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Device drivers are the most unreliable part of an operating system. In this paper, we 

propose a framework called nDriver. Based on the design diversity concept, it uses mul-
tiple implementations of a device driver to survive from driver faults. Once a fault hap-
pens in a driver, nDriver can dynamically replace the faulty driver with another imple-
mentation, instead of allowing the faulty driver to crash the system. The unique features 
of nDriver are as follows. First, it can detect two major kinds of driver faults, the excep-
tion and blocking faults. Second, the requests issued to the driver will not be lost due to 
the driver replacement. Third, the driver replacement is transparent to all the other kernel 
subsystems. Fourth, nDriver requires no modification to the existing operating system or 
driver codes. 

The major contribution of this work is that nDriver implements the concept of de-
sign diversity at the device driver layer. Moreover, it achieves the goal of seamless 
driver replacement and improves operating system availability without modifying the 
existing operating system or driver codes.  

We implemented nDriver as a kernel module in Linux. Currently, it can recover the 
system from faults in network device drivers. However, the mechanisms can be adapted 
to other module-based device drivers with a slight extension. According to the perform-
ance evaluation, the overhead of nDriver is no more than 3.5% and the recovery time is 
quite small. This indicates that nDriver is an efficient mechanism to increase the avail-
ability of an operating system.  
 
Keywords: fault recovery, device driver, design diversity, driver replacement, operating 
system availability 
 
 

1. INTRODUCTION 
 

With the current high reliance on computer systems, system availability is increas-
ingly important, and for a growing number of systems, keeping them always available is 
no longer optional but mandatory. According to previous research, software faults ac-
count for a larger portion of system unavailability than hardware failures [1-4]. Moreover, 
the latter can generally be masked through component redundancy [5-8]. Therefore, 
software plays a critical role in system availability. 

Since most of the software relies on the underlying operating systems, reliability of 
an operating system is critical for a highly available computer system. Unfortunately, due 
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to the high complexity of operating systems, it is nearly impossible to make them error- 
free. The most error-prone part of an operating system is the device drivers. It has been 
shown that the error rate of device drivers can be three to seven times higher than that of 
the other kernel subsystems [9, 10]. This is because most drivers are developed by the 
engineers of the hardware device vendors, who are not as familiar with kernel program-
ming as the original kernel developers are.  

Since a device driver is a part of the kernel, a fault occurring in a driver is a kernel 
fault, and it usually results in a kernel panic or a system hang. This causes the services 
running on top of the operating system to become unavailable. However, a faulty driver 
usually does not pollute the state of the other kernel subsystems. Therefore, it is possible 
to recover the system from the driver faults, and hence allow the services running on top 
of the kernel remain available.  

In this paper, we propose a framework called nDriver to enable device drivers sur-
viving from software faults. We address on two kinds of faults, blocking and exception 
faults. The former leads to kernel hang, while the latter causes kernel panic. According to 
a previous study [9], these two kinds of faults are responsible for most of the faults hap-
pening in a driver.  

The basic idea of the nDriver approach is to try another driver implementation if the 
current one fails. Based on the design diversity concept [11, 12], we use multiple driver 
implementations for a device so that if the current driver fails, nDriver can detect it and 
replace the faulty driver with another one. 

Multiple driver implementations can be obtained in the following ways. First, there 
are usually patches for a driver implementation, and by applying these patches to the 
original driver implementation, another implementation is produced. Second, there may 
be multiple driver implementations (from different developers) for a device or multiple 
devices that use a common chipset. For example, the Linux kernel 2.4.2 includes two 
drivers for the RealTek RTL8129 Fast Ethernet device. Third, there may exist a generic 
but regressive driver for the device. For example, the ne2000 NIC (Network Interface 
Card) device driver can also be used to drive many NICs of different vendors.  

To achieve the goal of seamless driver replacement, the following requirements 
must be satisfied. 
 

 Non-stop services. The services or applications running on top of the system should 
continue running without interruption even when a driver fails. 

 Automatic fault detection. Blocking and exception faults should be detected automati-
cally, without the help of the system administrators. 

 Zero-loss system requests. Generally, removing a driver causes the loss of its internal 
data, including the requests issued to it. However, to achieve the goal of seamless 
driver replacement, all the uncompleted requests should be retained and then re-issued 
to the new implementation. 

 Kernel state maintenance. A driver may have made changes to the global kernel state 
(e.g., it may have requested some kernel resources). Therefore, the kernel state should 
be recovered when the faulty driver is removed. Moreover, all the external references 
to the original driver should be redirected to the new one. Otherwise, the kernel will be 
likely to crash due to these dangling references. 
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In this paper, we will show how the nDriver framework satisfies the above require-
ments. We have implemented a prototype of this framework in the Linux kernel, and 
currently it can survive NIC driver faults. We believe that the mechanisms can be 
adapted to other module-based device drivers with a slight extension. According to the 
experimental results, nDriver leads to only little performance overheads (i.e., less than 
3.5% in the case of a Gigabit Ethernet driver). Moreover, the recovery time is quite small. 
This indicates that nDriver is very efficient for increasing the availability of an operating 
system. 

The rest of this paper is organized as follows. In section 2 we describe our design 
issues and the flow of recovering a device driver fault, which is followed by the descrip-
tion of the implementation details in section 3. Section 4 shows the experimental results. 
Section 5 presents the limitations and further extensions of our current implementation. 
Section 6 shows the related work, which is followed by the conclusion presented in sec-
tion 7. 

2. DESIGN 

In this section, we elaborate on the method of surviving from driver faults. When a 
fault occurring in the driver is detected, the recovery mechanism is triggered. Briefly 
speaking, the recovery process involves removing the faulty driver, undoing the changes 
caused by it, inserting the new driver, reconfiguring it, and retrying the previously-failed 
function in the new driver. 

The same fault may not occur again in the new driver due to the following reasons. 
First, if the fault happens due to a known bug that has been fixed in the new driver, the 
fault will not happen again. Second, the new driver may be implemented by different 
developers so that the same bug can seldom happen in both the old and the new drivers. 

Fig. 1 illustrates the components of the nDriver. The guard wrapper and the fault 
detector are responsible for detecting exception and blocking faults. The undo manager is 
responsible for removing the faulty driver, undoing the changes it made, and inserting the 
new driver. Finally, the configuration manager is responsible for reconfiguring the new 
driver. 

In the following sections, we provide a detailed description for the nDriver frame-
work. First, we will present the fault detection approach, which is followed by the de-
scription of how to keep the system state correct and consistent after a fault occurs. Then, 
we present the approach for solving the problem of dangling references. Finally, we de-
scribe the detailed flow of the recovery process. 
 
2.1 Fault Detection 
 

The fault detector is responsible for detecting exception and blocking faults. An ex-
ception fault occurs when the driver performs an operation such as accessing a NULL 
page, dividing the operand by zero, executing an invalid opcode, etc. To detect such 
faults, we replace the kernel exception handlers (such as the page-fault and the divide- 
by-zero handlers) with our own ones. Therefore, raising a CPU exception will trigger our 
exception handler, which will then invoke the undo manager to recover the fault. 
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Fig. 1. Architecture overview. 

 
In addition to exception faults, a faulty driver may also lead to system hangs (i.e., 

blocking faults), which cause the system not to respond. Blocking faults usually result 
from careless driver design such as entering an infinite loop (e.g., for, while, or goto 
loops) or trying to get a spinlock which is grabbed by another blocked kernel thread. To 
recover from such faults, we use a timeout-based approach. Before executing a driver 
function, we set up a software timer in order to measure the time it takes to execute the 
driver function. If the driver function occupies the CPU for a long time, it will be re-
garded as a faulty function and the time-out handler will be triggered to recover from the 
fault. The accounting of the execution time is through timer interrupts, which occur every 
10ms.  

Although the approach based on time-outs is straightforward, two issues must be 
addressed to make it become an effective technique for preventing driver hangs. The first 
issue is how to determine the time-out value of a driver function. Because the execution 
time of different driver functions varies, we can not use a fixed time-out value for all the 
driver functions. Instead, the time-out value of a driver function is set to its average exe-
cution time plus a guard time.1 Note that the time-out values are not required to be highly 
accurate, and the 10-ms granularity is accurate enough for detecting blocking faults. 

Another issue is how to prevent the software timer approach from becoming useless 
if the driver function disables interrupts. This is possible since many existing drivers dis-
able interrupts for synchronization. To solve this problem, we replace the original inter-
rupt-disabling/enabling functions, namely cli() and sti(), and the timer interrupt handler. 
Instead of disabling the interrupt pin of the CPU, the new cli() function masks all the 
interrupts except for the timer interrupt. In this way, our software timer still works after 
calling cli(). Note that our timer interrupt handler will not invoke the original timer-  
interrupt handler when the interrupts are disabled. This preserves the interrupt-disabled 
semantic. 

 
1 Currently, we measure the average execution time of the function on the target machine in advance and then

set the time-out value accordingly. Obviously, such measurement should be performed again if we want to 
apply the framework to another machine with different performance. To ease the effort, we plan to make
such measurement automatic and integrate it into the nDriver framework in the future. 
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Note that the replacement of the cli()/sti() is achieved by linking the driver with the 
new version of the functions. Thus, the existing operating system and driver codes are 
not needed to be modified. 
 
2.2 State Maintenance 
 

We divide the system state that the driver may modify during its execution into 
three parts: driver state, kernel state, and driver requests. The driver state is the local 
state of the device driver; the kernel state is the global kernel state that may be changed 
by the driver; and the driver requests are the requests that are currently processed by the 
driver and the corresponding device. During the recovery period, we undo the changes 
the driver made to the kernel state, and the driver state is discarded and rebuilt from 
scratch. For the driver requests, we record them so that they can be re-issued to the new 
driver implementation after recovery. 

Generally, a driver changes the kernel state through functions provided by the ker-
nel. Such functions may request kernel-managed resources, register a new driver, or ex-
change information between the driver and the kernel. For example, a driver may acquire 
IRQs, timers, IO regions, or locks from the kernel. We refer such functions as callout 
functions since the control transfers from the driver to the kernel during the invocations 
of these functions. Note that the kernel provides a counterpart for each callout function. 
For example, the callout function request_irq() can be used to acquire an IRQ, and its 
counterpart free_irq() is used for releasing an IRQ. Such counterparts are referred as 
undo routines. Generally, such undo routines should be invoked during the termination 
of a driver so as to undo the changes a driver made to the global kernel state. However, 
they will not be invoked if a driver fault happens. In order to undo the changes, we inter-
cept the invocations of the callout functions and record them in an action list. During the 
recovery period, the undo routine of each callout function on the list will be invoked in 
order to undo the changes caused by the function. 

It is worth noting that a device driver may invoke only a small subset of kernel-  
provided functions.2 This is because the main purpose of a device driver is just to drive 
the device. For example, a driver does not usually perform IPC operations, which are 
difficult to rollback.3 Thus, we focus on the set of functions which may be invoked by 
the driver, and find out the corresponding undo routines manually. 

As mentioned above, we discard the driver state and rebuild it from scratch during 
the recovery period. The reasons are as follows. First, the driver state is polluted after a 
fault emerges from the driver. Second, different driver implementations may use differ-
ent data structures, and thus the old driver state can not directly be used by the new 
driver implementation. The new driver should implement a state transfer function if it 
wants to reuse the old state. This implies that all the driver implementations are needed 
to be modified, which is impractical. 

For the driver requests, we backup all the unfinished requests in case they will be 
lost when the driver fails. Each time the kernel sends a request to the driver, we make a 
copy of the request and insert the copy to a per-driver unfinished request list. When the 

 
2 We examined more than 40 drivers and found that the number of kernel functions called by those drivers is 89. 
3 It is not enough to rollback an IPC operation by canceling it or undoing it. The receiver may be triggered by

the sent message to take some corresponding actions, which are usually difficult to rollback. 
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request is finished, the corresponding copy will be removed from the list. If a driver fails, 
all the requests in the list will be re-issued to the new driver. 

Note that it is not necessary to handle the application state since the driver replace-
ment is totally transparent to applications. An application can continue its execution after 
the driver replacement (unless the faulty driver had corrupted the memory space of the 
application, which will be discussed in section 5.1). Application processes only experi-
ence a short delay when driver replacement happens. Moreover, as we will mention in 
section 4.1, such short delay may also happen due to process scheduling, disk I/O, or 
network congestion, which are common in a real system. 
 
2.3 External References 
 

After replacing the faulty driver with the new one, some external references (such as 
data or function pointers) still point to the data or functions of the original faulty driver. 
Therefore, we must update all the external references to point to the new implementation. 
Fig. 2 shows an example. The structure net_device is the main data structure managed by 
an NIC device driver in Linux. During the recovery process, for instance, the faulty 
driver is removed and the new driver is inserted and initialized. Thus, all external refer-
ences to Faulty become dangling pointers. 

Soules et al. [13] proposed two approaches (i.e., backward reference and indirection) 
as shown in Figs. 2 (a) and (b) to solve this problem. In brief, the backward reference 
approach keeps track of all external references to Faulty, and updates them to point to 
New after the new driver has been inserted. As shown in Fig. 2 (a), the values of all the 
external references are changed to 0 × 234. The drawback of this approach is that the 
operating system must be modified to record all the external references. The indirection 
approach, as shown in Fig. 2 (b), lets all the external references point to a single indirec-
tion pointer. If the target is changed due to the driver replacement, only the indirection 
pointer needs to be updated. This approach also requires modification to the existing op-
erating system code since the data type of all the external references must be modified 
(e.g., from net_device* to net_device**). Besides, it needs an extra dereferencing to ac-
cess the target. 

In nDriver, we take a different approach to avoid modifying the existing operating 
system code. Fig. 2 (c) shows the approach. We make Faulty and New share a single 
memory region (i.e., the placeholder), and all the external references point to the place-
holder. Thus, the problem of dangling references can never occur. The sharing of the 
memory region is achieved by intercepting the memory region allocation function. Spe-
cifically, when the new driver allocates a net_device structure, the memory region that 
was previously used for storing the net_device structure of the faulty driver will be re-
turned. In this way, neither the maintaining of the backward references nor the modifica-
tion to the data types of the external references is necessary. 

3. IMPLEMENTATION 

To demonstrate the feasibility of the nDriver framework, we implemented the mecha-
nisms mentioned in section 2 as a kernel module in Linux. The current implementation  
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Valid References           Dangling References  

 
(a) Backward reference.      (b) Indirection.           (c) Placeholder. 

Fig. 2. Solving the external reference problem. 

 
can recover the faults that happen on an Ethernet driver. In the following, we describe the 
implementation details. 
 
3.1 Fault Detection 
 
3.1.1 Guard wrapper 
 

Since we regard driver functions as unreliable, we put a guard wrapper on each 
function (including ISR) exported by the driver to prevent a driver fault from crashing or 
halting the kernel. Each guard wrapper takes the following actions. First, it sets up the 
fault detection routines. As mentioned above, it substitutes our exception handlers with 
the original ones for exception faults, and initiates a software timer to measure the time it 
takes to execute the wrapped function for blocking faults. 

Second, the wrapper saves the system context, which is followed by the invocation 
of the wrapped driver function. If an exception fault happens during the execution of the 
wrapped function, our exception handler will trigger the recovery process. Similarly, if 
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the wrapped function does not return before the timer expires, the timeout handler will 
also trigger the recovery process. If the function returns without faults, the wrapper re-
stores the exception handlers as well as stops the timer. 
 
3.1.2 Software timer 
 

As mentioned in section 2.1, we use an interrupt-based timer to measure the time it 
takes to execute a driver function. Before we start to execute a driver function, we ini-
tialize a counter to the time-out value of the function. Each time the timer interrupt oc-
curs, our software timer decreases the counter by 1. If the counter reaches 0, our software 
timer will trigger the time-out handler. 

Note that a driver function may be preempted by other interrupt handlers, and we 
should stop counting during the execution of these handlers. However, we did not inte-
grate this technique into nDriver. This is because, according to our experimental result, 
the time used by interrupt handlers (and bottom halves) is quite small compared to the 
10-ms timer interrupt interval. Therefore, this time does not have a perceptible impact on 
the performance of fault detection on our machines. 
 
3.2 Undoing the Kernel State 
 

As we mentioned in section 2.2, we intercept all the callout functions in order to re-
cord the changes a driver makes to the global kernel state. The interception is done by 
linking the object code of the driver module with the interception wrappers before the 
driver is installed into the kernel. After the linking, all the references to the callout func-
tions are redirected to the corresponding interception wrappers. 

We use an action list for each driver to record the invocations of the callout func-
tions. Fig. 3 shows an example of the action list. When an interception wrapper is in-
voked, we allocate an entry to record the function identifier, the arguments, and the re-
turn value. Then, we add this entry to the action list. Keeping the arguments and the re-
turn value is necessary since they are needed by the undo routine. For example, the ar-
guments of request_irq() (i.e., irq and dev_id) must be used as arguments of free_irq(), 
which is the undo routine of the request_irq(), in order to release the allocated IRQ re-
sources. Once the driver invokes the undo routine by itself, the interception wrapper will 
delete the corresponding entry in the action list. For instance, if a driver calls free_irq(), 
the interception wrapper will remove the entry for request_irq(). During the recovery 
process, we remove the entries of the action list in the reverse order of their insertion 
time. Once an entry is removed, the corresponding undo routine is invoked to undo the 
kernel state change. 

 
Fig. 3. Structure of the action list. 
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3.3 Preventing Lost of Driver Requests 
 

In this subsection, we describe how nDriver keeps track of the unfinished driver re-
quests in order to re-issue them to the new implementation during the recovery process. 
We take the Accton EN1207F Series PCI Fast Ethernet driver as an example for illustra-
tion. 

Fig. 4 illustrates how the driver sends and receives packets. For the sending side, the 
kernel removes a packet from the send queue of the driver (i.e., qdisc) and hands the 
packet to the driver. The job of the driver is to insert the packet into its Tx ring buffer 
and drive the NIC to transmit the packet. For the receiving side, the device receives a 
packet from the network, puts the packet in its Rx ring buffer, and raises an interrupt to 
notify the driver. The driver then inserts the packet into the backlog queue for layer-3 
processing. 

 
Fig. 4. The data flow of NIC device driver. 

 
Note that the Tx and Rx ring buffers are part of the local driver state. If the driver 

crashes suddenly, packets in the ring buffers will be lost since we discard the local driver 
state. To avoid this problem, we maintain an unfinished request list. When the kernel 
orders the driver to send a packet, we make a copy of the packet and add the copy to the 
list. When the NIC raises an interrupt to notify that the packet has been sent, we remove 
the packet from the list. Therefore, after the driver replacement, the packets in the list 
represent the lost packets and can be re-issued to the new driver.  

However, this approach can not be used on the receiving side, where input packets 
are inserted into the Rx ring buffer via the DMA hardware. The Rx ring buffer can be 
recovered only if the DMA hardware can notify software before it inserts a packet into 
the Rx ring buffer, or if we know the address of the Rx ring buffer. However, the former 
needs special hardware support, while the latter requires digging into the driver code. We 
do not take these approaches since both of them limit the feasibility of the nDriver 
framework. Instead, we leave the handling of the data loss problem to the upper layers. 
For example, packet loss can also result from network congestion or overflow of the Rx 
ring buffer, and it can be resolved by reliable network protocols such as TCP. Therefore, 
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we consider that losing a small number of Rx packets in layer 2 due to the NIC driver 
failure is acceptable. 

The Rx data loss problem will not happen for block devices. This is because all the 
read/write operations of a block device are issued by the kernel, instead of the hardware. 
Therefore, all the requests sent to a block device driver can be intercepted and backed up 
to the unfinished request list. For character devices, some of the Rx data may be lost due 
to the reason mentioned above. This problem can be solved by error checking mecha-
nisms such as checksum, CRC, and data-length checking, performed by the upper layers. 
Although some Rx data may be lost, nDriver is still beneficial for such drivers since it 
opens an opportunity for application programmers to implement non-stop services on 
those drivers, providing that they use some error checking mechanisms described above. 
 
3.4 Recovery Flow Implementation 
 

In this subsection, we describe details for the process of replacing a module-based 
NIC device driver in Linux.  

As mentioned before, the guard wrapper saves the system context before the execu-
tion of a driver function. If a fault is detected during the execution of the driver function, 
the undo manager will be invoked. The first step of the undo manager is to undo the ker-
nel state changes caused by the driver and to remove the faulty driver module. To undo 
the kernel state changes and release the resources held by the faulty driver, we invoke the 
undo routine for each entry in the action list. Although each driver provides functions 
(i.e., cleanup() and close()) to release its resources, we consider that it is unsafe to exe-
cute these functions after a fault has happened in that driver. After the kernel state 
changes are undone, the kernel function sys_delete_module() is invoked to remove the 
code and data of the faulty driver module. 

Note that undoing the kernel changes may cause some events to be sent to other 
kernel subsystems in order to signal that the status of the driver has been changed. After 
the subsystems receive the events, they will take corresponding actions. For example, if 
we remove a network device driver, any routing table entries depending on it will be de-
leted. This situation should be prevented since we do not want the rest of the kernel be 
aware of the driver replacement, so we block the events. 

Originally, the second step of the undo manager is to install the code and data of the 
new driver module into the kernel. However, the installation requires time to load the 
module from the disk and time to resolve the symbols that the module refers. In order to 
reduce the recovery time, we load the new driver module (via a modified insmod pro-
gram) into the kernel in advance (i.e., before the fault occurs on the faulty driver). Thus, 
we can simply locate the new driver module and call its init() function after the faulty 
module is removed. The init() function usually both resets the hardware and causes some 
initialization events to be sent to other kernel subsystems. Similar to what we have de-
scribed above, we also block these events. 

After the new driver module is initialized, the configuration manager is asked to re-
configure the driver. During the normal operation period, the configuration manager logs 
the configuration operations (i.e., ioctl() calls) performed on the faulty driver. Therefore, 
the reconfiguration can be done simply by performing these operations again to the new 
driver. After the reconfiguration, the undo manager restores the system context. Finally, 
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the undo manager retries the previously-failed function if it is not an ISR. An ISR is not 
retried since it is invoked when the device has some information for the driver (e.g., data 
is received or data transmission is completed), and the information is lost because of the 
device reset during the driver replacement. As mentioned in section 3.2.1, this may cause 
the data loss problem which can be solved by the error checking mechanisms performed 
by the software layers on top of the driver. 

It is worth emphasizing that all the mechanisms described above can be adapted to 
other types of device drivers (e.g., block device drivers) with a slight extension. This is 
because Linux defines an interface for each driver type, which can be intercepted to place 
the fault detectors. Moreover, the mechanisms such as undoing the kernel state, rebuild-
ing the driver state, and preventing requests from being lost are all independent of driver 
type. 

4. PERFORMANCE EVALUATION 

In this section, we measure the performance of the nDriver framework. The overall 
goal of the experiments is to show that nDriver can make the system survive from driver 
faults with only little performance degradation. The testbed consists of three machines, 
one server and two clients. All the machines are connected via a Gigabit Ethernet switch. 
Each machine is equipped with Pentium 4 2.0GHz CPU, 256MB DRAM. The operating 
system is Linux (kernel version 2.4.20-8). 
 
4.1 Functionality 
 

In this experiment, we demonstrate that nDriver can recover the system when a fault 
happens in an Ethernet driver. For this, we inserted a fault in the server-side Ethernet 
driver, and made the client get a file from the server. During the file transfer, we use the 
tcpdump utility to record the numbers of bytes received by the client, which are derived 
from the ACK sequence numbers contained in the client-to-server packets. Fig. 5 shows  

 
Fig. 5. Functionality of nDriver. 
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the results. The Normal line represents the case that no fault happens during the file 
transfer. The Exception and Blocking lines represent the cases that an exception fault and 
a blocking fault happen, respectively. The exception fault results from a divide-by-zero 
instruction and the blocking fault results from an infinite loop, which are both real bugs 
that ever existed in drivers [14, 15]. From this figure we can see that nDriver can effec-
tively detect the inserted fault and recover the system without stopping the ongoing con-
nection. An exception fault can be detected and recovered in about 2ms, while a blocking 
fault can be detected and recovered in about 18ms. The latter requires a longer time since 
a blocking fault is detected using a timeout based approach. 

Note that the recovery does not cause the kernel or the applications to timeout for 
most of the cases since the recovery time is quite short. Process scheduling, disk accesses, 
and network congestion also cause such short-term delay so that the recovery time should 
be tolerable for most of the applications.4 
 
4.2 Performance Overhead 
 

In this section we use two benchmarks, ttcp [16] and Webstone [17] to measure the 
overhead of nDriver. Specifically, we compare the performance of systems with and 
without nDriver under the condition that no faults happen during the experiment time. 
 
4.2.1 Micro benchmark: ttcp 
 

In this experiment, we set up the ttcp client to send a 5MB file to the ttcp server, and 
we compare the network throughput (i.e., 5MB/file transfer time) with and without the 
presence of the nDriver framework. The nDriver framework is installed on the client side. 
During the experiment, we control the packet size by limiting the Maximum Transmis-
sion Unit (MTU), and we run 1000 times for each packet size. Fig. 6 shows the network 
throughput degradation caused by nDriver. The figure shows that the throughput degra-
dation is only 0.2% under the typical packet size (i.e., 1,500 bytes). With the decreasing 
of the packet size, the number of packets increases and the network throughput degrada-
tion grows. This is because each packet transmission causes a request to the driver, and 
the overhead of nDriver is proportional to the number of driver requests. For each driver 
request, nDriver imposes the following overheads: guard wrapper, action list mainte-
nance, and unfinished request list maintenance. Table 1 shows the breakdown of the  
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Fig. 6. Network throughput degradation. 

 
4 The recovery delay may be unacceptable for hard real time applications. However, such applications are not 

the target of the nDriver framework. 
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Table 1. The results of per-request overhead. 

Guard Wrapper (us) Action List (us) Unfinished Request List (us) Total (us) 
1.97639 0.34242 0.41712 2.73593 

 
per-request overhead, which is measured using the Pentium Timestamp Counter [18]. 
The table shows that the per-request overhead is small. Moreover, guard wrapper re-
quires more time than the others. The former performs more jobs such as setting/stopping 
the fault detection routines and saving/restoring the system context, whereas the latter 
just involves simple list management. 
 
4.2.2 Macro benchmark: webstone 
 

In this section, we measure the overhead of nDriver under a more realistic workload. 
We install an Apache server (version 2.0.40) on the server machine. The two client ma-
chines are used to simulate the web clients. The workload is obtained from the Webstone 
benchmark, and each round lasts for 10 minutes. We compare the server throughput with 
and without the presence of the nDriver framework. Fig. 7 shows the throughput results. 
The x-axis represents the number of web clients. Each client tries its best establishing 
connections and sending requests to the web server during the experiment time. The y-axis 
represents the number of connections per second the server can handle. Note that the  
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Fig. 7. Throughput of the HTTP server. 
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Fig. 8. Response time to access web pages. 
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minimum value of the y-axis is not zero. From this figure we can see that the perform-
ance degradation is between 2.0% ~ 3.5%.  

Note that the degradation is more than that indicated in Fig. 6, which is because the 
Webstone benchmark involves many more small-packet transfers such as three-way 
hand- shaking and HTTP request transmission. Fig. 8 compares the performance in terms 
of average response time. The y-axis represents the average response time to access a 
web page. From this figure we can see that the nDriver framework results in an increase 
of the average response time by 2% to 3%. These results indicate that nDriver adds only 
little overhead to the system. 
 
4.3 Recovery Time 
 

In the final experiment, we manually insert a divide-by-zero fault into the Ethernet 
driver, and measure the time required to recover the fault. As shown in Fig. 9, the recov-
ery time can be divided into several parts. Tu is the time that the undo manager spends 
on invoking the undo routine for each entry in the action list. Ts is the time that the undo 
manager spends on replacing the drivers. Tc is the time that the configuration manager 
spends on configuring the new driver. Finally, Tr is the time spent in restoring the system 
context. Table 2 shows the values of these time periods, which are measured using the 
Pentium Timestamp Counter. From this table we can see that, the total recovery time is 
quite small, which indicates that nDriver can recover the system from a driver fault very 
efficiently. 

 
Fig. 9. Different parts of the recovery time. 

 

Table 2. The values of different parts of the recovery time. 

Tu (us) Ts (us) Tc (us) Tr (us) Ttotal (us) 
31.95 145.47 290.33 0.0092 467.76 

5. DISCUSSIONS 

In this section, we first describe the limitations of the current implementation of the 
nDriver framework, which is followed by the description of how to extend the current 
implementation to support more other drivers. 
 
5.1 Limitations 
 

Although nDriver can detect the major kinds of faults (i.e., exception and blocking 
faults) when they happen on drivers, it can not detect all the driver faults. Specifically, it 
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can not detect a driver bug if the bug does not cause an exception or cause the system to 
hang. For example, if a network driver can not actually send out packets due to an incor-
rect hardware configuration (e.g., wrong Tx buffer address), nDriver can not detect it. As 
another example, nDriver also can not detect the condition that a network driver does not 
update its statistic counters. Therefore, nDriver can not detect latent faults in the driver 
state. Detecting such bugs/faults requires more knowledge about the driver itself. For 
example, for an Ethernet driver, the Tx statistic counter should be increased by 1 for 
every packet sent out and the Rx statistic counter should be increased by 1 for every 
packet comes in. In the future, we will investigate the feasibility of providing an API for 
driver writers to express such knowledge so that more incorrect behaviors of drivers can 
be detected.  

The current nDriver implementation is built on the assumption that drivers do not 
corrupt the global kernel state. A driver should request kernel resources through pre-  
defined kernel interfaces, and should not change the kernel state arbitrarily. This holds 
for most drivers. However, it can not prevent malicious drivers from corrupting the ker-
nel state since the drivers and the kernel are in the same protection domain. It can not 
either prevent such drivers from corrupting the application state since a driver has the 
privilege to write the memory space of an application. To solve this problem, we plan to 
integrate a technique based on page table switching, which is similar to what is used in 
Shadow Driver [19], into nDriver in the future. 

As mentioned in section 3.2, although nDriver can prevent the driver requests from 
being lost, some of the driver state may still be lost (e.g., the packets in the Rx ring 
buffer of an Ethernet device). The state loss problem will not happen for request-based 
drivers such as block device drivers and the sending side of network and character device 
drivers. For the receiving side of character and network device drivers, the problem can 
be solved by error checking mechanisms performed by the upper software layers. For 
example, the timeout mechanism of TCP can trigger the retransmission of the lost pack-
ets, and the mechanisms such as checksum, CRC, and data-length checking can also be 
used by the software that performs communication through character devices. It is worth 
emphasizing that although some Rx data may be lost, nDriver is still beneficial for such 
drivers since it opens an opportunity for application programmers to implement non-stop 
services on these drivers, providing that they use some error checking mechanisms de-
scribed above. 
 
5.2 Transient Faults and Software Aging 
 

Although nDriver focuses on recovering the system from driver bugs by realizing 
the design diversity concept in the driver layer, it can also be used to solve the problems 
of transient faults and driver software aging [20]. Traditionally, these problems are 
solved by the restart and rejuvenation techniques, which release the resources held by the 
old instance of the software and then restart a new instance. 

The nDriver framework can achieve the same effect by replacing the driver with a 
new instance of the same implementation. The reasons are as follows. First, we undo the 
changes the old driver instance has made to the global kernel state and release its re-
sources. Second, we discard the old driver state and rebuild the state from scratch during 
the driver replacement. 



DA-WEI CHANG, ZHI-YUAN HUANG AND RUEI-CHUAN CHANG 

 

1256 

 

5.3 Supporting Driver Replacement on Other Drivers 
 

The current implementation of the nDriver framework can survive NIC driver faults. 
For the following reasons, we believe that all the mechanisms described in section 3 can 
be adapted to other types of device drivers with a slight extension. First, each driver type 
provides a standard interface to the kernel, on which we can place the fault detectors. 
Second, the mechanisms for undoing the kernel state, rebuilding the driver state, and 
preventing lost requests are all independent of the types of the drivers. 

To support dynamic replacement on other drivers, the following tasks should be 
performed. First, the current implementation should be extended to intercept more callout 
functions. That is, more interception wrappers should be included into the framework. In 
the current implementation, we only intercept the callout functions that are used by the 
NIC driver. Other drivers may invoke other callout functions, which should also be in-
tercepted if we want to include these drivers into the framework. By using the objdump 
utility to list all the un-linked symbols of a driver module, the callout functions of the 
driver can be identified, and the corresponding interception wrappers can be imple-
mented. Note that, as mentioned in section 2.2, the set of the callout functions is small so 
that it is achievable to identify and intercept them. 

Second, the undo routines corresponding to the callout functions should also be 
identified so that they can be invoked when the action list entries are removed. This can 
only be done by tracing the kernel source code to find the counterpart of the callout func-
tion. For example, the undo routine of the callout function request_irq() is free_irq(). 
Fortunately, as mentioned before, the set of the callout functions and the corresponding 
undo routines is small, and the interception wrappers and the undo routines can be used 
by all of the drivers once they are included into the nDriver framework. 

Third, the framework should include the guard wrappers that correspond to the type 
of the target driver. In the current implementation, nDriver can only guard operations of 
an Ethernet driver. If, for example, we want to incorporate IDE disk drivers into the 
framework, we should implement more wrappers to guard the operations of a block de-
vice driver such as the open, release, and block request functions. Once the guard wrap-
pers are implemented, they can be used by all the block device drivers. 

In summary, supporting dynamic replacement on other drivers mainly involves 
wrapper implementation, which is straightforward. In the future, we will implement more 
wrappers so as to supporting dynamic replacement on more other drivers. 
 
5.4 Porting nDriver to Windows Operating Systems 
 

Many mechanisms of nDriver can be ported to Windows kernel without much effort. 
For example, Windows kernel supports a layered driver model and allows a filter driver 
to be placed between the kernel and the target driver, and thus we can put the guard 
wrappers on the filter driver. In addition, we can also setup the fault detectors in Win-
dows. For exception fault, we can replace the kernel exception handlers with our own 
ones so as to catch exceptions and trigger driver replacement. For blocking fault, we can 
also replace the original timer interrupt handler with our own one so as to measure the 
execution time of a driver function. In an x86 machine, these are all done by replacing 
the entries of the Interrupt Descriptor Table (IDT). Moreover, we can intercept all the 
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callout functions and redirect them to our interception wrappers by modifying the Import 
Address Table (IAT) of the driver executable file. Finally, we can find out the undo rou-
tines that correspond to the callout functions since they are typically documented. 

However, porting the whole nDriver framework to Windows is still challenging 
since Windows does not provide an interface for loading/unloading a driver. The kernel 
has a total control over the driver loading/unloading activities, and determines when to 
perform these activities by itself. As a result, we can not replace a driver when a fault is 
detected. Dynamic driver replacement requires the Windows kernel exporting more 
APIs. 

6. RELATED WORK 

Most of the related work can be divided into three categories: driver quality im-
provement, dynamic replacement of kernel components, and fault tolerance in operating 
systems. We will describe them in the following three sections, which are followed by 
the description of the other related work. 

6.1 Driver Quality Improvement 

Some techniques have been proposed to help driver developers to improve design 
and reduce bugs in their drivers. Merillon et al. [21] proposed a language named Devil to 
develop device driver code. The developer writes the driver specification in Devil, which 
is checked by the Devil compiler. After checking, the compiler automatically generates 
low-level code, which is more error-prone, for driving the device hardware.  

To reducing the design bugs, IBM, Microsoft and Intel provided guidelines for de-
signing and implementing drivers for high availability systems [22, 23]. Microsoft also 
provides a tool called Driver Verifier [24] for verifying the correctness of a driver. It can 
simulate low resource conditions, verify I/O and DMA operations, detect deadlocks and 
the like. However, it does not address the issue of how to recover the system from a 
driver fault. 

6.2 Dynamic Replacement of Kernel Components 

Drivers are usually implemented as modules [25], and dynamic module loading/ 
unloading can be used as a basic mechanism for hot-swapping module-based device driv-
ers. However, this mechanism alone is not sufficient for fault recovery since it does not 
consider undoing the kernel state changes, reconfiguring the new driver, and solving the 
problem of external references. 

Design diversity [11, 12] uses multiple independent implementations of the same 
software to prevent software errors from crashing the whole system. The basic idea is 
that these functional-equivalent software implementations may not have the same soft-
ware bugs. Therefore, the system may survive from software bugs by retrying different 
implementations. Specifically, recovery block uses a set of alternative implementations 
for the same application to improve the availability. If one alternative fails, another one 
will be tried. The nDriver framework realizes the concept of recovery block at the device 
driver layer. It is much more challenging to achieve the goal of seamless alternative 
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swapping at the kernel level. Specifically, we have to address the issues that were not 
mentioned by the authors such as undoing the global kernel state changes made by the 
driver, retaining the driver requests, and solving the external reference problem. 

Soules et al. [13] proposed a mechanism to replace an operating system component 
during run time. Before a component can be replaced, it has to be in the quiescent state 
(i.e., all active use of the component has concluded). When the replacement happens, the 
old component transfers its state to the new one. Finally, the external references are redi-
rected to the new component. Basically, this mechanism is not appropriate for dealing 
with faults since the component may not always in the quiescent state when a fault hap-
pens. Moreover, the state transferring approach is not suitable for drivers. If the approach 
is taken, we have to implement a state transferring function for each pair of driver im-
plementations, which requires a large effort. 
 
6.3 Fault Tolerance in Operating Systems 
 

TARGON/32 [26] moved the operating system functionality out of the kernel into 
server processes, and used the process pair technique to make the server processes fault 
tolerant. Tandem [27] also used the process pair approach. This approach requires syn-
chronization between the two processes, which increases the implementation complexity 
and the runtime overhead. 

Linux-HA [28] provides a high availability clustering solution for Linux, which 
contains two major software packages: Heartbeat and Fake. The former is used to detect 
whether a host is available or not, while the latter is used to take over the IP address of 
the failed host. Instead of trying to improve the availability of the operating system, 
Linux-HA focuses on using another host to take over the job of the failed one. 

Shadow Driver [19] allows a driver to be removed and then reloaded when a fault 
happens on that driver. It uses several techniques that are similar to those used in nDirver, 
such as exception fault detection, callout function interception, and configuration logging. 
However, nDriver differs from Shadow Driver in three aspects. First, Shadow Driver 
aims at resolving transient faults instead of driver bugs. It assumes that the same driver 
implementation will be reloaded, and some techniques it employs are based on that as-
sumption. For example, it reuses the driver code directly instead of reloading it. As a 
result, if the driver has a bug, the fault may happen again soon after the system is recov-
ered. In contrast, nDriver can recover the system not only from transient faults but also 
from driver bugs since it realizes the design diversity concept at the driver layer. Once a 
fault happens, another driver implementation can be tried, further improving the system 
availability. Second, Shadow Driver can not detect blocking faults, which are one of the 
two major kinds of faults observed in the Linux driver.5 In contrast, nDirver uses a time-
out based approach to detect these faults. Third, Shadow Driver requires a larger runtime 
overhead since it is based on a protection domain architecture, which uses call-by-value- 
result semantic for data communication between domains (e.g., kernel and driver). As a 
result, an extra copy is needed when a packet is sent from the driver to the kernel, and 
vice versa. Such extra copy causes obvious performance degradation. In contrast, 
nDriver does not have such overhead. 

 
5 Shadow Driver can detect livelocks by checking if the driver-kernel domain crossing happens too frequently. 

However, it can not detect blocking faults caused by infinite for/while/goto loops or deadlocks. 
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User level driver [29] allows a driver to be implemented in user mode and thus a 
driver fault can not crash the kernel. This approach improves availability of the kernel 
but does not improve availability of the whole system. For example, when a user mode 
driver crashes, the service applications based on that driver still becomes unavailable. A 
fault detection and recovery approach is still needed for user mode drivers, although run-
ning a driver in user mode can make the approach easier to implement. Moreover, user 
level driver results in more context switches and user-kernel domain-crossing overheads, 
and thus it is not suitable for performance critical drivers. 
 
6.4 Others 
 

Autonomic Computing [30] proposed self-healing techniques that can automatically 
detect, diagnose, and repair software and hardware problems. Recovery-Oriented Com-
puting [31] also proposed new techniques to deal with hardware faults, software bugs, 
and operator errors. The basic idea of these two projects is similar to that of nDriver. 
That is, systems should deal with faults, instead of preventing them. 

Checkpointing [32-35] is a common technique for system recovery. It saves the sys-
tem state periodically or before entering critical regions. Once the system fails, it can be 
recovered by restoring the last checkpointed state. The major problem of this technique is 
that it can neither resolve the software aging problem nor make the system survive faults 
caused by driver bugs since it restores the aged state and re-executes the same code after 
recovery. Moreover, many checkpointing implementations incur overheads due to the 
storing of vast amounts of state. 

Lakamraju [36] introduced a low-overhead fault tolerance technique to recover a 
Myrinet NIC from network processor hangs. When the network processor hangs, it resets 
the NIC and rebuilds the hardware state from scratch to avoid duplicate and lost mes-
sages. The limitation of this work is that it focuses only on hardware failures instead of 
software errors. The former is easier to handle since it does not consider complex soft-
ware state maintenance problems such as undoing the kernel state changes, reconfiguring 
the new driver, and solving the problem of external references. 

7. CONCLUSIONS 

Device driver is the most unreliable part of an operating system. In this paper, we 
propose the nDriver framework, which uses multiple implementations of a device driver 
to survive from driver faults. This framework can detect two major types of driver faults, 
exception and blocking faults. With the help of nDriver, driver faults will not always 
result in kernel panics or system hangs. Instead, if a fault is detected, nDriver substitutes 
another driver implementation for the faulty one to enable the system to continue work-
ing. In order to achieve the goal of seamless driver replacement, nDriver undoes the ker-
nel state changes made by the faulty driver, retains the unfinished driver requests, and 
solving the external reference problem. In addition, nDriver blocks the driver-removing 
and installation events so that the other kernel subsystems are not aware of the driver 
replacement. 

The major contribution of this work is that nDriver realizes the concept of recovery 



DA-WEI CHANG, ZHI-YUAN HUANG AND RUEI-CHUAN CHANG 

 

1260 

 

blocks at the device driver layer. It achieves the goal of seamless driver replacement. 
Most importantly, it improves operating system availability without modifying the driver 
codes. 

We implement nDriver as a kernel module in Linux. Currently, it can enable the 
system to recover from faults in Ethernet device drivers. However, the mechanisms can 
be adapted to other module-based device drivers with a slight extension. According to 
the performance evaluation, the overhead of nDriver is no more than 3.5% in the case of 
a Gigabit Ethernet driver, and the recovery time is quite small. This indicates that 
nDriver is an efficient mechanism to increase the availability of an operating system. 

CODE AVAILABILITY 

Information and source code of the current implementation of nDriver are available 
from http://www.os.nctu.edu.tw/research/nDriver/index.htm. 
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