IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 17, NO. 7, JULY 2007 937

An In/Post-Loop Deblocking Filter With Hybrid Filtering Schedule
Tsu-Ming Liu, Student Member, IEEE, Wen-Ping Lee, and Chen-Yi Lee, Member, IEEE

Abstract—In this paper, we propose a high-throughput de-
blocking filter to perform the in-loop or post-loop filtering process
for different standard requirements. The performance improve-
ment is very mild if we replace a post-loop filter with an in-loop
filter. To alleviate this problem, we derive an integration-oriented
algorithm that can be reconfigured as the in-loop or post-loop
filter. Moreover, we develop a hybrid filtering schedule to reach
a lower bound of processing cycles. In particular, we reschedule
the filtering order and reuse the intermediate pixels when the
deblocking filter switches the filtered edges from vertical to hori-
zontal direction. Finally, a 0.18-ym CMOS design that performs
the in/post-loop filter with the hybrid filtering schedule is imple-
mented. The synthesized gate counts are 21.1 K which is reduced to
70% of preliminary design that performs the in-loop or post-loop
filter separately. Moreover, it achieves 4x10° macroblock/s of
throughput rate at a 100-MHz clock rate.

Index Terms—Deblocking filter, H.264/AVC, high-throughput,
MPEG-4.

1. INTRODUCTION

LL current video compression standards including
MPEG-1/2/4, H.261/2/3/4, AVS and VC-1 [1] perform a
block-based discrete cosine transform, quantization, and mo-
tion compensated prediction to improve the coding efficiency.
Nevertheless, the quantization errors bring the annoying dis-
continuity on each block boundary. Hence, a deblocking filter
is required to remove this discontinuity and improve the visual
quality. Among various video standards, the deblocking filter
modules can be divided into two classes: in-loop and post-loop
filters. For instance, an in-loop filter [3] is standardized by
newly-announced H.264/AVC while a post-loop filter [2] can
be applied to prevalent MPEG-x family for improving visual
quality. However, considering the multi-standard integration,
replacing the post-loop filter with the in-loop filter will de-
grade the visual quality. Instead, we combine the in-loop and
post-loop filters in algorithmic and architectural levels to save
cost and improve subjective and objective visual quality.
Several deblocking filters [4], [S] have already appeared since
it becomes one of performance bottlenecks at the decoding
side. Though these techniques carry out efficient architectures,
they follow the standard-defined filtering order, leading to
additional cycles required when the deblocking filter switches
filtered edges from vertical to horizontal direction. Sheng et al.
[6] proposed a 2-D processing order to reschedule the filtering
order and reduce the processing cycles, but this order introduces
large storages (eight 4 x 4 buffers). In our design, we develop

Manuscript received April 25, 2005; revised November 19, 2005. This paper
was recommended by L.-G. Chen.

The authors are with the Department of Electrical Engineering, National
Chiao-Tung University, Hsinchu 30050, Taiwan, R.O.C. (e-mail: mingle@
si2lab.org; mb@si2lab.org; cylee @si2lab.org).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2007.897467

a hybrid filtering order to reuse the pixel without affecting
the standard-defined data dependency. It not only eliminates
the processing cycles when switching the filtered edges but
reduces the intermediate buffer cost. Finally, a 0.18-pm CMOS
design of the deblocking filter is implemented. The processing
throughput achieves 4%10° macroblock (MB)/s at 100 MHz
and is 1.5-2.5 times larger than that of existing designs [4]-[6].
The rest of this paper is organized as follows. Section II de-
velops an in/post-loop filtering algorithm. Section III presents
the associated architecture with the hybrid filtering schedule.
Section IV describes the simulation and implementation results.
Finally, concluding remarks are made in Section V.

II. IN/POST-LOOP DEBLOCKING ALGORITHM

A. Algorithmic Preview

Due to a great diversity of deblocking filters in different stan-
dards, we tabulate each feature in Table I. The filtering control
decides the filtering order and the size of filtered boundaries. In
general, most of deblocking filters obey an order that performs
on the horizontal edges and follows by the vertical edges. But,
this order is different from that in H.264/AVC. As for the fil-
tered boundary, the in-loop filter of H.264/AVC is applied to
each edge of 4 x 4 subblock while the post-loop filter is per-
formed on the boundaries of 8 x 8 block.

Filtering processes can be divided into three main parts.
The first part of processes is the strength decision. It governs
the filtering intensity in that edge. H.264/AVC employs a
boundary strength (bS) (i.e., bS spreads from 0 to 4, 5-strength)
to calculate the strength in each filtering mode. VC-1 adopts
the edge_strength (i.e., only true or false, 2-strength) to realize
the strength decision [7]. Moreover, MPEG-4 and H.263 are
2-strength (i.e., eq.,, >= 6 or eq.,, < 6) and 12-strength (i.e.,
strength= 1-12) respectively. The second part of processes
is the mode decision which is comprised of strong and weak
modes. For instance, in MPEG-4, Kim et al. [2] exploited
smooth regions and default modes as strong and weak modes,
respectively. List et al. [3] applied strong and weak modes
when the bS is equal to or less than 4 respectively. A third
part of filtering processes is the edge filter. The numbers of
input pixels are related to the filtering performance as well as
computational complexity. After previewing aforementioned
features, we conclude that there are great diversities in those
filters. Hence, a combined in/post-loop filter algorithm is of
great challenge for saving cost.

B. In/Post-Loop Algorithm

Using a single algorithm to realize in-loop or post-loop filter
is inferior since the source of blocking artifacts comes from
a distinct quantization process, IDCT kernel and the motion
compensated algorithm. From the experimental results, the
quality improvement is very mild (only 0.04 dB) when we

1051-8215/$25.00 © 2007 IEEE

938 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 17, NO. 7, JULY 2007

TABLE 1
FEATURES OF DEBLOCKING FILTER IN DIFFERENT STANDARDS

Deblocking Filter In-loop Filter Post-Loop Filter

Standardization Normative Informative

STANDARD H.264/AVC VC-1 MPEG-4(Annex F.3)| H.263(Annex J)

Filtering | Filtering Order | Vertical First | Horizontal First | Horizontal First | Horizontal First

Control | Filtered Boundary 4x4 4x4/4x8/8x4/8x8 8x8 8x8

Filtering | Strength/Mode 5/2 21 2/2 12/1

Process | No. of input pixels 8 8 10 4
replace a post-loop filter with an in-loop filter. To alleviate Post-loop
this problem, we propose an integration-oriented algorithm In-loop Strength
which tightly combines H.264/AVC in-loop filter with MPEG-4 Strength
post-loop filter. Specifically, we keep the filtered boundaries of T bS=4 :
4 x 4 and 8 x 8 in the in-loop and post-loop filters respectively. 3 eq_cnt>=T, T o Vod
Additionally, to unify into a single architecture, the filtering N rong Wode
order in post-loop filters has been changed from horizontal 2 Tyomed ont<Td—
to vertical edges first. With regard to filtering processes, a T - ‘T_S\ Weak Mode
triple-mode decision and triple pixel-in-pixel-out edge filter oq_ont<T,
are proposed to improve the integration efficiency. Moreover, ibs=o - I_T__l SKIP Mode

they provide an easy exchange of different filter types without
changing a hardware prototype.

C. Triple-Mode Decision

A triple-mode decision adopts a SKIP mode and resource
sharing technique to reduce filtering complexity and integra-
tion cost respectively. Firstly, this decision has been applied
to H.264/AVC and employs strong, weak and SKIP modes ac-
cording to the bS. As to the post-loop filter in MPEG-4, Kim
et al. [2] exploited the threshold T5 as 6 to distinguish between
default (i.e., weak) and dc offset (i.e., strong) modes. However,
it is very time-consuming because there is no skip conditions
applied and all 8 x 8 edge boundaries perform filtering pro-
cesses. To alleviate this problem, we introduce another threshold
T3 to reduce the computation in Fig. 1. Moreover, since fixed
thresholds {75, T3} cannot achieve better performance, we use
the side-information (e.g., MVD, CBP, MB_Type) to adjust the
thresholds dynamically. In Table II, we propose a compound de-
cision method to share the hardware resource since MPEG-4’s
{T5, T3} are similar to H.264’s {bS, «, 3, tco}. Moreover, we
found that different bit rates contribute to the difference of the
threshold 75. Introducing a term of 72 as a function of quan-
tization parameter (QP) makes it more robust in terms of the
bit rate variations. In conclusion, the proposal reduces not only
the computation through the SKIP mode but also the integration
cost by the compound method.

D. Triple Pixel-in-Pixel-Out (P-i-P-0) Edge Filter

We develop a triple P-i-P-o edge filter to reduce the inte-
gration cost. In the post-loop mode, the edge filter retains the
default mode and discards the dc offset mode because the de-
fault mode is of the prime concern while the dc offset mode is
broadly similar to the strong mode of the in-loop filter. That is,
we can replace the edge filter of dc offset mode with that of
“bS = 4” (strong mode) for an integration-oriented design ap-
proach. We change the approximated discrete cosine transform
(DCT) kernel (i.e., [2 -5 5 -2]) to [2 -4 4 -2]. As a result, we

Fig. 1. Triple-mode decision of the in/post-loop filter.

make use of shifters instead of constant multipliers. Moreover,
to merge the edge filter in the weak mode, we modify the num-
bers of input pixels to 8 pixels in the post-loop filter. Thus, the
numbers of input pixels in the in-loop and post-loop filters are
equivalent. In conclusion, three data flows (i.e., strong, weak
and SKIP) and related pseudo codes are highlighted in Fig. 2,
and some modifications are made on the post-loop filter to im-
prove the integration efficiency. These modifications definitely
reduce the integration overhead with a penalty of slight perfor-
mance loss. This loss will be further addressed in Section IV-A.

III. HIGH-THROUGHPUT IN/POST-LOOP ARCHITECTURE

This section presents a high-throughput architecture with the
hybrid filtering schedule. The associated block diagram is de-
picted in Fig. 3. Two dedicated single-port SRAMs (content and
slice) are designed to not only store the current and neighboring
pixels but also achieve an efficient data access. Furthermore, we
propose the hybrid filtering schedule and introduce four 4 x 4
pixel buffers to reduce the numbers of processing cycles.

A. Memory Organization

The proposed memory organizations are twofold; content and
slice memory. The address depth is decided by the YUV for-
mats (4:4:4, 4:2:2, or 4:2:0), and the data word size is based on
the 32-bit of the column-of-pixel (CoP) [see Fig. 4(a)] for the
reduced memory accesses in the intra/inter prediction unit [8].
The content memory stores the unfiltered pixels prior to the de-
blocking filter. Moreover, it adopts the ping-pong structure and
stores two MBs to resolve the structural hazard when reading
and writing processes occur simultaneously. Hence, the content
memory is of size (16 + 8) x 4 x 32 x 2 (in 4:2:0). On the
other hand, the slice memory stores the upper and left neigh-
boring pixels for follow-up filtering processes. Considering a

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 17, NO. 7, JULY 2007

939

TABLE II
COMPOUND METHOD FOR THE STRENGTH DECISION
In/Post-loop Decision Method In-loop Post-loop
Block modes and conditions Semantics bS T T,
One of the blocks is intra and the MB_TYPE==INTRA && 4 Ta* Ta*
edge is a macroblock edge MB Edge
One of the blocks is intra MB_TYPE==INTRA 3 Tai Toi
One of the blocks has coded CBP!=0 2 T5+1 Tyt
residuals
Difference of block motion = 4 at MVD, = 4 || MVD, = 4 1 Ty+2 T+
luma sample difference
Else Else 0 T3i+2 T2‘+1 +tT2(QP)
Il Step1: In/Psot-Loop recognition from bit-stream syntax
16x16 in/post = (flag) ? In_loop : post_loop; // in or post-loop configuration
In/Post-Loop De-blocking Filter(16x16 MB, in/post)

In-Loop/Post-

= Not filter (Skip mode;
Loop Filter — e

Filter?

Triple
Mode Decision

(bS/eq_cntz _/

4x4/
8x8 |

8x8 |

0<bS<4 | T;=<eq_cnt<T, bS =0/ eq_cnt<T;

L

bS=4/ eq_cnt>=T,

Weak Strong
Edge Filtering Edge Filtering

Triple P-i-P-o
Edge Filter
v
16x16 | 16x16 | 16x16 | ====- | 16x16 | —p | Frame \
(NxM)

(@)

Fig. 2. (a) Data flow and (b) pseudo-code of the in/post-loop algorithm.

Slice Memo
2+ i

Triple-Mode
Decision & Control

Intral/Inter f
Prediction L1
2
Q. S
Pixel Buff Qo | % 2 §
Ixel Bufter o=
(four 4x4 po-s % P “E
sub-blocks) 53 g
£ 5
2
x
w

L

De-Blocking
Filter Unit

Fig. 3. Block diagram of in/post-loop dedblocking filter.

frame size of N x M in Fig. 4(b), each square represents
the 16 x 16 MB. Each MB contains 16 points and 4 x 4 pixels

{
if(de-blocking_assert)
filter_end = 0;
while (filter_end==0)
{

1/ Step2: Filtering Control
horizontal first, followed by vertical---
edge_detection = 4x4 or 8x8

Il Step3: Strength Calculation
strength = (in/post) ? Calculate_bS() : Calculate_eq_cnt();

Il Step4: Mode Decision
mode = Triple_Mode_Decision(strength);

1/ Step5: Edge Filtering

if (mode==strong) result = Strong_Filtering();
else if (mode==weak) result = Weak_Filtering();
else if (mode==SKIP) SKIP applied;

1] Step6: Return the filtered pixel and terminate
write the filtered result into 16x16 MB;
if (end_of_de-blocking) filter_end = 1;
}
}

else
SKIP applied;

(b)

within each point. When filtering processes are performed from
the MB index B to B + 1, upper and left neighbors will up-
date the pixel values as the arrows indicate. The shaded region
should be kept when the filtering index is B + 1. Therefore, the
size of slice memory is 2 x (N + 12) x 32 for the 4:2:0 format.

B. Hybrid Filtering Schedule

We propose a hybrid filtering schedule to reuse the interme-
diate data and thereby eliminate the additional memory accesses
when deblocking filter changes the filtered edges from vertical
to horizontal direction. Fig. 5(a) describes the standard-defined
filtering orders where vertical edges are filtered first, followed
by horizontal edges. However, a main drawback of this direct
approach is that the intermediate data have to be written into the
internal memory in one direction and then read again in another
direction. For instance, considering the black region in Fig. 5(a),

940

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 17, NO. 7, JULY 2007

< frame width =N B

CoP —
4x4
“U.p??r sub-)!()lock
0 |[F13] 4 5 Left ‘
Neighbor*’?
Addr.1 e
Addr.2 6 7
12 || 13 frame 13816
ROP height=M :
SIS ST T T T T]

(a)

Fig. 4. Data organizations of (a) content and (b) slice memory.

[e T T T R R R
S
SR

‘o?o?,‘:‘ foelels
-

/ N
4-pel width

(@
Fig. 5. (a) Standard-defined and (b) proposed schedule.

(a)

(b) t1 t2 t3 t4

t5 t6 t7 t8

Fig. 6. (a) Partitioned MB and (b) each time index for the hybrid filtering
schedule.

the edge #1 will be filtered first, followed by the edge #5. After
that, the processing data in the black region cannot be reused
since the filtering orders between vertical and horizontal edges
become longer (i.e., #5 versus #17). Therefore, the memory
accesses are required in both vertical and horizontal directions.
To alleviate this problem, we develop a hybrid filtering schedule
without affecting the standard-defined data dependency in
Fig. 5(b) and all unshaded numbers are performed in 8 x 8
post-loop filters. Considering the orders in the black region to
perceive a contrast, the black region can be reused because the
orders between different directions become close. Therefore, the

(b)

proposal prevents the data re-access for different directions and
reuses the intermediate pixels to reduce the processing cycles.
Though Sheng et al. [6] proposed a novel schedule to reduce
the processing cycles, this schedule requires eight 4 x 4 sub-
blocks as the kept buffers. To reduce this buffer size, each MB can
be partitioned into two main parts (i.e., Deblocking Filter-MB-
Upper or Lower) in Fig. 6(a), and each part is composed of eight
time indexes to perform the filtering procedure in Fig. 6(b). Each
bold line represents the edge to be filtered in the corresponding
time index. As a result, our kept buffer size is four 4 x 4 sub-
blocks where is located on shaded regions. By the same way,
the proposed schedule is performed on the chroma MB as well.

C. High-Throughput Architecture

The high-throughput architecture with hybrid filtering
schedule is presented in this subsection. The detailed signal flow
of Fig. 3 has been redrawn in Fig. 7. Specifically, all signals are
32-bit wide and possess the CoP organization. The signal names
represent the writing/reading to/from the storage modules in-
cluding the slice, content, and external memory. Accordingly,
the behavior of Fig. 7 can be divided into two main parts: writing
processes {wt_Slice_0 ~ 2, wt EXT_0 ~ 1,wt_B_0 ~ 3} and
reading processes {rd_Slice.0 ~ 1,7d_C_0,rd_B_0 ~ 2}.

The key idea of the high-throughput architecture is that the
content memory is exploited only for the reading processes. In
Fig. 7, the writing signal, wt_Slice_0, is activated on the edges

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 17, NO. 7, JULY 2007

941

) { Slice
gllcz 32 Write
32-bit wide over the ea N 32
. |
whole datapath | ou - o N {in/post, bS, m ctrl0
rd_Slice 0 — ¢ tco,alpha..} A
wt_Slice_1
M\ E‘) wt_Slice_0
| ctrl1 { g
wt_B_ 0 ho
| — ° . 31 ctri2
wt_B_1 2| q_Pi
Content — —= P+' = | q_Pixel wt_EXT_0
Read N s \32
_B_2 _ (4 4x4 block)™ 2
=4 ‘i" rd_B_1 p_Pier» %u%:, p_Pixel —> External
H [- wt_EXT_1 Memory
wt B_3 rd_B_2
| >
7 4
rd_C_0 Triple-Mode {in/post, ctrl0~2,
Decision & Control bS,tco,alpha,eq_cnt..}

Fig. 7. Detailed architecture for the in/post-loop deblocking filter.

TABLE III
VALUES OF t12 WITH A FUNCTION OF QP
QP | O 1 2 |3 |4 |5 |6 |7 |8 |9 10 [11 [12 [13 |14 |15
t [2 |2 1 1 1 1 1 1 0 |0 |0 0 0 0 0 0
QP16 |17 |18 |19 |20 |21 |22 |23 |24 |25 |26 |27 |28 |29 |30 |31
t. |O |O |O |O |O 0 |0 0 |0 |O 0 |0 0 |0 |O 0
TABLE 1V
POST-LOOP FILTERING PERFORMANCE IN TERMS OF LUMA PSNR
MPEG-4 Decoder PSNR-Y [dB]
Bit Rate CIF Sequence w/o filter MPEG-4 Annex F.3 filter Proposed
150kbps Table 32.01519 32.13722 32.13138
Mobile calendar 24.97704 25.00832 25.04150
Mother & daughter | 38.73812 39.00201 39.02740
Stefan 27.02727 27.14439 27.10813
450kbps Table 37.11400 37.18894 37.19088
Mobile calendar 27.43971 27.49859 27.48667
Mother & daughter | 42.85162 42.99503 42.99579
Stefan 30.63070 30.77906 30.72632
1500kbps | Table 42.83698 42.84450 42.87695
Mobile calendar 34.50489 34.57378 34.56172
Mother & daughter | 46.33545 46.48835 46.44548
Stefan 38.36032 38.48165 38.44038

6, 10, 14, and 16 because the lower subblocks become the
upper neighboring subblocks of DF' — M B_L [see Fig. 6(a)].
Therefore, the wt_Slice writes the filtering results into slice
memory for follow-up filtering processes. For the wt_EXT,
it writes filtered data into the external memory. On the other
hand, the reading signal, rd_Slice_0, is activated on vertical
edges while the rd_Slice_1 is valid on horizontal edges. In
addition, the rd_C'_0 directly feeds through the pixel buffers.
In other words, content memory is employed for the reading
processes, and there is no need to write the filtered results into
the content memory in one direction and thereby read them in
another direction. Therefore, the proposal exploits four 4 x 4
buffers to reuse the intermediate pixel and eliminate the writing
accesses of content memory.

IV. SIMULATION AND IMPLEMENTATION RESULTS

A. Performance Evaluation

The modifications of the post-loop filter improve the integra-
tion efficiency at a cost of slight performance degradation. For
the experiments of MPEG-4’s post-loop filter, the thresholds of
T5; = 5 and T3; = 0 (see Table II) are employed without loss
of generality. Further, we adopt Table III as the induced term
of tro. QP stands for “quantizer precision,” and we use 5-bit
as a default value that ranges from O to 31. All alterations of
the MPEG-4’s post-loop algorithm have been addressed in Sec-
tion II, and specific results are given in Table IV. All sequences
are defined in CIF (352 x 288) and intra-period 15 with 30 fps

942 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 17, NO. 7, JULY 2007

(a) (b)
Fig. 8. Subjective quality comparison between the post-loop filter and proposed design. (a) Without filter. (b) MPEG-4’s filter. (c) Proposed.

(c)

TABLE V
CYCLE ANALYSIS OF THE DEBLOCKING FILTERS
Cycle Counts (4" [5] [6] Proposed
Vertical / Horizontal Separate | Separate Hybrid Hybrid
Pre-process (Initial) stage 160 N/A 64 0
Filter-process| Luma | Horizontal 128 106 1283 148
Stage Vertical 200 106
Chroma| Horizontal 64 74 64° 88
Vertical 112 74
Post-process (write-back) stage 160 N/A 160 0
Misc. 54 N/A 30 7
Total 878 360+N/A 446 243

!: We list the single-port memory configuration for a fair comparison.

%: We only consider the worst case and exclude the effect of mode decision for a fair comparison.

3: Authors didn’t report the processing overheads between the internal memory and kept buffers.

throughout 300 frames. We show that the performance degrada-
tion is less than 0.05 dB as compared to the MPEG-4’s post-loop
filter [2]. From the subjective point of view, we capture the 20th
frame to give a comparison in Fig. 8.

B. Processing Cycle Analysis

To clarify the cycle reduction, we formulate processing
cycles in (1) and (2) where C.C. means cycle counts. The
overall cycles of deblocking filters can be considered as a
combination of the pre-process, filter-process and post-process.
The pre-process is an initial stage which loads external data
(neighboring pixel) into slice memory while the post-process
is a write-back stage which writes filtered results from slice
memory to external memory. In the filter-process, the pro-
cessing cycles include slice or content Memory to pixel Buffers
(-6, Mgice/content-t0-Bpixel), generic filtering, and pixel
Buffers to slice Memory (i.e., Bpixel-t0-Mjiice). The processing
cycles of the generic filtering are 4 X (32 + 16) which become a
lower bound to fulfill filtering processes if the rest of processing
cycles are zero in an ideal case.

Total Cycle Counts

= C~C-Pre—process + C~C-FilterProcess

+ C-C-Postfprocess + C-C-misc.

C-C-Pre—process

= C-C-initial = C-C-Mexternal—to—Mslice
C-Cpost—Process

= C-C-write back

= C~C-Mslice—t0—Mexterna1 (1)

C.C.Filter—Process
= C.C.Luma Filter + C.C.Chroma Filter
= C-C-Mslice/content—to—Bpixel
+ C.C.generic + C.C.Bpixel—to—Mslice;
where C.C.generic
=32x4+16x4=192 2

Based on the proposed hybrid filtering schedule, the overall
cycles are 243 and close to a lower bound of processing cy-
cles. Table V shows a detailed cycle analysis. In our design,
the neighboring pixel can be fetched from the slice memory,
and the filtered results are written into the external memory
without going through the slice memory. As a result, the cycle
counts of the pre-process and post-process can be eliminated. In
the filter-process stage, the evaluated cycle counts are 148 cy-
cles for luma MB and 88 cycles for chroma MB. Specifically,
we take 8 cycles (DF-MB-U+ DF-MB-L) in the Mjice/content
-to-Bpixel stage. There are 4 x 32 cycles required to filter hori-
zontal and vertical edges in a luma MB. Moreover, we need 12
cycles (i.e., Bpixel-to-Mgjice) to write the filtered results for the
edges {16, 30, 32}. Overall, we need 148 (i.e., 8 + 4 x 32 + 12)
cycles to accomplish filtering processes in a luma MB. By the
same analysis, we need 88 (i.e., 4 + 4 X 8 + 8 = 44 for each
chroma) cycles in a chroma MB. Therefore, there are total 243
cycles with extra 7 cycles for the data hazard (ie., 148 488 + 7).
The cycle overheads in the control logic can be neglected since
it acts as a pipelined fashion. In addition, the processing cycles
of the post-loop filter are identical to that of the in-loop filter
because they share the same architecture and control flows. In

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 17, NO. 7, JULY 2007

TABLE VI

HARDWARE SUMMARY FOR THE DEBLOCKING FILTER

943

Cycle Counts

(4]

(6]

(5]

Proposed

Function

in-loop

in-loop

in-loop

in/post-loop

Kept Data Size

2x4x4 sub-blocks

8x4x4 sub-blocks

2x4x4 sub-blocks

4x4x4 sub-blocks

Memory

Organization

1) 96%32 + 64%32

2) External MEM

1) 96X32X2 + 64x32

2) External MEM

1) 96%32

2) External MEM

1) 96x32x2
2) 2(N+12)x32"

3) External MEM

Processing Cycles 878 446 360+N/A 243
Process 0.25um 0.25um 0.18um 0.18um
Gate Counts 20.66K 24K 11.8K 21.1K (in/post)
Clock Rate 100MHz 100MHz 100MHz 100MHz

Filtering Throughput

1.6x10° MB/sec

2.2x10° MB/sec

2.6x10° MB/sec

4x10° MB/sec

Throughput: Macro-Block/sec = Clock Rate

*N: frame width

conclusion, 243 cycles are close to a lower bound (192 cycles)
by the proposed schedule.

To enhance the system performance, this VLSI solution is
designed to achieve high throughput as well as integration effi-
ciency. The proposal is implemented using a 0.18-pm CMOS
process. Excluding the internal memory, the synthesized gate
counts are 21.1 K which is reduced to 70% of the original
design that realize in-loop or post-loop filtering process sep-
arately. Moreover, it achieves 4 x 10° MB/s of throughput
rates when operating at 100 MHz. Finally, Table VI reveals that
the throughput rates of the proposed design are about 1.5-2.5
times larger than that of existing approaches [4]-[6].

V. CONCLUSION

In this paper, the algorithms of an in/post-loop deblocking
filter and its architecture have been presented. Firstly, we de-
velop an in/post-loop deblocking algorithm that can be recon-
figured as a filter for the H.264/AVC or MPEG-4 standard re-
quirements. In particular, we propose a triple-mode decision and
triple P-i-P-o edge filter to improve the integration efficiency.
The overall cost can be reduced by 30% compared to the sepa-
rate design. Secondly, we propose the hybrid filtering schedule
to reuse the intermediate data and reduce processing cycles.
We use four pixel buffers to perform the horizontal and vertical
edge filter in a hybrid scheduling flow. Finally, an in/post-loop

Processing Cycles

deblocking filter with hybrid filtering schedule is implemented
using a 0.18-pm CMOS process. 4 x 10° MB/s of throughput
rates can be achieved at a 100-MHz clock rate and is 1.5-2.5
times higher than that of existing designs [4]-[6]. Therefore, the
proposal is suitable for high-throughput or multiple standard re-
quirements such as Digital-TV and HD-DVD devices.

REFERENCES

[1] S. Srinivasan, “Windows Media Video 9: Overview and applications,”
Signal Process.: Image Commun., vol. 19, pp. 851-875, 2004.

S. D. Kim, J. Yi, H. M. Kim, and J. B. Ra, “A deblocking filter with
two separate modes in block-based video coding,” IEEE Trans. Circuits
Syst. Video Technol., vol. 9, no. 1, pp. 156-160, Feb. 1999.

P. List, A. Joch, J. Lainema, G. Bjontegaard, and M. Karczewicz,
“Adaptive deblocking filter,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 13, no. 7, pp. 614-619, Jul. 2003.

Y.-W. Huang, “Architecture design for deblocking filter in H.264/JVT/
AVC,” in Proc. ICME, Jul. 2003, vol. 1, p. 1-693-6.

S.-C. Chang, W.-H. Peng, S.-H. Wang, and T. Chiang, “A platform
based bus-interleaved architecture for de-blocking filter in H.264/
MPEG-4 AVC,” IEEE Trans. Consum. Electron., vol. 51, no. 1, pp.
249-255, Feb. 2005.

B. Sheng, W. Gao, and D. Wu, “An implemented architecture of de-
blocking filter for H.264/AVC,” in Proc. IEEE ICIP, Oct. 2004, vol. 1,
pp. 665-668.

S. Srinivasan, T. W. Holcomb, and P. Hsu, “In-loop deblocking filter,”
U.S. Pat. 2005/0013494 A1, Jan. 20, 2005.

T.-M. Liu, W.-P. Lee, T.-A. Lin, and C.-Y. Lee, “A memory-efficient
deblocking filter for H.264/AVC video coding,” in Proc. IEEE ISCAS,
May 2005, pp. 2140-2143.

[2]

[3]

[4]

[5]

[6

=

[7

—

[8]

