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Abstract

The hypothesis testing and confidence region are considered for the common mean vector of several multivariate normal pop-
ulations when the covariance matrices are unknown and possibly unequal. A generalized confidence region is derived using the
concepts of generalized method based on the generalized p-value. The generalized confidence region is illustrated with two numer-
ical examples. The merits of the proposed method are numerically compared with those of existing methods with respect to their
expected area or expected d-dimensional volumes and coverage probabilities under different scenarios.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Estimating the common mean vector of several multivariate normal populations with unknown and possibly unequal
covariance matrices is one of the oldest and interesting problems in statistical literature. This problem arises, for
example, when two or more independent measuring instruments or agencies are involved to measure like products,
effects, or substances which are produced by the same production process to estimate the average quality in terms
of several characteristics. If the samples collected by independent studies are assumed to come from multivariate
normal populations with a common mean vector and unknown covariance matrices, then the problem of interest may
be to estimate or construct a confidence region for the common mean vector μ of these populations. If the unknown
covariance matrices are assumed to be identical, then there are optimal methods available to make inferences on μ.
However, when the covariance matrices are unknown and unequal, it is clear that the distribution of any combined
estimators of μ will involve nuisance parameters, and then the standard method has serious limitations for the purpose
of finding an exact test and confidence region of μ. Therefore, constructing a generalized confidence region of μ for
models involving variance components deserves further attention.
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Suppose there are I (I �2) d-variate normal populations with common mean vector μ and unknown covariance
matrices �1, . . . ,�I . Let Xi1, . . . , Xini

be independent d-variate vector observations from the ith population, i =
1, . . . , I , and Xij ∼ Nd(μ, �i), j = 1, . . . , ni . For the ith population, let

X̄i = 1

ni

ni∑
j=1

Xij and Si = 1

ni − 1

ni∑
j=1

(Xij − X̄i )(Xij − X̄i )
′ (1.1)

be the sample mean vector and sample covariance matrix. We are interested in estimating the common mean vector μ,
based on the minimal sufficient statistics (X̄1, . . . , X̄I , S1, . . . , SI ).

In the univariate case, the common mean problem has received considerable attention in the statistical literature; we
refer the reader to Meier (1953), Maric and Graybill (1979), Pagurova and Gurskii (1979), Sinha (1985), Eberhardt
et al. (1989), Fairweather (1972), Jordan and Krishnamoorthy (1996), Krishnamoorthy and Lu (2003), Lin and Lee
(2005) and the references therein.

In the multivariate case, Chiou and Cohen (1985) showed that μ̂GDd ,

μ̂GDd =
(

I∑
i=1

niS
−1
i

)−1 I∑
j=1

nj S−1
j x̄j , (1.2)

dominates neither X̄1 nor X̄2, when I = 2 and d �2, with respect to the covariance criterion, although Graybill and
Deal (1959) got the opposite result in univariate two-sample case. Loh (1991) estimated the common mean vector from
a symmetric loss function point of view as alternatives to μ̂GDd . Zhou and Mathew (1994) proposed several combined
tests for testing the common mean vector, but the problem of multiple comparisons had not been discussed when
the null hypothesis was rejected. Jordan and Krishnamoorthy (1995) provided a confidence region of μ centered at a
weighted Graybill and Deal estimator μ̂JK,

μ̂JK =
(

I∑
i=1

ciniS
−1
i

)−1 I∑
j=1

cjnj S−1
j x̄j , (1.3)

which does not always produce non-empty regions. Moreover, determination of the percentile points that are needed
to construct the confidence region of μ is quite difficult in practice, and thus approximation is necessary.

In this paper, we intend to provide a method that is readily applicable for both hypothesis testing and confidence
region construction of the common mean vector μ. Our approach is based on the concepts of generalized p-values
and generalized confidence intervals, introduced by Tsui and Weerahandi (1989) and Weerahandi (1993), respectively.
These ideas have turned out to be very satisfactory for obtaining tests and confidence intervals for many complex
problems; see Lin and Lee (2003), Lee and Lin (2004) and many others. Gamage et al. (2004) provided a generalized p-
value and a generalized confidence region for the multivariate Behrens–Fisher problem and MANOVA. For a discussion
of several applications, the readers are referred to the book by Weerahandi (1995). In terms of the expected area or
d-dimensional volumes and coverage probability, our method is compared with the methods derived by the classical
approach, Graybill and Deal (1959) and Jordan and Krishnamoorthy (1995), respectively. The numerical results in
Sections 4 and 5 also show that our method performs better than these methods.

The rest of the article is organized as follows. The theory of generalized p-values and generalized confidence interval
will be briefly introduced in Section 2. Our procedures for hypothesis testing and construction of the generalized
confidence region about the common mean vector μ are presented in Section 3. We apply these results to two sets of
data and compare with five other methods numerically with respect to their simultaneous confidence intervals and the
areas of 95% confidence regions in Section 4. One simulation study is presented in Section 5 to compare the expected
areas or the expected d-dimensional volumes and the coverage probabilities of these methods in different combinations
of sample sizes and covariance matrices.

2. Generalized p-values and generalized confidence intervals

A set-up where the generalized p-value may be defined is as follows. Let X be a random quantity having a density
function f (X|�), where � = (�, �) is a vector of unknown parameters, � is the parameter of interest, and � is a vector
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of nuisance parameters. Suppose we are interested in testing

H0 : ���0 vs. H1 : � > �0, (2.1)

where �0 is a pre-specified value.
Let x denote the observed value of X and consider the generalized test variable T (X; x, �, �), which depends on the

observed value x and the parameters �, and satisfies the following requirements:

(i) For fixed x and � = (�0, �), the distribution of T (X; x, �0, �) is free of the nuisance parameters �.
(ii) The observed value T (x; x, �0, �) of T (X; x, �0, �) does not depend on unknown parameters �.

(iii) For fixed x and �, Pr[T (X; x, �, �)� t] is either increasing or decreasing in � for any given t. (A)

Under the above conditions, if T (X; x, �, �) is stochastically increasing in �, then the generalized p-value for testing
the hypothesis in (2.1) can be defined as

p = sup
���0

Pr[T (X; x, �, �)� t] = Pr[T (X; x, �0, �)� t], (2.2)

where t = T (x; x, �0, �).
Under the same set-up, suppose T1(X; x, �, �) satisfies the following conditions:

(i) The distribution of T1(X; x, �, �) does not depend on any unknown parameters.
(ii) The observed value of T1(X; x, �, �) is free of nuisance parameters �. (B)

Then we say T1(X; x, �, �) is a generalized pivotal quantity (GPQ). Let c1 and c2 be such that

Pr[c1 �T1(X; x, �, �)�c2] = 1 − �, (2.3)

then {� : c1 �T1(x; x, �, �)�c2} is a 100(1 − �)% generalized confidence interval for �. For example, if the value of
T1(X; x, �, �) at X = x is � and q{T1(X);1−�} represents the 100(1 − �)th percentile of T1(X; x, �, �), then {q{T1(x);�/2},
q{T1(x);1−�/2}} is a 100(1 − �)% confidence interval for �.

3. Confidence regions for μ

Suppose we have I (I �2) independent d-variate normal populations with common mean vector μ and unequal
covariance matrices �1, . . . ,�I . For the ith sample, X̄i and Si , defined in (1.1), are mutually independent with

X̄i ∼ Nd(μ, �i/ni) and Ai = (ni − 1)Si ∼ Wd(ni − 1, �i ), i = 1, . . . , I , (3.1)

respectively, where Nd(μ, �) is the d-variate normal distribution with mean vector μ and covariance matrix � and
Wd(�, �) denotes the d-dimensional Wishart distribution with degrees of freedom � and scale matrix �.

In this section, we will first provide a generalized confidence region of μ based on a GPQ and then briefly review
three other confidence regions of μ proposed by Graybill and Deal (1959), Jordan and Krishnamoorthy (1995) and the
classical method, respectively.

3.1. Solutions based on the generalized method

As the focus of attention is the common mean vector of I d-variate normal distributions, the elements of the
variance–covariance matrices �i , i = 1, . . . , I , play the role of nuisance parameters. Thus, in order to form a GPQ for
μ, one must replace �i in (�i/ni)

−1/2(X̄i −μ)= Zi ∼ Nd(0, Id) with its own GPQ. The result is a GPQ for μ, based
on one sample, which is given by

T∗
i = x̄i − (u1/2

i R−1
i u1/2

i )1/2Zi , (3.2)

where

Ri = [u−1/2
i (�i/ni)u

−1/2
i ]−1/2(u−1/2

i Uiu
−1/2
i )[u−1/2

i (�i/ni)u
−1/2
i ]−1/2 (3.3)
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and ui is the observed value of Ui with Ui = Ai/ni ∼ Wd(ni − 1, �i/ni). It is noted that Ri ∼ Wd(ni − 1, Id) and
the use of R∗

i can be found in Gamage et al. (2004) with R∗
i = Ri/(ni − 1). The individual GPQs for μ are combined

in a weighted manner, with weights W−1Wi are proportional to the sample sizes and the inverse of the covariance
matrices withW−1Wi = W−1(u1/2

i R̃−1
i u1/2

i )−1, where W =∑I
i=1 Wi and R̃i are different Wishart random matrices

with R̃i ∼ Wd(ni − 1, Id). Since the distribution of Zi’s and Ri’s are free of any unknown parameters and these
quantities are independent, it follows that the distributions of T∗

i ’s are free of any unknown parameters. Furthermore,
using the definition of Zi’s and Ri’s, we conclude that the observed value of T∗

i is μ for all i, thus we can construct a
weighted average of the GPQs based on individual samples. Let X̄ = (X̄1, . . . , X̄I ) and U = (U1, . . . , UI ), and x̄ and
u be the corresponding observed values of X̄ and U, respectively, then the GPQ can be expressed as

T(X̄, U; x̄, u) = W−1
I∑

i=1

WiT∗
i , (3.4)

where W =∑I
i=1 Wi and T∗

i is given in (3.2).
To construct confidence region based on T, we need to verify that T in (3.4) satisfies the two conditions in (B).

The value of T∗
i in (3.2) at (X̄i , Ui ) = (x̄i , ui ) is μ and Wi = ni�

−1
i at Ui = ui , i = 1, . . . , I . Therefore, T = μ at

(X̄, U) = (x̄, u). It is also clear from (3.2) to (3.4) that, for a given(x̄, u), the distribution of T is independent of any
unknown parameters. Therefore, T in (3.4) satisfies the two conditions in (B) and is truly a GPQ, which can be used to
construct a confidence region for μ.

As Krishnamoorthy and Lu (2003) pointed out it is better to use different Wishart random matrices Ri and R̃i for
constructing generalized variable T∗

i and Wi in order to avoid producing too liberal results.

3.1.1. Hypothesis testing and confidence region
Given (x̄, u), the distribution of T in (3.4) is free of unknown parameters and hence T can be used to construct a

confidence region of μ and test the hypothesis

H0 : μ = μ0 vs. H1 : μ �= μ0, (3.5)

where μ0 is a pre-specified value.

Remark 1. If a is a d ×1 column vector with elements a1, a2, . . . , ad < ∞, we write a′ = (a1, . . . , ad), and the length
or norm of a is denoted by ‖a‖. Thus ‖a‖ = √

a′a = (a2
1 + a2

2 + · · · + a2
d)1/2.

Remark 2. For a vector y, |b′y|�c(b′b)1/2 if and only if y′y�c2, for any nonzero vector b, which is a consequence
of the Cauchy–Schwarz inequality.

Let T̃ denote the standardized expression of T with T̃ = �−1/2
T (T − μT), where μT and �T represent the mean and

covariance matrix of T. Define μ̃0 = �−1/2
T (μ0 − μT), and then the generalized p-value for testing (3.5) can be given

by

p = P {‖T̃‖ > ‖μ̃0‖|x̄, u}, (3.6)

and H0 will be rejected whenever p is less than �. Furthermore, let q{‖T̃‖; �} be the 100�th percentile of ‖T̃‖, so we have

P {T̃′T̃ = (T − μT)′�−1
T (T − μT)�q2

{‖T̃‖; �}} = �. (3.7)

Since the observed value of T is μ, the 100(1 − �)% confidence region of μ can be solved by the inequality

{μ : (μ − μT)′�−1
T (μ − μT)�q2

{‖T̃‖;1−�}}, (3.8)

which is equivalent to solving the inequality {μ : ‖�−1/2
T (μ − μT)‖�q{‖T̃‖; 1−�}}.

Simultaneous confidence intervals for the d-components of μ can be developed from consideration of confidence
intervals for a′T, where a is any nonzero d-variate vector.
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According to Remark 2, let y=�−1/2
T (T−μT), b=�1/2

T a and c=q{‖T̃‖; 1−�}, then from (3.7), we have the following:

(T − μT)′�−1
T (T − μT)�q2

{‖T̃‖; 1−�} if and only if |a′(T − μT)|�q{‖T̃‖; 1−�}
√

a′�Ta. (3.9)

The inequality (3.9) implies that

P {a′μT − q{‖T̃‖; 1−�}
√

a′�Ta�a′T�a′μT + q{‖T̃‖; 1−�}
√

a′�Ta} = 1 − �, (3.10)

for all nonzero vector a. If a is the vector with 1 for the lth element and 0 elsewhere, the simultaneous 100(1 − �)%
confidence interval for the lth component of common mean vector μ, �l , is

(�T(l) − q{‖T̃‖;1−�}
√

�(l,l)
T , �T(l) + q{‖T̃‖; 1−�}

√
�(l,l)

T ), l = 1, . . . , d, (3.11)

where �T(l) is the lth component of μT and �(l,l)
T is the (l, l)th component of �T. In practice, we need the following

algorithm.

Algorithm 1. For a given (n1, . . . , nI ), (x̄1, . . . , x̄I ) and (u1, . . . , uI ):

For j = 1, . . . , m:
Generate Z1, . . . , ZI from Nd(0, Id).
Generate Ri and R̃i from Wd(ni − 1, Id), i = 1, . . . , I .
Compute W1, . . . , WI and W.
Compute Tj = W−1∑I

i=1 Wi T∗
i .

(End j loop)
Compute μ̂T = 1/m

∑m
j=1 Tj and �̂T = 1/(m − 1)

∑m
j=1 (Tj − μ̂T)(Tj − μ̂T)′.

Compute ‖ ˆ̃Tj‖ and ‖ ˆ̃μ0‖,where ˆ̃Tj = �̂
−1/2
T (Tj − μ̂T), j = 1, . . . , m, and ˆ̃μ0 = �̂

−1/2
T (μ0 − μ̂T).

Let 	j = 1 if ‖ ˆ̃Tj‖�‖ ˆ̃μ0‖; else 	j = 0.
1/m

∑m
j=1 	j is a Monte Carlo estimate of the generalized p-value for testing (3.6).

Let q{‖ ˆ̃T‖; 1−�} be the 100(1 − �)th percentile of ‖ ˆ̃Tj‖, j = 1, . . . , m, then the confidence region of μ and the

simultaneous confidence interval of �l , l = 1, . . . , d, can be obtained through (3.8) and (3.11), respectively.

3.1.2. The expected area or the expected d-dimensional volume and coverage probability of the confidence region
We will compute the coverage probabilities and the expected surface areas or the expected d-dimensional volumes

of the generalized confidence regions under d �2.

Remark 3. Suppose we have a confidence region of μ which satisfies the following inequality: (μ − μ̂)′V−1(μ −
μ̂)�c2, where V is a d × d positive definite matrix. The ellipsoid center is μ̂, and the axes of the ellipsoid are ±|c|√el

in the direction of �l , where el’s are the eigenvalues of V and �l’s are the corresponding eigenvectors, l = 1, . . . , d.
Thus the d-dimensional volume of μ can be computed by 
d/2cd/�(1 + d/2)

√|V|, where |V| is the determinant of
V and �(·)is gamma function. Specifically, for d = 2 and 3, the area and volume can be reduced to 
c2 × √|V| and
4
c3/3 · √|V|, respectively.

According to Remark 3, the d-dimensional volume of the confidence region in (3.8) derived by generalized method
are


d/2 · qd

{‖T̃‖; 1−�}
�(1 + d/2)

·√|�T|. (3.12)

The algorithm for computing the expected d-dimensional volume as well as coverage probability is given as follows.
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Algorithm 2. For a given (n1, . . . , nI ), (�1, . . . ,�I ) and μ:

For k = 1, . . . , K:
Generate X̄(k)

i ∼ Nd(μ, �i/ni), i = 1, . . . , I .
Generate U(k)

i ∼ Wd(ni − 1, �i/ni), i = 1, . . . , I .
Use Algorithm 1 to compute d-dimensional volume Hk of the confidence region in the kth iteration,

Hk = 
d/2 · q
d(k)

{‖T̃‖;1−�}/�(1 + d/2)

√
|�̂(k)

T |.
Use Algorithm 1 to compute coverage probability, set �k = 1 if

‖�̂−1/2(k)

T (μ − μ̂
(k)
T )‖�q

(k)

{‖ ˆ̃T‖;1−�}
;else �k = 0.

(End k loop)

1/K
∑K

k=1 Hk and 1/K
∑K

k=1 �k are Monte Carlo estimates of the d-dimensional volume and coverage probability
of the generalized confidence region, respectively.

3.2. Solutions based on other combined tests

We will briefly review three other confidence regions that are utilized to compare with our procedure in numerical
examples.

3.2.1. Solution based on Graybill and Deal (1959)
Graybill and Deal (1959) suggested a combined estimator �̂GD1, �̂GD1 =∑I

i=1 nix̄i/s
2
i /
∑I

i=1 ni/s
2
i , for the common

mean � and we further extend the idea to construct a confidence region of μ centered at the estimator μ̂GDd , μ̂GDd =
(
∑I

i=1 niS
−1
i )−1∑I

j=1 nj S−1
j x̄j . If we can find a cut-off point a� such that

P

{
I∑

i=1

ni(X̄i − μ)′S−1
i (X̄i − μ)�a�

}
= 1 − �, (3.13)

then the values of μ that satisfy (3.13) form the 100(1 − �)% confidence region of μ.

3.2.2. Solution based on Jordan and Krishnamoorthy (1995)
Jordan and Krishnamoorthy (1995) constructed a confidence region of μ centered at a weighted Graybill and Deal

estimator μ̂JK,

μ̂JK =
(

I∑
i=1

ciniS
−1
i

)−1 I∑
j=1

cjnj S−1
j x̄j ,

where the ci’s are some positive constants such that
∑I

i=1 ci = 1. Thus Graybill and Deal’s method can be treated as
a special case of Jordan and Krishnamoorthy’s method with c1 = · · · = cI . Since

∑I
i=1 cini(X̄i − μ)′S−1

i (X̄i − μ) is

distributed as
∑I

i=1 ciT
2
i and with (ni − 1)T 2

i ∼ (d/(ni − d))Fd, ni−d , thus the weights ci can be chosen as

ci = [V ar(T 2
i )]−1

/
I∑

i=1

[V ar(T 2
i )]−1 and V ar(T 2

i ) = 2d(ni − 1)2(ni − 2)

(ni − d − 2)2(ni − d − 4)
, i = 1, . . . , I .

Therefore, when the sample sizes are equal, the method proposed by Jordan and Krishnamoorthy (1995) is the same
as Graybill and Deal (1959). Finding a cut-off point b� which satisfies

P

{
I∑

i=1

cini(X̄i − μ)′S−1
i (X̄i − μ)�b�

}
= 1 − � (3.14)
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Table 1
Summary data in Example 1 and Example 2

n1 n2 x̄1 x̄2 s1 s2

Example 1 12 8

(
4.73
7.93

) (
5.29
8.57

) (
2.71 4.47
4.47 10.92

) (
4.23 1.58
1.58 2.23

)

Example 2 8 12

(
4.94
8.04

) (
5.21
8.89

) (
2.08 4.28
4.28 12.99

) (
5.38 1.37
1.37 2.83

)

is extremely complicated in practice, so Jordan and Krishnamoorthy (1995) suggested approximating b� by 
FId,�
with an additional requirement of ni > d + 4, for all i, where

� = 4IdM2 − 2(Id + 2)M2
1

IdM2 − (Id + 2)M2
1

, 
 = � − 2

�
M1, M1 = d

I∑
i=1

ci(ni − 1)

ni − d − 2
and

M2 = d(d + 2)

I∑
i=1

c2
i (ni − 1)2

(ni − d − 2)(ni − d − 4)
+ 2d2

∑
i>j

cicj (ni − 1)(nj − 1)

(ni − d − 2)(nj − d − 2)
. (3.15)

3.2.3. Solutions based on the classical method
In the classical procedure, practitioners usually ignore the non-homogeneity for mathematical tractability and simply

apply the Hotelling’s T 2 test. That is, we will assume that �1 = · · · = �I = � and then the point estimator of μ and the
pool covariance matrix are

μ̂cla. =
I∑

j=1

nj x̄j /N and S =
I∑

j=1

(nj − 1)Sj /(N − I ), (3.16)

respectively, where N =∑I
i=1 ni . The 100(1 − �)% confidence region of μ is{

μ : N(μ̂cla. − μ)′S−1(μ̂cla. − μ)� d(N − I )

N − I − d + 1
F1−�(d, N − I − d + 1)

}
, (3.17)

where F1−�(d, N − I − d + 1) is the 100(1 − �)th percentile of the Fd, N−I−d+1 distribution.

4. Illustrative examples

Two numerical examples are given to illustrate the advantages of our proposed method for setting confidence limits
and calculating confidence region for the common mean vector. For comparison purposes, these data are taken from
Jordan and Krishnamoorthy (1995). Furthermore, for the reasons that the results of Jordan and Krishnamoorthy (1995)
and Graybill and Deal (1959) are the same when the sample sizes are identical with the restriction ni > d + 4, for all i,
which is needed for the Jordan and Krishnamoorthy (1995)’s method, we choose n1 = 12, n2 = 8 in the first example
and n1 = 8, n2 = 12 in the second example. The summary data are given in Table 1.

In order to construct 95% simultaneous confidence intervals of �1 and �2 and calculate the area of the confidence
region of μ, we use Algorithm 1 with m = 10, 000 runs. For demonstration purposes, we will provide the results of six
procedures to make a comparison. The results appear in Table 2.

These comparisons presented in Table 2 correspond to

(1) GD: Graybill and Deal (1959).
(2) JK: Jordan and Krishnamoorthy (1995).
(3) Classical: the classical procedure with assumption of identical covariance.
(4) Generalized method: the generalized method proposed in this article.
(5) Sample 1: the procedure based on sample 1 alone.
(6) Sample 2: the procedure based on sample 2 alone.
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Table 2
Areas of 95% confidence region of μ and the simultaneous 95% confidence intervals of �1 and �2 for Example 1 and Example 2

Methods Point estimate μ̂ 95% Confidence interval of �1 95% confidence interval of �2 Area of 95% confidence region of μ

Example 1

(1)

(
4.92
8.39

)
(3.61, 6.29) (6.52, 10.26) 6.07

(2)

(
4.87
8.25

)
(3.61, 6.12) (6.12, 10.37) 5.79

(3)

(
4.95
8.19

)
(3.83, 6.07) (6.50, 9.88) 4.43

(4)

(
4.95
8.38

)
(4.03, 5.87) (7.07, 9.68) 2.88

(5)

(
4.73
7.93

)
(3.30, 6.15) (5.07, 10.80) 7.35

(6)

(
5.29
8.57

)
(2.77, 7.81) (6.75, 10.40) 12.40

Example 2

(1)

(
5.18
8.78

)
(3.90, 6.46) (6.91, 10.66) 6.42

(2)

(
5.20
8.85

)
(3.78, 6.62) (7.28, 10.41) 6.33

(3)

(
5.10
8.55

)
(3.85, 6.35) (6.94, 10.16) 5.55

(4)

(
5.18
8.77

)
(4.29, 6.07) (7.50, 10.05) 3.06

(5)

(
4.94
8.04

)
(3.17, 6.71) (3.63, 12.46) 13.88

(6)

(
5.21
8.89

)
(3.20, 7.22) (7.43, 10.35) 8.65

The results in Table 2 suggest that the classical method performs quite well in these two examples. The method
proposed by Jordan and Krishnamoorthy (1995) is slightly better than that of Graybill and Deal (1959) when the
sample sizes are not identical and the two-covariance matrices are not seriously heteroscedastic. The areas constructed
by methods (1)–(4), whose procedures are based on all samples, are smaller than the areas obtained by (5) and (6)
which are based only on one individual sample. The numerical results indicate that our proposed procedures based on
the generalized p-value and generalized confidence intervals are more satisfactory compared to the other procedures
considered.

5. Simulation studies

In simulation studies, we used Algorithm 2 with K =1000 iterations and Algorithm 1 with m=5000 runs to calculate
the coverage probabilities of the confidence regions of μ and the expected areas or expected d-dimensional volumes.
Jordan and Krishnamoorthy (1995) have mentioned that the confidence regions of (5) and (6) are larger than (2) under
the situation that the “generalized variances” between the sample mean vectors are not too large. Furthermore, we think
it is not reasonable to construct a confidence region of the common mean vector based only on one particular sample.
Therefore, we compared methods (1)–(4) in simulation studies with the various combinations of samples sizes and
covariance matrices. Since the sampling distributions of X̄’s are location invariant, without loss of generality, these
normal random vectors are generated with zero mean vector. Furthermore, according to eigen decomposition theorem,
for any positive definite matrix

∑
, there exists an orthogonal matrix P such that P ′∑P is diagonal (see also Rao,

1973, p. 39). Thus we chose �1 = Id and �i to be diagonal in simulation studies. The estimated expected surface areas
or the expected hyper-volumes of 95% confidence regions of μ as well as the corresponding coverage probabilities
under different scenarios are given in Tables 3–6.
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Table 3
Expected areas and corresponding coverage probabilities of 95% confidence regions of μ under �1 = I2 and �2 = n2

n1
aI2

n = (20, 10) (1) (2) (3) (4)

a

3 1.425 (0.953) 1.133 (0.952) 1.141 (0.943) 0.789 (0.946)
9 1.582 (0.949) 1.197 (0.948) 2.414 (0.922) 0.981 (0.943)
15 1.630 (0.948) 1.218 (0.948) 3.683 (0.913) 1.048 (0.954)
25 1.639 (0.947) 1.222 (0.948) 5.763 (0.903) 1.106 (0.947)
50 1.666 (0.951) 1.234 (0.950) 10.950 (0.898) 1.109 (0.945)
100 1.669 (0.952) 1.233 (0.951) 21.407 (0.897) 1.114 (0.950)
500 1.700 (0.958) 1.250 (0.957) 104.620 (0.898) 1.127 (0.948)

Table 4
Expected areas and corresponding coverage probabilities of 95% confidence regions of μ under �1 = I2 and �2 = diag(1, a)

n = (20, 10) (1) (2) (3) (4)

a

4 1.259 (0.949) 1.053 (0.954) 0.976 (0.947) 0.825 (0.947)
9 1.304 (0.951) 1.072 (0.946) 1.311 (0.938) 0.853 (0.952)
16 1.341 (0.953) 1.091 (0.954) 1.678 (0.841) 0.881 (0.946)
25 1.330 (0.952) 1.083 (0.951) 2.063 (0.934) 0.869 (0.950)
50 1.333 (0.948) 1.083 (0.946) 2.856 (0.936) 0.887 (0.951)
100 1.334 (0.942) 1.084 (0.945) 3.968 (0.925) 0.874 (0.945)
500 1.342 (0.944) 1.088 (0.949) 8.676 (0.930) 0.876 (0.953)

Table 5
Expected five-dimensional volumes and corresponding coverage probabilities of 95% confidence region of μ under �1 = I5, �2 = 3 × I5, and
�3 = a · I5

n = (10, 20, 15) (1) (2) (3) (4)

a

3 13.836 (0.940) 16.735 (0.946) 2.367 (0.952) 8.672 (0.955)
9 20.483 (0.931) 28.597 (0.941) 9.357 (0.937) 15.164 (0.960)
15 24.746 (0.952) 35.098 (0.962) 21.992 (0.926) 16.959 (0.954)
25 26.038 (0.944) 38.793 (0.962) 57.681 (0.916) 17.986 (0.959)
50 27.629 (0.951) 40.912 (0.958) 250.797 (0.860) 17.851 (0.950)
100 28.117 (0.937) 42.170 (0.956) 1189.15 (0.850) 18.674 (0.953)
500 28.883 (0.937) 43.674 (0.956) 59807.72 (0.830) 19.565 (0.955)

We also considered the cases with n=(10, 20) and n=(10, 10) in Tables 3 and 4, n=(10, 15, 20) and n=(10, 10, 10)

in Table 5 and n = (15, 12, 20) and n = (15, 15, 15) in Table 6. The numerical results showed the same pattern and
hence are not reported in the paper. From these tables, we find that the classical method performs well only when the
populations are almost homogeneous, but, as expected, its performance grows worse as the degree of non-homogeneity
increases. For overall comparisons, the three methods allowing heteroscedasticity are much better than the classical
approach when non-homogeneity is present. Between methods (1) and (2), there is no clear-cut winner. Graybill and
Deal’s method is preferable in the situation in which smaller sample sizes are associated with smaller variances,
whereas Jordan and Krishnamoorthy’s method is better when smaller sample sizes are associated with larger variances.
Hence, some knowledge regarding the relation between the sample size and population variance is necessary in order
to choose between these two methods. Furthermore, these two methods are under the restrictions of ni > d + 4,
thus they cannot be applied to populations with small sample sizes and high dimensions. However, it is clear that
our proposed method, derived through the concepts of generalized p-value and generalized confidence region, is not
constrained by this restriction and the results are mostly better than any of the existing methods in the senses of almost



S.H. Lin et al. / Journal of Statistical Planning and Inference 137 (2007) 2240–2249 2249

Table 6
Expected seven-dimensional volumes and corresponding coverage probabilities of 95% confidence region of μ under �1 = I7, �2 = 3 · I7, and
�3 = a · I7

n = (12, 15, 20) (1) (2) (3) (4)

a

3 60.071 (0.941) 93.157 (0.941) 3.175 (0.950) 27.749 (0.952)
9 128.119 (0.950) 680.555 (0.949) 34.596 (0.930) 75.758 (0.957)
15 146.985 (0.948) 1231.954 (0.957) 132.133 (0.901) 104.231 (0.948)
25 167.940 (0.955) 1953.954 (0.958) 588.661 (0.896) 128.694 (0.951)
50 183.259 (0.941) 2837.132 (0.945) 5127.91 (0.879) 149.833 (0.953)
100 193.690 (0.943) 3689.861 (0.956) 51495.91 (0.837) 163.402 (0.949)
500 208.448 (0.942) 4579.084 (0.956) 129905.94 (0.842) 169.208 (0.956)

always, with few exceptions, having the smallest expected areas or d-dimensional volumes as well as having good
coverage probabilities. Thus, we conclude that the generalized method is very efficient and readily applicable for
practical use.
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