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Abstract: This study presents the use of Tustin’s friction model and a disturbance observer to
improve the steady-state error of a bi-axial inverted pendulum system. Then, a three-phase control-
ler, including a swing-up control, a sliding-mode with feedback linearisation to control the angle of
the pendulum, and a sliding-mode plus PID control for the pendulum-cart system is employed to
eliminate the system’s nonlinear and unstable characteristics. Experimental results reveal that the
pendulum maximum angle of operation is +148(X-axis)/+128 (Y-axis); the steady-state error of
the pendulum angle is +0.28 (X-axis)/+0.38(Y-axis), and the cart position is within +4 mm.
Experimental results are illustrated and films are provided at the website http://midistudio.
myweb.hinet.net to show the effectiveness and robustness of the proposed control schema.
1 Introduction

As in the control of a rocket, the existence of an unstable
equilibrium point at the upright position and a stable equili-
brium point at the pendant position of an inverted pendulum
system is known as a suitable example to verify control
strategies for its nonlinear open-loop unstable behaviour.

Many approaches have been applied to control inverted
pendulum systems. Furuta et al. [1] used linear state feed-
back with an integrator controller to regulate a double-
inverted pendulum on an inclined rail. Tsachouridis and
Medrano-Cerda [2] implemented an H1 controller via a
robust reduced-order dynamic observer with an integrator
to control a triple-inverted pendulum on an inclined rail.
Some papers [3–7] performed different two-phase hybrid
control algorithms to swing-up and stabilise a pendulum-
cart system from the pendant position. A hammer was
adopted in [6] to cause an external disturbance force to
demonstrate the robustness of the system. Sprenger et al.
[8] balanced a two-dimensional (2D, the pendulum-cart
system possesses planar motion, i.e. the rod can rotate in
the X–Z and Y–Z plane, instead of 1D/2 rods and 1D/3
rods) inverted pendulum on a two-joint rotational robot.
They further compared the performance of three pendulum
angle sensors and concluded that the encoder is the best fol-
lowed by the Hall effect sensor with the potentiometer least
favoured. Cho and Jung [9] presented decentralised neural
networks for a circular trajectory position tracking control
while balancing a two-dimensional inverted pendulum on
an X–Y table. Similar to [9], Wai and Chang [10] used
decentralised adaptive sliding-mode control to track a peri-
odic sinusoidal command. However, no clear experimental
data were shown. The decentralised control of [8–10] treats
the coupling effects of a 2D pendulum-cart system as a
disturbance. Van der Linden and Lambrechts [11]
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implemented an H1 controller to eliminate the dry frictional
force between the cart and the rail to stabilise a pendulum-
cart system. Grasser et al. [12] built a revolutionary two-
wheeled inverted pendulum that can perform stationary
U-turns. Many experimental films are provided at their
website to show the performance of the revolution
machine. Table 1 shows the control strategies, types of
pendulum and friction compensation methods used in the
reference papers described above.

However, most authors have focused on control law, in
either the swing-up or the stabilising region. The frictional
forces that may degrade the system performance are
usually ignored or treated as a bounded uncertainty.
Some works consider friction compensation, but only for
Coulomb and/or viscous forces. The authors’ observation
show that Coulomb and/or viscous friction are not the
only existing forces that can cause undesirable phenomena
such as stick–slip oscillation, steady-state error and poor-
tracking performance.

In this study, instead of a two-phase controller as in the
past, the authors propose a three-phase controller that con-
siders cross-coupling effects. The method has advantages
for the maximum angle of operation and system robustness.
The overall control system shown in Fig. 1 consists of the fol-
lowing elements: the ab-filter [13] is used to estimate the cart
velocity _x and the pendulum angular velocity _Q; Tustin’s
friction model and a disturbance observer (DOB) based on
the cart velocity loop are proposed to compensate for the fric-
tional force f and disturbance d between the cart and the rail
of the pendulum-cart system; the Mux block combines vector
signals into a larger vector; the Demux block splits the vector
signal into smaller vectors; the block of three-phase control-
ler switching varied according to the angle of the pendulum
Q with output force F is designed to eliminate the nonlinear
and unstable characteristics and the three-phase control strat-
egies involve the following (see Fig. 2):

1. Swing-up the pendulum from rest (+188) to region II.
2. When the pendulum angle is in region II, the control of
the position of the cart is temporarily ignored and a sliding-
mode with feedback linearisation control is adopted to
stabilise the angle of the pendulum. This strategy has the
advantage of system robustness.
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Table 1: Control strategies in the references and this study

Reference Control

strategy

Pendulum

dimension/ rod

Friction

compensation

Photo/film

1 Linear state feedback with integrator 1D/2 rods

Inclined rail

Viscous model Photo

2 H1 control with integrator 1D/3 rods

Inclined rail

No No

3 Fuzzy (swing-up) and linear state feedback 1D/1 rod No Photo

4 Fuzzy (swing-up), adaptive sliding mode 1D/1 rod Coulomb/bounded

uncertainty

No

5 Energy approach (swing-up) and linear state feedback 1D/1 rod No No

6 Gray prediction (swing-up) and PD (hammer impact) 1D/1 rod Coulomb/bounded

uncertainty

Photo

7 Quasi-zero torque trajectory (swing-up) and linear-quadratic

regulator (LQR) control

1D/2 rods No Photo/film

8 Linear state feedback (decentralised algorithm) 2D/1 rod Coulombþ viscous

model

Photo

9 Neural networks (decentralised algorithm) 2D/1 rod No Photo

10 Adaptive sliding-mode (decentralised algorithm) 2D/1 rod No No

11 H1 control 1D/1 rod Coulomb/bounded

uncertainty

No

12 Pole placement 1D/1 rod No Photo/film

This study The three-phase control with performance specification

list (9 V battery impact) (ball balancing)

2D/1 rod Inclined

158 rail

(shown in film)

Coulombþ

stictionþ

Stribeckþ

viscous model

and DOB

Photo/film
3. When the pendulum angle is under +38, a sliding-mode
for controlling the angle of the pendulum plus a PID for
controlling the position of the cart are performed to stabilise
the system. The final control signals through the DAC and
the motor driver with servo gain KaKtKn are applied to
control the bi-axial pendulum-cart system. The experimen-
tal results show that the proposed approach effectively con-
trols the system.

The experimental setup of the bi-axial inverted pendulum
system includes the following:

1. A cart that moves within an operation range
320 � 320 mm on a ball-screw-driven X–Y table, where
the X-axis is on the top.
980
2. A pendulum with a maximum angle of inclination,+188,
is hinged on a universal joint to enable it to rotate freely in
the two-dimensional working space. Two 1800-Pulse/Rev
incremental optical encoders with an angular resolution of
0.058 are used to measure the angles of the pendulum.
3. Two 300 W DC motors with 1000-Pulse/Rev encoders
are used as actuators to drive the cart on the X–Y table
through the ball-screw. Since the pitch of the ball-screw is
5 mm, the resolution of the cart’s horizontal displacement
is 1.25 mm.
4. In torque mode, two motor drivers are applied to actuate
the DC motors with the following specifications; maximum
input voltage is +10 V and maximum output current is
15 A (transient) and 5 A (continuous).
5. A 4-axis motion control card is connected between a PC
and the pendulum-cart system to record the angles of the
Fig. 1 Whole control loop of the bi-axial inverted pendulum system
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pendulum and the positions of the cart, and to send DAC
signals to the motor drivers.
6. The host computer was an AMD K6-2 500 MHz PC and
the control algorithm was written in Borland Cþþ 3.1 with
a sampling rate of 500 Hz.

2 System modelling

The two-dimensional inverted pendulum system, as shown
in Fig. 3, is adopted to formulate the equations of motion.
Tables 2 and 3 are the nomenclature and values of the
real system. The equations of motion can be obtained by
using the Euler-Lagrange formulation as follows

€x

€y

� �
¼

c3c0 �c3c1

��c3 �c1 �c3 �c0

� �
ðFx � fxÞ

ðFy � fyÞ

" #
þ

c3c2

�c3 �c2

� �
ð1Þ

ü

f̈

" #
¼

�c4c6c3c0 c4c6c3c1

�c4 �c6 �c3 �c1 ��c4 �c6 �c3 �c0

� �
ðFx � fxÞ

ðFy � fyÞ

" #

þ
�c4c6c3c2 þ c4c5 � c4tu

��c4 �c6 �c3 �c2 þ �c4 �c5 � �c4tf

" #
ð2Þ

where

k0x ¼ m0x þ m1 þ m2

k0y ¼ m0y þ m1 þ m2

k1 ¼ m1l1 þ m2l2

k2 ¼ J1 þ J2 þ m1l2
1 þ m2l2

2

Fig. 2 Three-phase controller, switching varied according to the
angle of the pendulum

Fig. 3 Coordination of the two-dimensional inverted pendulum
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Dx ¼ k0xk2 � k
2
1 cos2 u

Dy ¼ k0yk2 � k2
1 cos2 f

c0 ¼ k2Dy cos f

c1 ¼ k2
1k2 cos2 f sin f sin u

c2 ¼ k1D y cos u � tu � k0yk1k2 cos f sin f sin u � tf

þ k1 k2Dy cos f½cos f sin uðu̇
2
þ ḟ

2
Þ þ 2u̇ ḟ sinf

� cos u� þ k0yk1 k2 cos f sin2 f sin uðk1 g cos u

� k2u̇
2

cos fÞ � k3
1 k2 cos2 f sin2 f sin uḟ

2

� k1Dy cos f cos uðk1g sin uþ 2 k2ḟ u̇ sin fÞ

c3 ¼ ðDxDy cos f� k0yk
2
1k2 cos f sin2 f sin2 uÞ�1

c4 ¼ ðk2 cos fÞ�1

c5 ¼ k1g sin uþ 2 k2ḟ u̇ sin f

c6 ¼ k1 cos u

and �ci can be obtained by interchanging (x, u) with (y, f) in
ci, i.e.

�c0 ¼ k2Dx cos u

�c1 ¼ k2
1k2 cos2 u sin u sin f

�c2 ¼ k1Dx cos f � tf � k0xk1k2 cos u sin u sin f � tu

þ k1k2Dx cos u½cos u sin fðḟ
2
þ u̇

2
Þ þ 2ḟ u̇ sin u

� cos f� þ k0xk1k2 cos u sin2 u sin fðk1g cosf

� k2ḟ
2

cos uÞ � k
3
1k2 cos2 u sin2 u sin fu̇

2

� k1Dx cos u cos fðk1g sin fþ 2k2u̇ ḟ sin uÞ

�c3 ¼ ðDyDx cos u� k0xk
2
1k2 cos u sin2 u sin2 fÞ�1

�c4 ¼ ðk2 cos uÞ�1

�c5 ¼ k1g sin fþ 2k2u̇ ḟ sin u

�c6 ¼ k1 cos f

The following symbols are defined as

x ¼ ½ x y �
T; Q ¼ ½ u f �

T; F ¼ ½Fx Fy �
T;

f ¼ ½ fx fy �
T;

t ¼ ½ tu tf �
T;Xd ¼

ud u̇ d xd _xd

fd ḟ d yd _yd

" #T

;

X ¼
u u̇ x _x

f ḟ y _y

" #T

From (1), (2), it is observed that the frictional force f and the
joint frictional torque t will degrade the performance of the
pendulum-cart system.

3 Tustin’s friction model and the disturbance
observer

The static Tustin friction model [14, 15] and the disturbance
observer [16, 17] are employed to compensate for the fric-
tion and disturbance between the cart and the rail. Tustin’s
model, shown in Fig. 4, comprises Coulomb force, stiction
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force, Stribeck force and viscous force and is expressed as
follows

f ¼ Td þ ðTh � TdÞe
�ðv=vsÞ þ Bv ð3Þ

In Tustin’s model, the schema shown in Fig. 5 is used to
establish the friction-velocity map. Since steady-state
velocity is concerned with obtaining the friction-velocity
map, the effect of phase shift induced by a digital-
to-analogue converter (DAC), encoder and ab-filter is
negligible in the case. When the system’s velocity response
v reaches a steady state, i.e. v ¼ vss, the input force to the
pendulum-cart is equivalent to the frictional force. Fig. 5
equals the following

Bvss þ Tf ¼ KpKaKtKnðu � vssÞ ð4Þ

where Tf ¼ Td þ ðTh � TdÞe
ð�v=vsÞ.

Varying the step command u from low velocity to high
velocity yields the force set KpKaKtKnðu � vssÞ and the
pendulum-cart velocity response set vss. Meanwhile, the
stiction force is obtained by using the open-loop breakaway

Table 2: Nomenclature

Symbol Description

x=y position of the cart at the X/Y axis

u=f angle of pendulum about the X/Y direction

Fx=Fy control force on the X/Y axis

fx=fy frictional force on the X/Y axis

tu=tf joint frictional torque in the u=f direction

m0x=m0y cart mass of X/Y axis

m1 pendulum head mass

m2 rod mass

meq ¼ m1 þm2 equivalent mass of the pendulum

M the summation of the cart mass and meq

l1 length of the pendulum from the head to the

cart

l2 half-length of the rod

leq equivalent length of the pendulum

r1 radius of the pendulum head

r2 rod radius

rjoint bearing radius of the joint

J1 moment of inertia of the pendulum head with

respect to the cart

J2 moment of inertia of the rod with respect to

the cart

Ka motor driver gain

Kt motor torque constant

Kn ballscrew transfer factor

KaKtKn servo gain

Kp gain

Td Coulomb force between the cart and the rail

Th stiction force between the cart and the rail

vs Stribeck velocity constant

v cart velocity

B viscous damping coefficient between the cart

and the rail

jbx
=jby

joint viscous damping coefficient in the X/Y

direction

jCx
=jCy

joint Coulomb force in the X/Y direction
982
test. A voltage increase of 2214 V/s is applied to the
pendulum-cart system. The Th is obtained from the abrupt
change in the pendulum-cart position response with the
threshold set at two encoder counts. Fig. 6 plots the friction-
velocity experimental data. The parameters of Tustin’s fric-
tion model for both axes are obtained by using the
least-square method. The equations are as follows:

fx

fvþx ¼ ½0:4151 þ ð0:54 � 0:4151Þe�ðv
þ
x =738:9Þ

þ11:1871vþx �

fv�x
¼ �½0:4701 þ ð0:55 � 0:4701Þe�ðjv

�
x j=839:2Þ

þ12:976jv�x j�

N

8>>>><
>>>>:

ð5aÞ

fx

fvþy ¼ ½1:7789 þ ð2:4311 � 1:7789Þe�ðv
þ
y =3662:5Þ

þ54:7558v
þ
y �

fv�y
¼ �½2:116 þ ð2:9596 � 2:116Þe�ðjv

�
y j=4094:1Þ

þ68:5919jv�y j�

N

8>>>><
>>>>:

ð5bÞ

In relation to the pendulum joint friction, the Stribeck force
cannot be experimentally observed, only the viscous force
and Coulomb force are considered. The parameters are
obtained by comparing the experimental data on the

Fig. 4 Tustin’s friction model

Table 3: Parameters of the real system

m0x 3.1 kg

m0y 14.2 kg

m1 0.25 kg

m2 0.05 kg

meq 0.3 kg

l1 0.32 m

l2 0.1675 m

leq 0.2946 m

r1 0.025 m

r2 0.004 m

rjoint 0.0045 m

J1 8.6 � 1023 kg . m2

J2 4.68 � 1024 kg . m2

Kt 2.65 kg . cm/A

Kn Force=Torque ¼ 2p=0:005

KaKtKn 2.3 N/V (X-axis); 10.57 N/V (Y-axis)

Kp 1.5
IET Control Theory Appl., Vol. 1, No. 4, July 2007



Fig. 5 Control schema used in constructing Tustin’s friction model
natural oscillation of the pendulum with the following
equation

€Qþ
r2

joint

l2
eqmeq

jb
_Qþ

g

leq

sin Q�
rjoint

l2
eqmeq

jC sgnðQÞ ¼ 0 ð6Þ

where jb ¼ ½ jbx
jby
�
T, jC ¼ ½ jCx

jCy
�
T. The jb and jC

are obtained as follows

jb ¼ ½45 30�T kg =s; jC ¼ ½0:168 0:168�T N

Since the frictional force of the physical plant depends on
time, temperature, the position of the cart and other
factors. The static Tustin’s friction model cannot exactly
model the frictional force at all times. Moreover, external
disturbances and plant uncertainties will degrade the per-
formance of the system. For the cart velocity feedback
loop system, the DOB shown in Fig. 7 is employed to
solve this problem. In Fig. 7, the PðsÞ ¼ KaKtKn=ðMsþ BÞ
denotes the transfer function of cart model including the
servo gain between cart velocity command and response;
PnðsÞ is nominal plant of PðsÞ; d is disturbance; 6ðsÞ is
measurement noise. A DOB is generally introduced into
motion control systems to eliminate the ‘equivalent disturb-
ance’ as much as possible, and to force the actual system to
become a nominal plant. The details of how a DOB works
have been explained elsewhere [16, 17]. In DOB, Q(s)
can be interpreted as a complementary sensitivity function.
Therefore, a sensible choice is to let the low frequency
dynamics of Q(s) close to one for disturbance rejection
and model uncertainties. In this study, a second-order
Butterworth lowpass filter (LPF) [18]

QðsÞ ¼
1

ðs=wcÞ
2
þ

ffiffiffi
2

p
ðs=wcÞ þ 1

ð7Þ

is designed so that the equation QðsÞ=PnðsÞ in DOB is a
strict proper function. The cutoff frequency wc is designed
at 100 Hz and the zero-order hold (ZOH) equivalence
of the analogue filter is used to determine the digital
Butterworth LPF Q(z) with a sampling rate of 500 Hz.
Since the closed-loop system bandwidth of the pendulum-
cart system is around 3 rad/s in our study, the difference
of phase shift between a continuous LPF and the digital
one is negligible. The parameters of Q(z), PnðsÞ and
ðQ=PnÞðzÞ are listed in Table 4. Therefore, the DOB
output 2d(z) is obtained as

�dðzÞ ¼ QðzÞF�
�

Q

Pn

ðzÞẋ

� �
N ð8Þ

4 Design of control law

In this section, Tustin’s friction model and the DOB are
assumed to compensate for the friction and disturbance
between the cart and the rail. The three-phase controller,
IET Control Theory Appl., Vol. 1, No. 4, July 2007
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Table 4: Parameters of DOB

Q(z) Pn(s)
Q

Pn
ðzÞ

0:4215z�1 þ 0:229z�2

1� 0:5186z�1 þ 0:1691z�2
Pnx ðsÞ ¼

2:3

3:4s þ 12

Q

Pnx
ðzÞ ¼

421:4768z�1 � 418:083z�2

1� 0:5186z�1 þ 0:1691z�2

Pny ðsÞ ¼
10:57

14:5s þ 61:68

Q

Pny
ðzÞ ¼

391:54z�1 � 387:75z�2

1� 0:5186z�1 þ 0:1691z�2
switched according to the pendulum angle Q, is designed to
cope with the bi-axial pendulum-cart system. The control
strategies involve the following:

Region I: Swing-up control.
When the pendulum rests at +188, the cart is accelerated
for a short time and then pushed back immediately to erect
the pendulum into region II. The swing-up algorithm is

F ¼
a sinQ; t � 0:5 s

�a sinQ; t . 0:5 s

�
where a ¼

5

sin 18W
KaKtKn ð9Þ

Region II: Sliding-mode with feedback linearisation control
for the angle of the pendulum.

When the angle of the pendulum is in region II, the
control of the position of the cart is temporarily ignored
and will be reactuated in region III. A sliding-mode
[19, 20] with feedback linearisation control is implemented
to ensure the erection of the pendulum and to drive the angle
of the pendulum into region III. The control strategy pro-
vides the advantages of maximised operation angle of the
pendulum and system robustness. The control law in this
region is

F ¼ �
�c4c6c3c0 c4c6c3c1

�c4 �c6 �c3 �c1 ��c4 �c6 �c3 �c0

� ��1

�
�c4c6c3c2 þ c4c5 � c4tu þ ðku̇ u̇ þ kuu� uxÞ

��c4 �c6 �c3 �c2 þ �c4 �c5 � �c4tf þ ðkḟ ḟ þ kff� uyÞ

" #

ð10Þ

Setting kQ ¼ ½ku kf�
T and k _Q ¼ ½ku̇ kḟ �

T as positive
definite and substituting (10) into (2) yields

€Qþ k _Q
_Qþ kQQ ¼

d

dt
þ l1

� �
d

dt
þ l2

� �
Q

¼ uþ e0 ð11Þ

where li . 0, u ¼ ½ux uy�
T, and e0 denotes the uncertain-

ties of the system such as the measurement error of the pen-
dulum angle Q and the estimation error of _Q determined
using the ab-filter. In this study, the sliding surface is
taken as

s ¼ ½sx sy�
T
¼

d

dt
þ l2

� �
Q ð12aÞ
and the switching force

u ¼ �g sgnðsÞ ð12bÞ

where g . jje0jj.
Substituting (12) into (11) and multiplying by sT yields

sT
ð_sþ l1sÞ ¼ �gjsj þ sTe0 , 0 ð13Þ

Since sTl1s . 0, therefore sT_s , 0, 8s = 0.
Equation (11) is asymptotically stable. The pendulum

angle can reach the sliding surface in a limited time and
slide toward the desired state Q ¼ 0. In this study, the
sliding-mode gains kQ and k _Q, the value of li and the
sliding surface s are listed in Table 5.

Region III: Sliding-mode for controlling the angle of the
pendulum plus PID for controlling the position of the cart.

In this region, the controls for the pendulum angle and the
cart position are considered simultaneously to stabilise the
bi-axial pendulum-cart system. The control law is designed as

F¼�
�c4c6c3c0 c4c6c3c1

�c4 �c6 �c3 �c1 ��c4 �c6 �c3 �c0

� ��1

�
�c4c6c3c2þc4c5�c4tuþðku̇ u̇þkuu�Dxðxe;ẋeÞ�uxÞ

��c4 �c6 �c3 �c2þ �c4 �c5� �c4tfþðkḟ ḟþkff�Dyðye;ẏeÞ�uyÞ

" #

ð14Þ

where Dxðxe; _xeÞ¼kpx
xeþkdx

_xeþ
Ð

kix
dxe and Dyðye; _yeÞ¼

kpy
yeþkdy

_yeþ
Ð

kiy
dye.

Let

Dðxe; _xeÞ ¼ ðkpxe þ kd _xe þ

ð
ki dxeÞ ð15Þ

where Dðxe; _xeÞ ¼ ½Dxðxe; _xeÞ Dyð ye; _yeÞ�
T. Substituting

(14) into (2) yields

€Qþ k _Q
_Qþ kQQ ¼ uþ e0 þ Dðxe; _xeÞ ð16Þ

The PID gains of Dðxe; _xeÞ should be selected such that its
effects on the pendulum angle can be eliminated by the
switching force of the sliding-mode

u ¼ �g sgnðsÞ ð17Þ

where g . jje0 þ Dðxe; _xeÞjj:
Therefore, the pendulum angle can be kept in the sliding

surface when the cart position control is reactuated in this
region. Concerning the sliding-mode chattering, a boundary
layer will reduce chattering along the manifold but will also
Table 5: Control parameters of region II

kQ k _Q li s

½254:5 145:6�T ½32:02 24:3�T (217.3 214.7)/X-axis ½u̇ þ 14:7u ḟ þ 10:8f�T

(213.5 210.8)/Y-axis
IET Control Theory Appl., Vol. 1, No. 4, July 2007



reduce the control performance. In our study, the exper-
iments were performed once using a boundary layer, but
the performance deteriorated. Therefore, results without
using a boundary layer are presented and furthermore, for
the underlying system, the chattering can be tolerated and
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Fig. 8 Bi-axial control performance by the three-phase controller

a Position, angle and control about the X-axis
b Position, angle and control about the Y-axis

Table 6: Comparison of steady-state error among
several compensation strategies

Control strategy jue jmax jxe jmax

Three-phase

controlþDOBþ Tustin’s

model (this study)

0.28 4

Three-phase control 1.28 31 mm

Three-phase controlþDOB 1.18 27 mm

Three-phase controlþ Tustin’s 0.38 6.5 mm

Three-phase controlþ (Tustin’s

– Coulomb)

1.08 22.5 mm

Three-phase controlþ (Tustin’s

– viscous)

1.18 26 mm

Three-phase controlþ (Tustin’s

– Stribeck)

0.48 9 mm
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the system performs well. Since the PID gains are incor-
porated in the sliding-mode control loop, the tuning is a
compromise between the switching gain g and the perform-
ance of the cart position. The values are set to g ¼ 0.5,
kp ¼ ½60 52�T, kd ¼ ½20 14�T and a small integral gain
ki ¼ kp=1000. Herein, Dðxe; _xeÞ and e0 are estimated to
be 0.4 and 0.003, respectively. Substituting the feedback
gains kQ, k _Q, kp and kd into the linearised pendulum-cart
system yields the eigenvalues of X-axis and Y-axis
as(28.85 + 7.61i 20.338 + 1.79i) and (27.05 + 3.46i
20.129 + 2.52i). The zeros of the two axes are the same,
+4.9, revealing that the system is a non-minimum phase
system.

Substituting (14) into (1) yields

€x þ 1
c4c6

½Dxðxe; _xeÞ � ðku̇ u̇ þ kuu� uxÞ� �
1
c6
ðc5 � tuÞ

€y þ 1
�c4 �c6

½Dyðye; _yeÞ � ðkḟ ḟ þ kff� uyÞ� �
1
c̄6
ðc̄5 � tfÞ

" #

¼ 0

ð18Þ

When the pendulum angle reaches the sliding surface
and slides toward Q ¼ 0, the pendulum-cart system is
obtained as

€xþ
k2

k1

ðkpxe þ kd _xe þ

ð
kidxeÞ þ

rjoint

k1

jC þ e1 ¼ 0 ð19Þ

where e1 ¼ ð18Þ � ð18Þj
Q¼ _Q¼0

. Eq. (19) reveals that the
system’s steady-state error induced by both jC and e1
could be suppressed by the small integral gain Ki.
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Fig. 9 Experimental photograph and data on rapid shift of the
pendulum-cart system

a Experimental photograph
b Experimental data
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5 Experimental results

In software design, the values of Tustin’s friction model f,
the DOB output 2d and the control force F described in
the previous sections should be divided by the servo gain
KaKtKn. Fig. 8 plots the experimental data of the bi-axial
three-phase control with friction compensation and DOB
(Film: Pendulum_Precision). Table 6 summarises the
control performance of the X-axis for several compensation
strategies. The results show that the control strategy pro-
posed is the best, which improves the control performance
more than six times as compared to the method of no com-
pensation. Moreover, compensation for the viscous force is
more important than for the Coulomb force. Notably, the
Stribeck force compensation also contributes to the per-
formance of the system (Film: Friction_Cmp_OX). The fol-
lowing experiments were conducted to verify that the
proposed control schema ensured the system stability and
robustness:

1. Maximum operation angle (MOA) test: The MOA is an
important performance index for the three-phase controller.
In this experiment, the swing-up control in region I is tempor-
arily inactive. The operation angle to trigger the controller in
region II is varied from jQj ¼ 10W to jQj ¼ 18W. The rod is
slowly pushed from rest to an angle Q. When the pendulum
rod reaches angle Q, a small force is applied to the rod to
push it into region II and to determine whether the pendu-
lum is erect. This procedure is repeated on the X-axis/
Y-axis. The MOA is obtained jQjmax ¼ ½14W 12W�

T

(Film: Max_Operation_Angle_Test). Moreover, if only
the region III is active, MOA is jQjmax ¼ ½7W 6W�

T.
2. Robustness test for system in region II: Fig. 9a shows
two 200 mm-long plastic tubes glued in parallel on top of
the pendulum. When the pendulum is in a steady state, a
ping-pong ball is placed on the two tubes. A 200 mm
rapid shift is performed. The experimental data plotted in
Fig. 9b demonstrates that when the angle of the pendulum
reaches juj ¼ 3W from region III, the control strategy
switches to region II control, and then the pendulum is
pushed back to region III. Therefore, the three-phase con-
troller, especially that in region II, has important advantages
of system stability and robustness. Additionally, the non-
minimum phase phenomenon of the cart position occurs
at 1.1 s in the sub-figure, ‘Position of X-axis’, of Fig. 9b
(Film: X_Ball_RapidShift_Impact).
3. A 9 V battery is used to impact the pendulum head to
verify the robustness of the system (see Fig. 1 and Film:
Bi-Axis_Impact).

6 Conclusions

In this study, Tustin’s friction model and the disturbance
observer are applied to compensate for friction and disturb-
ance between a cart and a rail. Then, a three-phase control-
ler, switched according to the angle of the pendulum, was
proposed to swing-up and stabilise the pendulum-cart
system. The experimental results show that the proposed
986
approach effectively controls the bi-axial inverted pendu-
lum system. An interesting finding is that the control strat-
egy in region II, by stabilising only the angle of the
pendulum, provides important advantages of system stab-
ility and robustness. Many films are provided at the
website http://midistudo.myweb.hinet.net to demonstrate
the system’s stability and robustness.
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