access mechanisms for queue access.

5.2.2 UI task

The UI task maintains a set of scenes generated by the visual UI authoring tool, with
each scene consisting of icons, buttons, and pictures. The UI kernel task sends signals to
the UI task to trigger scene changes, and the UI task applies a state pattern [18] to man-
age scene transitions. The program generator translates UI scenarios into code snips to be
used by the UI task.

The program generator inserts UI and control scenes into the UI task program,
which executes the code snips at run time. The UI task processes signals with the identi-
fication tag SIG_UI_GOTOSCENE by searching for the next scene, updating the current
scene, and redrawing the panel for the current scene.

5.2.3 UI kernel task

In our proposed generic software framework, the UI kernel task (which is based on
an active object pattern [18]) serves as both an “event listener” and “event dispatcher.”
The dispatching process is especially important for a user-response system. The UI sys-
tem is capable of making an immediate response to any event that is sent, allowing users
to monitor the progress of or cancel a current event. Our proposed system uses a respon-
sive listener to increase response speed. The UI kernel task listens for and reacts to ex-
ternal events and manages responses according to the current status of related events.
When a signal is fetched from the signal queue, the UI kernel task acknowledges the sig-
nal type, uses it to update the current state of, looks for the relevant event handler, and
dispatches the signal to the appropriate task.

GENERATING USER INTERFACE FOR MOBILE PHONE DEVICES

1203

5.2.4 GSM task

The GSM sub-system handles all communication events and mobile phone commu-
nication services — for instance, dialing, ending a call, indicating an incoming call and
accepting a call. We designed the GSM sub-system as a modem and the GSM task as a
sub-system manager. The GSM task uses the AT command interface to control the GSM
sub-system and to simulate GSM communication features. The GSM task receives in-
coming signals from the UI kernel Task, determines which action needs to be taken, and
sends an AT command to the GSM module. The GSM task provides three communica-
tion services: originating, answering, and ending calls, triggered by the corresponding
signals SIG_GSM_DIAL, SIG_GSM_ANSWER, and SIG_GSM_HANGUP

For example, when the UI kernel task makes a phone call, it sends a signal to the
GSM task to perform this service; the outgoing signal contains the phone number and the
signal identification is set to SIG_GSM_DIAL. The GSM task receives the signal and
executes the request by sending an AT command to the GSM module.

5.2.5 DSC task

The DSC task provides and manages digital camera functions. When a user requests
the DSC module to take a snapshot, the UI kernel task processes the request by sending a
signal to the DSC task, which processes the request by calling corresponding drivers to
perform the service. When the UI kernel task takes a snapshot it creates a signal, sets the
identification field to SIG_DSC_SNAPSHOT, and sends the signal to the DSC task.

5.2.6 Keypad ISR

A key press event triggers the keypad ISR to send a signal to an UI kernel task, and
the mobile phone device processor executes the keypad ISR on the key press interrupt.
Each time a key is pressed; the processor receives a hardware interrupt signal and sends
it to the UI kernel task.

6. THE UI AND APPLICATION SYSTEM DESIGN AND DEVELOPMENT
PROCESS OF MOBILE PHONE DEVICES

According to framework of UI design templates generator and VBSC model, we

organized the system design and development process into following four stages (see Fig.
15):

1. UI templates generation: This stage falls under UI design templates generator section

of this model, we can obtain initial version of UI template for mobile phone devices.
2. Visual UI authoring: This stage falls under the visual UI authoring tool section of this

model. In this stage, we generate a target UI prototype to meet user’s UI requirement.
3. Code generation: This stage falls under the program generator section of this model.

In this stage, we produce a target application system code.

MING-JYH TSAI AND DENG-JYI CHEN

1204

Fig. 15. The UI and application system design and development process of mobile phone devices.

4. Simulation: This stage falls under the simulator section of this model. In this stage, we

verify whether the produced target software system code works normally under the
simulator.

In the following subsections, we elaborate this development process.

6.1 UI Templates Generation

The first stage is UI templates generation. UI template constructor instantiates the

generic UI template to construct the UI template, and then stores it into UI templates
database through UI template manager. By the end of this stage, we will obtain an initial
version of the UI template for the mobile phone device under consideration.

6.2 Visual UI Authoring

The stage is visual UI authoring. This stage consists of the following two steps:

(1) UI editing: the UI designer uses the visual UI authoring tool to modify and fine tune

the UI template to generate the target UI prototype.
(2) The UI prototype preview: If the UI designer wants to view the results of the actual

operation after the UI editing, the UI designer can use the preview system in the vis-
ual UI authoring tool to check whether the target UI prototype meets the user’s UI
requirements.

Eventually, the target UI prototype will be finalized by the end of this stage.

GENERATING USER INTERFACE FOR MOBILE PHONE DEVICES

1205

6.3 Code Generation

After the target UI prototype is finalized, the UI program will be generated and the
binding of associated function code and the UI program will be performed by the code
generator in this stage. The major components in this stage are consisted of the following
three subsystems:

(1) AP function and UI binder: If the target UI prototype meets the UI requirements, we
use the function binding system in the program generator to bind the associated func-
tions to the target UI program generated by the visual UI authoring tool.

(2) Application system code generator: When UI components (in the target UI program)
have been bound with the associated functions; it enters into this step to produce the
target application system code by program generator.

(3) Code optimizer: If the efficiency is not good during program execution, it enters into
this step to adjust application system code until the efficiency is met.

Eventually, the target application system code for the mobile phone device is gener-
ated by the end of this stage.

6.4 Simulation

After the above stages are completed, we receive the application program code of
the target platform and enter the last simulation stage. In this stage, we have software and
hardware simulation two phases:

(1) Software simulation: We combine device module and application system code to do
software simulation on laptop through the simulator, which verifies whether the gen-
erated application system works normally and meets the expectations.

(2) Hardware emulation: When the software simulation is completed, we could download
program to EPROM (Erasable Programmable Read-Only Memory) directly, and
execute it on hardware (the target mobile phone device).

7. ASSESSMENT OF GENERATING TARGET UI PROTOTYPE USING
TEMPLATE-BASED APPROACH

7.1 Purpose

The purpose of this experiment is to explore the efforts spent with the use and with-
out the use of created UI templates to produce the UI prototype for mobile phone devices.
Three application examples contain six, twelve, and eighteen screens of UI prototype
were used to make such a comparison. On average, there are about 7 UI components for
each screen.

7.2 Participants

Study participants were 39 students enrolled in a graduate software engineering
course. The students’ majors were computer science (29), electrical engineering (6), in-

MING-JYH TSAI AND DENG-JYI CHEN

1206

formation management (2) and other computer-related departments (2). Those students
who participated in the experiment all have rich programming experience (at least three
years working experience in software programming related area).

7.3 Design

All the students were asked to be familiar with visual UI authoring tool, and use it to
generate target UI prototype for a mobile phone device. Then two weeks later, those stu-
dents were asked to use the created UI template to do the same task.

7.3.1 Without the use of created UI template to generate target UI prototype

If there is no suitable UI template in the UI templates database can be used directly,
we have to use a visual UI authoring tool to generate target UI prototype.

7.3.2 Using the created UI template to generate target UI prototype

If there is suitable created UI template, we can modify it into target UI prototype by
a visual UI authoring tool. This modification includes (1) Replacing icon and text from
one of the screens; (2) Deleting some screens; (3) Creating one screen to the created UI
template.

7.4 Data and Analysis

7.4.1 Case 1: development time of generating a six-screen UI prototype

Fig. 16 presents the time spent to generate a six-screen UI prototype with the use of
created UI template and without the use of created UI template. Based on the collected
data, we found that the average time spent to generate this UI prototype with the use of
created UI template is 9.92 minutes and the average time spent without the use of created
UI template is 36.38 minutes. The development time without the use of created UI tem-
plate is about 3.7 times [(36.38/9.92)] longer than with the use of created UI template.
The 27-minute difference represents a time savings of 73%.

7.4.2 Case 2: development time of generating a twelve-screen UI prototype

Fig. 17 presents the time spent to generate a twelve-screen UI prototype with the use
of created UI template and without the use of created UI template. Based on the collected
data, we found that the average time spent to generate this UI prototype with the use of
created UI template is 10.38 minutes and the average time spent without the use of cre-
ated UI template is 54.10 minutes. The development time without the use of created UI
template is about 5.2 times [(54.10/10.38)] longer than with the use of created UI tem-
plate. The 44-minute difference represents a time savings of 81%.

7.4.3 Case 3: development time of generating an eighteen-screen UI prototype

Fig. 18 presents the time spent to generate an eighteen-screen UI prototype with
the use of created UI template and without the use of created UI template. Based on the

GENERATING USER INTERFACE FOR MOBILE PHONE DEVICES

1207

0

20

40

60

80

100

1 4 7 10 13 16 19 22 25 28 31 34 37

Student No.

Ti
m

e(
m

in
.)

Without the use of created UI template
With the use of created UI template

0

20

40

60

80

100

120

1 4 7 10 13 16 19 22 25 28 31 34 37

Student No.

Ti
m

e(
M

in
.)

Without the use of created UI template
With the use of created UI template

Fig. 16. Time spent in generating a six-screen UI

prototype.
Fig. 17. Time spent in generating a twelve-screen

UI prototype.

0
20
40
60
80

100
120
140
160

1 4 7 10 13 16 19 22 25 28 31 34 37

Student No.

Ti
m

e(
m

in
.)

Without the use of created UI template
With the use of created UI template

Fig. 18. Time spent in generating an eighteen- screen UI prototype.

collected data, we found that the average time spent to generate this UI prototype with
the use of created UI template is 10.85 minutes and the average time spent without the
use of created UI template is 80.05 minutes. The development time without the use of
created UI template is about 7.4 times [(80.05/10.85)] longer than with the use of created
UI template. The 69-minute difference represents a time savings of 86%.

From Table 1, we can note that (refer to column 3) without the use of created UI
template to generate UI prototype development time increases tremendously as the num-
ber of screens increased. But using the created UI template to generate UI prototype even
as the number of screens increased (refer to column 2) the time increment never exceeds
1 minutes. From above, one can see the time ratio increments approximately 1.5 times
each time as we add six screens.

From Fig. 19, we can note that the average time spent without the use of created UI
template sharply raises. But using the created UI template remains smoothly. From the
observation, we can foresee that as the number of screens increased then the time ratio
between those two approaches will become wider.

MING-JYH TSAI AND DENG-JYI CHEN

1208

Table 1. Average time spent in generating six, twelve, and eighteen screens UI prototype.

Time spent

Screens

Average time spent
with the use of created
UI template (Minutes)

Average time spent
without the use of

created UI template
(Minutes)

Time ratio between average time
spent without the use of created

UI template and average time spent
with the use of created UI template

six screens 9.92 36.38 3.7
twelve screens 10.38 54.10 5.2

Eighteen screens 10.85 80.05 7.4

9.92 10.38 10.85

36.38

54.1

80.05

0

20

40

60

80

100

6 12 18

Number of screens

Ti
m

e
sp

en
t(M

in
ut

es
)

Average time spent with the use of created UI template
Average time spent without the use of created UI template

Fig. 19. Average time spent with the use of created UI template and without the use of created UI

template to generate target UI prototype.

8. CONCLUSIONS

The well designed UI allows user to operate the product conveniently. So, the de-
sign of UI becomes very important which can give customers different impression on the
mobile phone devices and influence their willing of purchasing it or not.

UI plays an important role during software development. However, it is also time-
consuming for creating a good UI. If UI can be developed in a short time, it can be a
great help to reduce development time for application software system. Therefore, many
researchers in software engineering area have been seeking better solutions to aid UI
designers to builder UI.

By the proposed approach, UI designers use the UI design templates generator to
create UI templates and store them for future usage. Furthermore, it could be modified to
be a custom-designed UI prototype by the visual UI authoring tool. Based on this inno-
vative approach, the UI designers alone can complete the UI design and implementation
without bothering the UI programmers since the UI program will be generated automati-
cally by using the UI design templates generator. With the assistance of the program gen-
erator, the UI component is equipped with associated function. We only need to bind the
relevant system function with the UI component to generate the target application system
code. Finally, we provide a simulator for software simulation.

GENERATING USER INTERFACE FOR MOBILE PHONE DEVICES

1209

The proposed generating UI for mobile phone devices using visual based software
construction model, template-based approach and generic software framework has fol-
lowing characteristics.

(1) Ideal for UI designer (nonprogrammer) to produce the UI prototype for the target

application software system. An UI designer does not need to interact with UI pro-
grammers anymore because the UI design templates generator and visual UI author-
ing tool will generate the target UI program automatically.

(2) Ideal for system developer to plan and manage the team to build the target applica-
tion system. The proposed approach has separated the UI system with the application
function implementation. These two parts are developed by UI designer and pro-
grammer separately. A system developer just needs to bind these two parts by using
function binding system. In this way, any future changes of the UI will not affect the
corresponding application function implementation. Vice versa for the case that the
UI is not changed but the associated application functions needed to be changed.

(3) Long iterative process between UI designers and UI programmers can be avoided
while using the proposed approach to design and implement the UI prototype of the
mobile phone devices.

(4) Rich UI template can be supported by the proposed UI design templates generator to
ease a UI designer to reuse to create target UI prototype. Hence, it can reduce time
spent while developing application system.

(5) The software system architecture of mobile phone device can be designed by the
proposed generic software framework, which reduces the need to re-design UI fol-
lowing OS or hardware device changes.

REFERENCES

1. E. Lee, “User-interface development tools,” IEEE Software, Vol. 7, 1990, pp. 31-36.
2. B. A. Myers, “User interface software tools,” ACM Transactions on Computer-

Human Interaction, Vol. 2, 1995, pp. 64-103.
3. B. A. Myers, S. E. Hudson, and R. Pausch, “Past, present, and future of user inter-

face software tools,” ACM Transactions on Computer-Human Interaction, Vol. 7,
2000, pp. 3-28.

4. B. Shneiderman, “Creating creativity: user interfaces for supporting innovation,”
ACM Transactions on Computer-Human Interaction, Vol. 7, 2000, pp. 114-138.

5. C. Frauenberger, T. Stockman, V. Putz, and R. Holdrich, “Mode independent inter-
action pattern design,” in Proceedings of the 9th International Conference on Infor-
mation Visualization, 2005, pp. 24-30.

6. S. Lauesen, User Interface Design, Addison Wesley, 2005.
7. R. Jeffries, “Designing interfaces for programmers,” IEEE Software, Vol. 14,

1997, pp. 89-91.
8. D. J. Chen, M. J. Tsai, J. C. Dai, and D. T. K. Chen, “Visual based software con-

struction: visual requirement authoring tool and visual program generator,” in Pro-
ceedings of the International Computer Symposium, 2004, pp. 171-176.

9. D. J. Chen, W. C. Chen, and K. M. Kavi, “Visual requirement representation,” The

MING-JYH TSAI AND DENG-JYI CHEN

1210

Journal of Systems and Software, Vol. 61, 2002, pp. 129-143.
10. D. J. Chen and S. K. Huang, “Interface of reusable software components,” Journal of

Object-Oriented Programming, Vol. 5, 1993, pp. 42-53.
11. M. Barr, Programming Embedded Systems in C and C++, O’RELLY, 1999.
12. T. Noergaard, Embedded Systems Architecture: A Comprehensive Guide for Engi-

neers and Programmers, Newnes, 2005.
13. S. Babin, Developing Software for Symbian OS: An introduction to creating smart

phone applications in C++, John Wiley, 2005.
14. R. Harrison, Symbian OS C++ Mobile phones Vol. 2, John Wiley, 2004.
15. B. B. Bederson, A. Clamage, M. P. Czerwinski, and G. Robertson, “A fisheye cal-

endar interface for PDAs,” ACM Transactions on Computer-Human Interaction, Vol.
11, 2004, pp. 90-119.

16. J. A. Landay and T. R. Kaufmann, “User interface issues in mobile computing,” in
Proceedings of the 4th Workshop on Workstation Operating Systems, 1993, pp. 40-47.

17. G. E. Krasner and S. T. Pope, “A cookbook for using the model-view controller user
interface paradigm in Smalltalk-80,” Journal of Object-Oriented Programming,
1998, Vol. 1, 1998, pp. 26-49.

18. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns, Addison Wesley,
1995.

19. D. Martin and I. Sommerville, “Patterns of cooperative interaction: linking ethnometh-
odology and design,” ACM Transactions on Computer-Human Interaction, Vol. 11,
2004, pp. 59-89.

20. K. Hornbæk, B. B. Bederson, and C. Plaisant, “Navigation patterns and usability of
zoomable user interfaces with and without an overview,” ACM Transactions on
Computer-Human Interaction, Vol. 9, 2002, pp. 362-389.

21. D. R. Olsen and B. W. Halversen, “Interface usage measurement in a user interface
management system,” in Proceedings of the 1st Annual ACM SIGGRAPH Sympo-
sium on User Interface software, 1988, pp. 102-108.

22. V. Novak, C. Sandor, and G. Klinker, “An AR workbench for experimenting with
attentive user interfaces,” in Proceedings of the 3rd IEEE and ACM International
Symposium on Mixed and Augmented Reality, 2004, pp. 284-285,

23. X. Kong, L. Liu, and D. Lowe, “Supporting web user interface prototyping through
information modeling and system architecting,” in Proceedings of the IEEE Interna-
tional Conference on e-Business Engineering, 2005, pp. 63-70.

Ming-Jyh Tsai (蔡明志) is a senior lecturer in the Depart-

ment of Information Management at Fu Jen Catholic University.
He is also a Ph.D. candidate at the Department of Computer Sci-
ence and Information Engineering, National Chiao Tung Univer-
sity, Hsinchu, Taiwan. His current research interests include soft-
ware engineering, e-learning, and data mining.

GENERATING USER INTERFACE FOR MOBILE PHONE DEVICES

1211

Deng-Jyi Chen (陳登吉) received the B.S. degree in Com-
puter Science from Missouri State University (cape Girardeau),
U.S.A., and M.S. and Ph.D. degree in Computer Science from the
University of Texas (Arlington), U.S.A. in 1983, 1985, 1988, re-
spectively.

He is now a professor at Computer Science and Information
Engineering Department of National Chiao Tung University,
Hsinchu, Taiwan. Prior to joining the faculty of National Chiao
Tung University, he was with National Cheng Kung University,
Tainan, Taiwan. So far, he has been publishing more than 130 re-

lated papers in the area of software engineering (software reuse, object-oriented systems,
visual requirement representation), multimedia application systems (visual authoring
tools), e-learning and e-testing system, performance and reliability modeling and evalua-
tion of distributed systems, computer networks. Some of his research results have been
technology transferred to industrial sectors and used in product design. So far, he has
been a chief project leader of more than 10 commercial products. Some of these products
are widely used around the world. He has been received both research awards and teach-
ing awards from various organizations in Taiwan and serves as a committee member in
several academic and industrial organizations.

