
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 23, 1241-1263 (2007)

1241

nDriver: Online Driver Replacement for
Increasing Operating System Availability*

DA-WEI CHANG, ZHI-YUAN HUANG+ AND RUEI-CHUAN CHANG+

Department of Computer Science and Information Engineering
National Cheng Kung University

Tainan, 701 Taiwan
+Department of Computer Science
National Chiao Tung University

Hsinchu, 300 Taiwan

Device drivers are the most unreliable part of an operating system. In this paper, we

propose a framework called nDriver. Based on the design diversity concept, it uses mul-
tiple implementations of a device driver to survive from driver faults. Once a fault hap-
pens in a driver, nDriver can dynamically replace the faulty driver with another imple-
mentation, instead of allowing the faulty driver to crash the system. The unique features
of nDriver are as follows. First, it can detect two major kinds of driver faults, the excep-
tion and blocking faults. Second, the requests issued to the driver will not be lost due to
the driver replacement. Third, the driver replacement is transparent to all the other kernel
subsystems. Fourth, nDriver requires no modification to the existing operating system or
driver codes.

The major contribution of this work is that nDriver implements the concept of de-
sign diversity at the device driver layer. Moreover, it achieves the goal of seamless
driver replacement and improves operating system availability without modifying the
existing operating system or driver codes.

We implemented nDriver as a kernel module in Linux. Currently, it can recover the
system from faults in network device drivers. However, the mechanisms can be adapted
to other module-based device drivers with a slight extension. According to the perform-
ance evaluation, the overhead of nDriver is no more than 3.5% and the recovery time is
quite small. This indicates that nDriver is an efficient mechanism to increase the avail-
ability of an operating system.

Keywords: fault recovery, device driver, design diversity, driver replacement, operating
system availability

1. INTRODUCTION

With the current high reliance on computer systems, system availability is increas-
ingly important, and for a growing number of systems, keeping them always available is
no longer optional but mandatory. According to previous research, software faults ac-
count for a larger portion of system unavailability than hardware failures [1-4]. Moreover,
the latter can generally be masked through component redundancy [5-8]. Therefore,
software plays a critical role in system availability.

Since most of the software relies on the underlying operating systems, reliability of
an operating system is critical for a highly available computer system. Unfortunately, due

Received May 25, 2005; revised November 2, 2005; accepted January 9, 2006.
Communicated by Michael R. Lyu.

DA-WEI CHANG, ZHI-YUAN HUANG AND RUEI-CHUAN CHANG

1242

to the high complexity of operating systems, it is nearly impossible to make them error-
free. The most error-prone part of an operating system is the device drivers. It has been
shown that the error rate of device drivers can be three to seven times higher than that of
the other kernel subsystems [9, 10]. This is because most drivers are developed by the
engineers of the hardware device vendors, who are not as familiar with kernel program-
ming as the original kernel developers are.

Since a device driver is a part of the kernel, a fault occurring in a driver is a kernel
fault, and it usually results in a kernel panic or a system hang. This causes the services
running on top of the operating system to become unavailable. However, a faulty driver
usually does not pollute the state of the other kernel subsystems. Therefore, it is possible
to recover the system from the driver faults, and hence allow the services running on top
of the kernel remain available.

In this paper, we propose a framework called nDriver to enable device drivers sur-
viving from software faults. We address on two kinds of faults, blocking and exception
faults. The former leads to kernel hang, while the latter causes kernel panic. According to
a previous study [9], these two kinds of faults are responsible for most of the faults hap-
pening in a driver.

The basic idea of the nDriver approach is to try another driver implementation if the
current one fails. Based on the design diversity concept [11, 12], we use multiple driver
implementations for a device so that if the current driver fails, nDriver can detect it and
replace the faulty driver with another one.

Multiple driver implementations can be obtained in the following ways. First, there
are usually patches for a driver implementation, and by applying these patches to the
original driver implementation, another implementation is produced. Second, there may
be multiple driver implementations (from different developers) for a device or multiple
devices that use a common chipset. For example, the Linux kernel 2.4.2 includes two
drivers for the RealTek RTL8129 Fast Ethernet device. Third, there may exist a generic
but regressive driver for the device. For example, the ne2000 NIC (Network Interface
Card) device driver can also be used to drive many NICs of different vendors.

To achieve the goal of seamless driver replacement, the following requirements
must be satisfied.

 Non-stop services. The services or applications running on top of the system should
continue running without interruption even when a driver fails.

 Automatic fault detection. Blocking and exception faults should be detected automati-
cally, without the help of the system administrators.

 Zero-loss system requests. Generally, removing a driver causes the loss of its internal
data, including the requests issued to it. However, to achieve the goal of seamless
driver replacement, all the uncompleted requests should be retained and then re-issued
to the new implementation.

 Kernel state maintenance. A driver may have made changes to the global kernel state
(e.g., it may have requested some kernel resources). Therefore, the kernel state should
be recovered when the faulty driver is removed. Moreover, all the external references
to the original driver should be redirected to the new one. Otherwise, the kernel will be
likely to crash due to these dangling references.

ONLINE DRIVER REPLACEMENT FOR INCREASING OS AVAILABILITY

1243

In this paper, we will show how the nDriver framework satisfies the above require-
ments. We have implemented a prototype of this framework in the Linux kernel, and
currently it can survive NIC driver faults. We believe that the mechanisms can be
adapted to other module-based device drivers with a slight extension. According to the
experimental results, nDriver leads to only little performance overheads (i.e., less than
3.5% in the case of a Gigabit Ethernet driver). Moreover, the recovery time is quite small.
This indicates that nDriver is very efficient for increasing the availability of an operating
system.

The rest of this paper is organized as follows. In section 2 we describe our design
issues and the flow of recovering a device driver fault, which is followed by the descrip-
tion of the implementation details in section 3. Section 4 shows the experimental results.
Section 5 presents the limitations and further extensions of our current implementation.
Section 6 shows the related work, which is followed by the conclusion presented in sec-
tion 7.

2. DESIGN

In this section, we elaborate on the method of surviving from driver faults. When a
fault occurring in the driver is detected, the recovery mechanism is triggered. Briefly
speaking, the recovery process involves removing the faulty driver, undoing the changes
caused by it, inserting the new driver, reconfiguring it, and retrying the previously-failed
function in the new driver.

The same fault may not occur again in the new driver due to the following reasons.
First, if the fault happens due to a known bug that has been fixed in the new driver, the
fault will not happen again. Second, the new driver may be implemented by different
developers so that the same bug can seldom happen in both the old and the new drivers.

Fig. 1 illustrates the components of the nDriver. The guard wrapper and the fault
detector are responsible for detecting exception and blocking faults. The undo manager is
responsible for removing the faulty driver, undoing the changes it made, and inserting the
new driver. Finally, the configuration manager is responsible for reconfiguring the new
driver.

In the following sections, we provide a detailed description for the nDriver frame-
work. First, we will present the fault detection approach, which is followed by the de-
scription of how to keep the system state correct and consistent after a fault occurs. Then,
we present the approach for solving the problem of dangling references. Finally, we de-
scribe the detailed flow of the recovery process.

2.1 Fault Detection

The fault detector is responsible for detecting exception and blocking faults. An ex-
ception fault occurs when the driver performs an operation such as accessing a NULL
page, dividing the operand by zero, executing an invalid opcode, etc. To detect such
faults, we replace the kernel exception handlers (such as the page-fault and the divide-
by-zero handlers) with our own ones. Therefore, raising a CPU exception will trigger our
exception handler, which will then invoke the undo manager to recover the fault.

DA-WEI CHANG, ZHI-YUAN HUANG AND RUEI-CHUAN CHANG

1244

Fig. 1. Architecture overview.

In addition to exception faults, a faulty driver may also lead to system hangs (i.e.,

blocking faults), which cause the system not to respond. Blocking faults usually result
from careless driver design such as entering an infinite loop (e.g., for, while, or goto
loops) or trying to get a spinlock which is grabbed by another blocked kernel thread. To
recover from such faults, we use a timeout-based approach. Before executing a driver
function, we set up a software timer in order to measure the time it takes to execute the
driver function. If the driver function occupies the CPU for a long time, it will be re-
garded as a faulty function and the time-out handler will be triggered to recover from the
fault. The accounting of the execution time is through timer interrupts, which occur every
10ms.

Although the approach based on time-outs is straightforward, two issues must be
addressed to make it become an effective technique for preventing driver hangs. The first
issue is how to determine the time-out value of a driver function. Because the execution
time of different driver functions varies, we can not use a fixed time-out value for all the
driver functions. Instead, the time-out value of a driver function is set to its average exe-
cution time plus a guard time.1 Note that the time-out values are not required to be highly
accurate, and the 10-ms granularity is accurate enough for detecting blocking faults.

Another issue is how to prevent the software timer approach from becoming useless
if the driver function disables interrupts. This is possible since many existing drivers dis-
able interrupts for synchronization. To solve this problem, we replace the original inter-
rupt-disabling/enabling functions, namely cli() and sti(), and the timer interrupt handler.
Instead of disabling the interrupt pin of the CPU, the new cli() function masks all the
interrupts except for the timer interrupt. In this way, our software timer still works after
calling cli(). Note that our timer interrupt handler will not invoke the original timer-
interrupt handler when the interrupts are disabled. This preserves the interrupt-disabled
semantic.

1 Currently, we measure the average execution time of the function on the target machine in advance and then

set the time-out value accordingly. Obviously, such measurement should be performed again if we want to
apply the framework to another machine with different performance. To ease the effort, we plan to make
such measurement automatic and integrate it into the nDriver framework in the future.

ONLINE DRIVER REPLACEMENT FOR INCREASING OS AVAILABILITY

1245

Note that the replacement of the cli()/sti() is achieved by linking the driver with the
new version of the functions. Thus, the existing operating system and driver codes are
not needed to be modified.

2.2 State Maintenance

We divide the system state that the driver may modify during its execution into
three parts: driver state, kernel state, and driver requests. The driver state is the local
state of the device driver; the kernel state is the global kernel state that may be changed
by the driver; and the driver requests are the requests that are currently processed by the
driver and the corresponding device. During the recovery period, we undo the changes
the driver made to the kernel state, and the driver state is discarded and rebuilt from
scratch. For the driver requests, we record them so that they can be re-issued to the new
driver implementation after recovery.

Generally, a driver changes the kernel state through functions provided by the ker-
nel. Such functions may request kernel-managed resources, register a new driver, or ex-
change information between the driver and the kernel. For example, a driver may acquire
IRQs, timers, IO regions, or locks from the kernel. We refer such functions as callout
functions since the control transfers from the driver to the kernel during the invocations
of these functions. Note that the kernel provides a counterpart for each callout function.
For example, the callout function request_irq() can be used to acquire an IRQ, and its
counterpart free_irq() is used for releasing an IRQ. Such counterparts are referred as
undo routines. Generally, such undo routines should be invoked during the termination
of a driver so as to undo the changes a driver made to the global kernel state. However,
they will not be invoked if a driver fault happens. In order to undo the changes, we inter-
cept the invocations of the callout functions and record them in an action list. During the
recovery period, the undo routine of each callout function on the list will be invoked in
order to undo the changes caused by the function.

It is worth noting that a device driver may invoke only a small subset of kernel-
provided functions.2 This is because the main purpose of a device driver is just to drive
the device. For example, a driver does not usually perform IPC operations, which are
difficult to rollback.3 Thus, we focus on the set of functions which may be invoked by
the driver, and find out the corresponding undo routines manually.

As mentioned above, we discard the driver state and rebuild it from scratch during
the recovery period. The reasons are as follows. First, the driver state is polluted after a
fault emerges from the driver. Second, different driver implementations may use differ-
ent data structures, and thus the old driver state can not directly be used by the new
driver implementation. The new driver should implement a state transfer function if it
wants to reuse the old state. This implies that all the driver implementations are needed
to be modified, which is impractical.

For the driver requests, we backup all the unfinished requests in case they will be
lost when the driver fails. Each time the kernel sends a request to the driver, we make a
copy of the request and insert the copy to a per-driver unfinished request list. When the

2 We examined more than 40 drivers and found that the number of kernel functions called by those drivers is 89.
3 It is not enough to rollback an IPC operation by canceling it or undoing it. The receiver may be triggered by

the sent message to take some corresponding actions, which are usually difficult to rollback.

DA-WEI CHANG, ZHI-YUAN HUANG AND RUEI-CHUAN CHANG

1246

request is finished, the corresponding copy will be removed from the list. If a driver fails,
all the requests in the list will be re-issued to the new driver.

Note that it is not necessary to handle the application state since the driver replace-
ment is totally transparent to applications. An application can continue its execution after
the driver replacement (unless the faulty driver had corrupted the memory space of the
application, which will be discussed in section 5.1). Application processes only experi-
ence a short delay when driver replacement happens. Moreover, as we will mention in
section 4.1, such short delay may also happen due to process scheduling, disk I/O, or
network congestion, which are common in a real system.

2.3 External References

After replacing the faulty driver with the new one, some external references (such as
data or function pointers) still point to the data or functions of the original faulty driver.
Therefore, we must update all the external references to point to the new implementation.
Fig. 2 shows an example. The structure net_device is the main data structure managed by
an NIC device driver in Linux. During the recovery process, for instance, the faulty
driver is removed and the new driver is inserted and initialized. Thus, all external refer-
ences to Faulty become dangling pointers.

Soules et al. [13] proposed two approaches (i.e., backward reference and indirection)
as shown in Figs. 2 (a) and (b) to solve this problem. In brief, the backward reference
approach keeps track of all external references to Faulty, and updates them to point to
New after the new driver has been inserted. As shown in Fig. 2 (a), the values of all the
external references are changed to 0 × 234. The drawback of this approach is that the
operating system must be modified to record all the external references. The indirection
approach, as shown in Fig. 2 (b), lets all the external references point to a single indirec-
tion pointer. If the target is changed due to the driver replacement, only the indirection
pointer needs to be updated. This approach also requires modification to the existing op-
erating system code since the data type of all the external references must be modified
(e.g., from net_device* to net_device**). Besides, it needs an extra dereferencing to ac-
cess the target.

In nDriver, we take a different approach to avoid modifying the existing operating
system code. Fig. 2 (c) shows the approach. We make Faulty and New share a single
memory region (i.e., the placeholder), and all the external references point to the place-
holder. Thus, the problem of dangling references can never occur. The sharing of the
memory region is achieved by intercepting the memory region allocation function. Spe-
cifically, when the new driver allocates a net_device structure, the memory region that
was previously used for storing the net_device structure of the faulty driver will be re-
turned. In this way, neither the maintaining of the backward references nor the modifica-
tion to the data types of the external references is necessary.

3. IMPLEMENTATION

To demonstrate the feasibility of the nDriver framework, we implemented the mecha-
nisms mentioned in section 2 as a kernel module in Linux. The current implementation

ONLINE DRIVER REPLACEMENT FOR INCREASING OS AVAILABILITY

1247

Valid References Dangling References

(a) Backward reference. (b) Indirection. (c) Placeholder.

Fig. 2. Solving the external reference problem.

can recover the faults that happen on an Ethernet driver. In the following, we describe the
implementation details.

3.1 Fault Detection

3.1.1 Guard wrapper

Since we regard driver functions as unreliable, we put a guard wrapper on each
function (including ISR) exported by the driver to prevent a driver fault from crashing or
halting the kernel. Each guard wrapper takes the following actions. First, it sets up the
fault detection routines. As mentioned above, it substitutes our exception handlers with
the original ones for exception faults, and initiates a software timer to measure the time it
takes to execute the wrapped function for blocking faults.

Second, the wrapper saves the system context, which is followed by the invocation
of the wrapped driver function. If an exception fault happens during the execution of the
wrapped function, our exception handler will trigger the recovery process. Similarly, if

DA-WEI CHANG, ZHI-YUAN HUANG AND RUEI-CHUAN CHANG

1248

the wrapped function does not return before the timer expires, the timeout handler will
also trigger the recovery process. If the function returns without faults, the wrapper re-
stores the exception handlers as well as stops the timer.

3.1.2 Software timer

As mentioned in section 2.1, we use an interrupt-based timer to measure the time it
takes to execute a driver function. Before we start to execute a driver function, we ini-
tialize a counter to the time-out value of the function. Each time the timer interrupt oc-
curs, our software timer decreases the counter by 1. If the counter reaches 0, our software
timer will trigger the time-out handler.

Note that a driver function may be preempted by other interrupt handlers, and we
should stop counting during the execution of these handlers. However, we did not inte-
grate this technique into nDriver. This is because, according to our experimental result,
the time used by interrupt handlers (and bottom halves) is quite small compared to the
10-ms timer interrupt interval. Therefore, this time does not have a perceptible impact on
the performance of fault detection on our machines.

3.2 Undoing the Kernel State

As we mentioned in section 2.2, we intercept all the callout functions in order to re-
cord the changes a driver makes to the global kernel state. The interception is done by
linking the object code of the driver module with the interception wrappers before the
driver is installed into the kernel. After the linking, all the references to the callout func-
tions are redirected to the corresponding interception wrappers.

We use an action list for each driver to record the invocations of the callout func-
tions. Fig. 3 shows an example of the action list. When an interception wrapper is in-
voked, we allocate an entry to record the function identifier, the arguments, and the re-
turn value. Then, we add this entry to the action list. Keeping the arguments and the re-
turn value is necessary since they are needed by the undo routine. For example, the ar-
guments of request_irq() (i.e., irq and dev_id) must be used as arguments of free_irq(),
which is the undo routine of the request_irq(), in order to release the allocated IRQ re-
sources. Once the driver invokes the undo routine by itself, the interception wrapper will
delete the corresponding entry in the action list. For instance, if a driver calls free_irq(),
the interception wrapper will remove the entry for request_irq(). During the recovery
process, we remove the entries of the action list in the reverse order of their insertion
time. Once an entry is removed, the corresponding undo routine is invoked to undo the
kernel state change.

Fig. 3. Structure of the action list.

ONLINE DRIVER REPLACEMENT FOR INCREASING OS AVAILABILITY

1249

3.3 Preventing Lost of Driver Requests

In this subsection, we describe how nDriver keeps track of the unfinished driver re-
quests in order to re-issue them to the new implementation during the recovery process.
We take the Accton EN1207F Series PCI Fast Ethernet driver as an example for illustra-
tion.

Fig. 4 illustrates how the driver sends and receives packets. For the sending side, the
kernel removes a packet from the send queue of the driver (i.e., qdisc) and hands the
packet to the driver. The job of the driver is to insert the packet into its Tx ring buffer
and drive the NIC to transmit the packet. For the receiving side, the device receives a
packet from the network, puts the packet in its Rx ring buffer, and raises an interrupt to
notify the driver. The driver then inserts the packet into the backlog queue for layer-3
processing.

Fig. 4. The data flow of NIC device driver.

Note that the Tx and Rx ring buffers are part of the local driver state. If the driver

crashes suddenly, packets in the ring buffers will be lost since we discard the local driver
state. To avoid this problem, we maintain an unfinished request list. When the kernel
orders the driver to send a packet, we make a copy of the packet and add the copy to the
list. When the NIC raises an interrupt to notify that the packet has been sent, we remove
the packet from the list. Therefore, after the driver replacement, the packets in the list
represent the lost packets and can be re-issued to the new driver.

However, this approach can not be used on the receiving side, where input packets
are inserted into the Rx ring buffer via the DMA hardware. The Rx ring buffer can be
recovered only if the DMA hardware can notify software before it inserts a packet into
the Rx ring buffer, or if we know the address of the Rx ring buffer. However, the former
needs special hardware support, while the latter requires digging into the driver code. We
do not take these approaches since both of them limit the feasibility of the nDriver
framework. Instead, we leave the handling of the data loss problem to the upper layers.
For example, packet loss can also result from network congestion or overflow of the Rx
ring buffer, and it can be resolved by reliable network protocols such as TCP. Therefore,

DA-WEI CHANG, ZHI-YUAN HUANG AND RUEI-CHUAN CHANG

1250

we consider that losing a small number of Rx packets in layer 2 due to the NIC driver
failure is acceptable.

The Rx data loss problem will not happen for block devices. This is because all the
read/write operations of a block device are issued by the kernel, instead of the hardware.
Therefore, all the requests sent to a block device driver can be intercepted and backed up
to the unfinished request list. For character devices, some of the Rx data may be lost due
to the reason mentioned above. This problem can be solved by error checking mecha-
nisms such as checksum, CRC, and data-length checking, performed by the upper layers.
Although some Rx data may be lost, nDriver is still beneficial for such drivers since it
opens an opportunity for application programmers to implement non-stop services on
those drivers, providing that they use some error checking mechanisms described above.

3.4 Recovery Flow Implementation

In this subsection, we describe details for the process of replacing a module-based
NIC device driver in Linux.

As mentioned before, the guard wrapper saves the system context before the execu-
tion of a driver function. If a fault is detected during the execution of the driver function,
the undo manager will be invoked. The first step of the undo manager is to undo the ker-
nel state changes caused by the driver and to remove the faulty driver module. To undo
the kernel state changes and release the resources held by the faulty driver, we invoke the
undo routine for each entry in the action list. Although each driver provides functions
(i.e., cleanup() and close()) to release its resources, we consider that it is unsafe to exe-
cute these functions after a fault has happened in that driver. After the kernel state
changes are undone, the kernel function sys_delete_module() is invoked to remove the
code and data of the faulty driver module.

Note that undoing the kernel changes may cause some events to be sent to other
kernel subsystems in order to signal that the status of the driver has been changed. After
the subsystems receive the events, they will take corresponding actions. For example, if
we remove a network device driver, any routing table entries depending on it will be de-
leted. This situation should be prevented since we do not want the rest of the kernel be
aware of the driver replacement, so we block the events.

Originally, the second step of the undo manager is to install the code and data of the
new driver module into the kernel. However, the installation requires time to load the
module from the disk and time to resolve the symbols that the module refers. In order to
reduce the recovery time, we load the new driver module (via a modified insmod pro-
gram) into the kernel in advance (i.e., before the fault occurs on the faulty driver). Thus,
we can simply locate the new driver module and call its init() function after the faulty
module is removed. The init() function usually both resets the hardware and causes some
initialization events to be sent to other kernel subsystems. Similar to what we have de-
scribed above, we also block these events.

After the new driver module is initialized, the configuration manager is asked to re-
configure the driver. During the normal operation period, the configuration manager logs
the configuration operations (i.e., ioctl() calls) performed on the faulty driver. Therefore,
the reconfiguration can be done simply by performing these operations again to the new
driver. After the reconfiguration, the undo manager restores the system context. Finally,

ONLINE DRIVER REPLACEMENT FOR INCREASING OS AVAILABILITY

1251

the undo manager retries the previously-failed function if it is not an ISR. An ISR is not
retried since it is invoked when the device has some information for the driver (e.g., data
is received or data transmission is completed), and the information is lost because of the
device reset during the driver replacement. As mentioned in section 3.2.1, this may cause
the data loss problem which can be solved by the error checking mechanisms performed
by the software layers on top of the driver.

It is worth emphasizing that all the mechanisms described above can be adapted to
other types of device drivers (e.g., block device drivers) with a slight extension. This is
because Linux defines an interface for each driver type, which can be intercepted to place
the fault detectors. Moreover, the mechanisms such as undoing the kernel state, rebuild-
ing the driver state, and preventing requests from being lost are all independent of driver
type.

4. PERFORMANCE EVALUATION

In this section, we measure the performance of the nDriver framework. The overall
goal of the experiments is to show that nDriver can make the system survive from driver
faults with only little performance degradation. The testbed consists of three machines,
one server and two clients. All the machines are connected via a Gigabit Ethernet switch.
Each machine is equipped with Pentium 4 2.0GHz CPU, 256MB DRAM. The operating
system is Linux (kernel version 2.4.20-8).

4.1 Functionality

In this experiment, we demonstrate that nDriver can recover the system when a fault
happens in an Ethernet driver. For this, we inserted a fault in the server-side Ethernet
driver, and made the client get a file from the server. During the file transfer, we use the
tcpdump utility to record the numbers of bytes received by the client, which are derived
from the ACK sequence numbers contained in the client-to-server packets. Fig. 5 shows

Fig. 5. Functionality of nDriver.

DA-WEI CHANG, ZHI-YUAN HUANG AND RUEI-CHUAN CHANG

1252

the results. The Normal line represents the case that no fault happens during the file
transfer. The Exception and Blocking lines represent the cases that an exception fault and
a blocking fault happen, respectively. The exception fault results from a divide-by-zero
instruction and the blocking fault results from an infinite loop, which are both real bugs
that ever existed in drivers [14, 15]. From this figure we can see that nDriver can effec-
tively detect the inserted fault and recover the system without stopping the ongoing con-
nection. An exception fault can be detected and recovered in about 2ms, while a blocking
fault can be detected and recovered in about 18ms. The latter requires a longer time since
a blocking fault is detected using a timeout based approach.

Note that the recovery does not cause the kernel or the applications to timeout for
most of the cases since the recovery time is quite short. Process scheduling, disk accesses,
and network congestion also cause such short-term delay so that the recovery time should
be tolerable for most of the applications.4

4.2 Performance Overhead

In this section we use two benchmarks, ttcp [16] and Webstone [17] to measure the
overhead of nDriver. Specifically, we compare the performance of systems with and
without nDriver under the condition that no faults happen during the experiment time.

4.2.1 Micro benchmark: ttcp

In this experiment, we set up the ttcp client to send a 5MB file to the ttcp server, and
we compare the network throughput (i.e., 5MB/file transfer time) with and without the
presence of the nDriver framework. The nDriver framework is installed on the client side.
During the experiment, we control the packet size by limiting the Maximum Transmis-
sion Unit (MTU), and we run 1000 times for each packet size. Fig. 6 shows the network
throughput degradation caused by nDriver. The figure shows that the throughput degra-
dation is only 0.2% under the typical packet size (i.e., 1,500 bytes). With the decreasing
of the packet size, the number of packets increases and the network throughput degrada-
tion grows. This is because each packet transmission causes a request to the driver, and
the overhead of nDriver is proportional to the number of driver requests. For each driver
request, nDriver imposes the following overheads: guard wrapper, action list mainte-
nance, and unfinished request list maintenance. Table 1 shows the breakdown of the

0

0.5

1

1.5

512 1024 1500
Packet Size (Bytes)

N
et

w
or

k
Th

ro
ug

hp
ut

D
eg

ra
da

tio
n

(%
)

Fig. 6. Network throughput degradation.

4 The recovery delay may be unacceptable for hard real time applications. However, such applications are not

the target of the nDriver framework.

ONLINE DRIVER REPLACEMENT FOR INCREASING OS AVAILABILITY

1253

Table 1. The results of per-request overhead.

Guard Wrapper (us) Action List (us) Unfinished Request List (us) Total (us)
1.97639 0.34242 0.41712 2.73593

per-request overhead, which is measured using the Pentium Timestamp Counter [18].
The table shows that the per-request overhead is small. Moreover, guard wrapper re-
quires more time than the others. The former performs more jobs such as setting/stopping
the fault detection routines and saving/restoring the system context, whereas the latter
just involves simple list management.

4.2.2 Macro benchmark: webstone

In this section, we measure the overhead of nDriver under a more realistic workload.
We install an Apache server (version 2.0.40) on the server machine. The two client ma-
chines are used to simulate the web clients. The workload is obtained from the Webstone
benchmark, and each round lasts for 10 minutes. We compare the server throughput with
and without the presence of the nDriver framework. Fig. 7 shows the throughput results.
The x-axis represents the number of web clients. Each client tries its best establishing
connections and sending requests to the web server during the experiment time. The y-axis
represents the number of connections per second the server can handle. Note that the

1600

1650

1700

1750

1800

3 4 5 6 7 8 9 10
Number of Clients

Se
rv

er
 C

on
ne

ct
io

n
R

at
e

 (C
on

ne
ct

io
ns

/s
ec

) Original
nDriver

Fig. 7. Throughput of the HTTP server.

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007

3 4 5 6 7 8 9 10
Number of Clients

R
es

po
ns

e
Ti

m
e

(s
ec

) Original
nDriver

Fig. 8. Response time to access web pages.

DA-WEI CHANG, ZHI-YUAN HUANG AND RUEI-CHUAN CHANG

1254

minimum value of the y-axis is not zero. From this figure we can see that the perform-
ance degradation is between 2.0% ~ 3.5%.

Note that the degradation is more than that indicated in Fig. 6, which is because the
Webstone benchmark involves many more small-packet transfers such as three-way
hand- shaking and HTTP request transmission. Fig. 8 compares the performance in terms
of average response time. The y-axis represents the average response time to access a
web page. From this figure we can see that the nDriver framework results in an increase
of the average response time by 2% to 3%. These results indicate that nDriver adds only
little overhead to the system.

4.3 Recovery Time

In the final experiment, we manually insert a divide-by-zero fault into the Ethernet
driver, and measure the time required to recover the fault. As shown in Fig. 9, the recov-
ery time can be divided into several parts. Tu is the time that the undo manager spends
on invoking the undo routine for each entry in the action list. Ts is the time that the undo
manager spends on replacing the drivers. Tc is the time that the configuration manager
spends on configuring the new driver. Finally, Tr is the time spent in restoring the system
context. Table 2 shows the values of these time periods, which are measured using the
Pentium Timestamp Counter. From this table we can see that, the total recovery time is
quite small, which indicates that nDriver can recover the system from a driver fault very
efficiently.

Fig. 9. Different parts of the recovery time.

Table 2. The values of different parts of the recovery time.

Tu (us) Ts (us) Tc (us) Tr (us) Ttotal (us)
31.95 145.47 290.33 0.0092 467.76

5. DISCUSSIONS

In this section, we first describe the limitations of the current implementation of the
nDriver framework, which is followed by the description of how to extend the current
implementation to support more other drivers.

5.1 Limitations

Although nDriver can detect the major kinds of faults (i.e., exception and blocking
faults) when they happen on drivers, it can not detect all the driver faults. Specifically, it

ONLINE DRIVER REPLACEMENT FOR INCREASING OS AVAILABILITY

1255

can not detect a driver bug if the bug does not cause an exception or cause the system to
hang. For example, if a network driver can not actually send out packets due to an incor-
rect hardware configuration (e.g., wrong Tx buffer address), nDriver can not detect it. As
another example, nDriver also can not detect the condition that a network driver does not
update its statistic counters. Therefore, nDriver can not detect latent faults in the driver
state. Detecting such bugs/faults requires more knowledge about the driver itself. For
example, for an Ethernet driver, the Tx statistic counter should be increased by 1 for
every packet sent out and the Rx statistic counter should be increased by 1 for every
packet comes in. In the future, we will investigate the feasibility of providing an API for
driver writers to express such knowledge so that more incorrect behaviors of drivers can
be detected.

The current nDriver implementation is built on the assumption that drivers do not
corrupt the global kernel state. A driver should request kernel resources through pre-
defined kernel interfaces, and should not change the kernel state arbitrarily. This holds
for most drivers. However, it can not prevent malicious drivers from corrupting the ker-
nel state since the drivers and the kernel are in the same protection domain. It can not
either prevent such drivers from corrupting the application state since a driver has the
privilege to write the memory space of an application. To solve this problem, we plan to
integrate a technique based on page table switching, which is similar to what is used in
Shadow Driver [19], into nDriver in the future.

As mentioned in section 3.2, although nDriver can prevent the driver requests from
being lost, some of the driver state may still be lost (e.g., the packets in the Rx ring
buffer of an Ethernet device). The state loss problem will not happen for request-based
drivers such as block device drivers and the sending side of network and character device
drivers. For the receiving side of character and network device drivers, the problem can
be solved by error checking mechanisms performed by the upper software layers. For
example, the timeout mechanism of TCP can trigger the retransmission of the lost pack-
ets, and the mechanisms such as checksum, CRC, and data-length checking can also be
used by the software that performs communication through character devices. It is worth
emphasizing that although some Rx data may be lost, nDriver is still beneficial for such
drivers since it opens an opportunity for application programmers to implement non-stop
services on these drivers, providing that they use some error checking mechanisms de-
scribed above.

5.2 Transient Faults and Software Aging

Although nDriver focuses on recovering the system from driver bugs by realizing
the design diversity concept in the driver layer, it can also be used to solve the problems
of transient faults and driver software aging [20]. Traditionally, these problems are
solved by the restart and rejuvenation techniques, which release the resources held by the
old instance of the software and then restart a new instance.

The nDriver framework can achieve the same effect by replacing the driver with a
new instance of the same implementation. The reasons are as follows. First, we undo the
changes the old driver instance has made to the global kernel state and release its re-
sources. Second, we discard the old driver state and rebuild the state from scratch during
the driver replacement.

DA-WEI CHANG, ZHI-YUAN HUANG AND RUEI-CHUAN CHANG

1256

5.3 Supporting Driver Replacement on Other Drivers

The current implementation of the nDriver framework can survive NIC driver faults.
For the following reasons, we believe that all the mechanisms described in section 3 can
be adapted to other types of device drivers with a slight extension. First, each driver type
provides a standard interface to the kernel, on which we can place the fault detectors.
Second, the mechanisms for undoing the kernel state, rebuilding the driver state, and
preventing lost requests are all independent of the types of the drivers.

To support dynamic replacement on other drivers, the following tasks should be
performed. First, the current implementation should be extended to intercept more callout
functions. That is, more interception wrappers should be included into the framework. In
the current implementation, we only intercept the callout functions that are used by the
NIC driver. Other drivers may invoke other callout functions, which should also be in-
tercepted if we want to include these drivers into the framework. By using the objdump
utility to list all the un-linked symbols of a driver module, the callout functions of the
driver can be identified, and the corresponding interception wrappers can be imple-
mented. Note that, as mentioned in section 2.2, the set of the callout functions is small so
that it is achievable to identify and intercept them.

Second, the undo routines corresponding to the callout functions should also be
identified so that they can be invoked when the action list entries are removed. This can
only be done by tracing the kernel source code to find the counterpart of the callout func-
tion. For example, the undo routine of the callout function request_irq() is free_irq().
Fortunately, as mentioned before, the set of the callout functions and the corresponding
undo routines is small, and the interception wrappers and the undo routines can be used
by all of the drivers once they are included into the nDriver framework.

Third, the framework should include the guard wrappers that correspond to the type
of the target driver. In the current implementation, nDriver can only guard operations of
an Ethernet driver. If, for example, we want to incorporate IDE disk drivers into the
framework, we should implement more wrappers to guard the operations of a block de-
vice driver such as the open, release, and block request functions. Once the guard wrap-
pers are implemented, they can be used by all the block device drivers.

In summary, supporting dynamic replacement on other drivers mainly involves
wrapper implementation, which is straightforward. In the future, we will implement more
wrappers so as to supporting dynamic replacement on more other drivers.

5.4 Porting nDriver to Windows Operating Systems

Many mechanisms of nDriver can be ported to Windows kernel without much effort.
For example, Windows kernel supports a layered driver model and allows a filter driver
to be placed between the kernel and the target driver, and thus we can put the guard
wrappers on the filter driver. In addition, we can also setup the fault detectors in Win-
dows. For exception fault, we can replace the kernel exception handlers with our own
ones so as to catch exceptions and trigger driver replacement. For blocking fault, we can
also replace the original timer interrupt handler with our own one so as to measure the
execution time of a driver function. In an x86 machine, these are all done by replacing
the entries of the Interrupt Descriptor Table (IDT). Moreover, we can intercept all the

ONLINE DRIVER REPLACEMENT FOR INCREASING OS AVAILABILITY

1257

callout functions and redirect them to our interception wrappers by modifying the Import
Address Table (IAT) of the driver executable file. Finally, we can find out the undo rou-
tines that correspond to the callout functions since they are typically documented.

However, porting the whole nDriver framework to Windows is still challenging
since Windows does not provide an interface for loading/unloading a driver. The kernel
has a total control over the driver loading/unloading activities, and determines when to
perform these activities by itself. As a result, we can not replace a driver when a fault is
detected. Dynamic driver replacement requires the Windows kernel exporting more
APIs.

6. RELATED WORK

Most of the related work can be divided into three categories: driver quality im-
provement, dynamic replacement of kernel components, and fault tolerance in operating
systems. We will describe them in the following three sections, which are followed by
the description of the other related work.

6.1 Driver Quality Improvement

Some techniques have been proposed to help driver developers to improve design
and reduce bugs in their drivers. Merillon et al. [21] proposed a language named Devil to
develop device driver code. The developer writes the driver specification in Devil, which
is checked by the Devil compiler. After checking, the compiler automatically generates
low-level code, which is more error-prone, for driving the device hardware.

To reducing the design bugs, IBM, Microsoft and Intel provided guidelines for de-
signing and implementing drivers for high availability systems [22, 23]. Microsoft also
provides a tool called Driver Verifier [24] for verifying the correctness of a driver. It can
simulate low resource conditions, verify I/O and DMA operations, detect deadlocks and
the like. However, it does not address the issue of how to recover the system from a
driver fault.

6.2 Dynamic Replacement of Kernel Components

Drivers are usually implemented as modules [25], and dynamic module loading/
unloading can be used as a basic mechanism for hot-swapping module-based device driv-
ers. However, this mechanism alone is not sufficient for fault recovery since it does not
consider undoing the kernel state changes, reconfiguring the new driver, and solving the
problem of external references.

Design diversity [11, 12] uses multiple independent implementations of the same
software to prevent software errors from crashing the whole system. The basic idea is
that these functional-equivalent software implementations may not have the same soft-
ware bugs. Therefore, the system may survive from software bugs by retrying different
implementations. Specifically, recovery block uses a set of alternative implementations
for the same application to improve the availability. If one alternative fails, another one
will be tried. The nDriver framework realizes the concept of recovery block at the device
driver layer. It is much more challenging to achieve the goal of seamless alternative

DA-WEI CHANG, ZHI-YUAN HUANG AND RUEI-CHUAN CHANG

1258

swapping at the kernel level. Specifically, we have to address the issues that were not
mentioned by the authors such as undoing the global kernel state changes made by the
driver, retaining the driver requests, and solving the external reference problem.

Soules et al. [13] proposed a mechanism to replace an operating system component
during run time. Before a component can be replaced, it has to be in the quiescent state
(i.e., all active use of the component has concluded). When the replacement happens, the
old component transfers its state to the new one. Finally, the external references are redi-
rected to the new component. Basically, this mechanism is not appropriate for dealing
with faults since the component may not always in the quiescent state when a fault hap-
pens. Moreover, the state transferring approach is not suitable for drivers. If the approach
is taken, we have to implement a state transferring function for each pair of driver im-
plementations, which requires a large effort.

6.3 Fault Tolerance in Operating Systems

TARGON/32 [26] moved the operating system functionality out of the kernel into
server processes, and used the process pair technique to make the server processes fault
tolerant. Tandem [27] also used the process pair approach. This approach requires syn-
chronization between the two processes, which increases the implementation complexity
and the runtime overhead.

Linux-HA [28] provides a high availability clustering solution for Linux, which
contains two major software packages: Heartbeat and Fake. The former is used to detect
whether a host is available or not, while the latter is used to take over the IP address of
the failed host. Instead of trying to improve the availability of the operating system,
Linux-HA focuses on using another host to take over the job of the failed one.

Shadow Driver [19] allows a driver to be removed and then reloaded when a fault
happens on that driver. It uses several techniques that are similar to those used in nDirver,
such as exception fault detection, callout function interception, and configuration logging.
However, nDriver differs from Shadow Driver in three aspects. First, Shadow Driver
aims at resolving transient faults instead of driver bugs. It assumes that the same driver
implementation will be reloaded, and some techniques it employs are based on that as-
sumption. For example, it reuses the driver code directly instead of reloading it. As a
result, if the driver has a bug, the fault may happen again soon after the system is recov-
ered. In contrast, nDriver can recover the system not only from transient faults but also
from driver bugs since it realizes the design diversity concept at the driver layer. Once a
fault happens, another driver implementation can be tried, further improving the system
availability. Second, Shadow Driver can not detect blocking faults, which are one of the
two major kinds of faults observed in the Linux driver.5 In contrast, nDirver uses a time-
out based approach to detect these faults. Third, Shadow Driver requires a larger runtime
overhead since it is based on a protection domain architecture, which uses call-by-value-
result semantic for data communication between domains (e.g., kernel and driver). As a
result, an extra copy is needed when a packet is sent from the driver to the kernel, and
vice versa. Such extra copy causes obvious performance degradation. In contrast,
nDriver does not have such overhead.

5 Shadow Driver can detect livelocks by checking if the driver-kernel domain crossing happens too frequently.

However, it can not detect blocking faults caused by infinite for/while/goto loops or deadlocks.

ONLINE DRIVER REPLACEMENT FOR INCREASING OS AVAILABILITY

1259

User level driver [29] allows a driver to be implemented in user mode and thus a
driver fault can not crash the kernel. This approach improves availability of the kernel
but does not improve availability of the whole system. For example, when a user mode
driver crashes, the service applications based on that driver still becomes unavailable. A
fault detection and recovery approach is still needed for user mode drivers, although run-
ning a driver in user mode can make the approach easier to implement. Moreover, user
level driver results in more context switches and user-kernel domain-crossing overheads,
and thus it is not suitable for performance critical drivers.

6.4 Others

Autonomic Computing [30] proposed self-healing techniques that can automatically
detect, diagnose, and repair software and hardware problems. Recovery-Oriented Com-
puting [31] also proposed new techniques to deal with hardware faults, software bugs,
and operator errors. The basic idea of these two projects is similar to that of nDriver.
That is, systems should deal with faults, instead of preventing them.

Checkpointing [32-35] is a common technique for system recovery. It saves the sys-
tem state periodically or before entering critical regions. Once the system fails, it can be
recovered by restoring the last checkpointed state. The major problem of this technique is
that it can neither resolve the software aging problem nor make the system survive faults
caused by driver bugs since it restores the aged state and re-executes the same code after
recovery. Moreover, many checkpointing implementations incur overheads due to the
storing of vast amounts of state.

Lakamraju [36] introduced a low-overhead fault tolerance technique to recover a
Myrinet NIC from network processor hangs. When the network processor hangs, it resets
the NIC and rebuilds the hardware state from scratch to avoid duplicate and lost mes-
sages. The limitation of this work is that it focuses only on hardware failures instead of
software errors. The former is easier to handle since it does not consider complex soft-
ware state maintenance problems such as undoing the kernel state changes, reconfiguring
the new driver, and solving the problem of external references.

7. CONCLUSIONS

Device driver is the most unreliable part of an operating system. In this paper, we
propose the nDriver framework, which uses multiple implementations of a device driver
to survive from driver faults. This framework can detect two major types of driver faults,
exception and blocking faults. With the help of nDriver, driver faults will not always
result in kernel panics or system hangs. Instead, if a fault is detected, nDriver substitutes
another driver implementation for the faulty one to enable the system to continue work-
ing. In order to achieve the goal of seamless driver replacement, nDriver undoes the ker-
nel state changes made by the faulty driver, retains the unfinished driver requests, and
solving the external reference problem. In addition, nDriver blocks the driver-removing
and installation events so that the other kernel subsystems are not aware of the driver
replacement.

The major contribution of this work is that nDriver realizes the concept of recovery

DA-WEI CHANG, ZHI-YUAN HUANG AND RUEI-CHUAN CHANG

1260

blocks at the device driver layer. It achieves the goal of seamless driver replacement.
Most importantly, it improves operating system availability without modifying the driver
codes.

We implement nDriver as a kernel module in Linux. Currently, it can enable the
system to recover from faults in Ethernet device drivers. However, the mechanisms can
be adapted to other module-based device drivers with a slight extension. According to
the performance evaluation, the overhead of nDriver is no more than 3.5% in the case of
a Gigabit Ethernet driver, and the recovery time is quite small. This indicates that
nDriver is an efficient mechanism to increase the availability of an operating system.

CODE AVAILABILITY

Information and source code of the current implementation of nDriver are available
from http://www.os.nctu.edu.tw/research/nDriver/index.htm.

REFERENCES

1. J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques, Morgan
Kaufmann, ISBN: 1558601902, 1993.

2. J. Gray and D. P. Siewiorek, “High-availability computer systems,” Computer, Vol.
24, 1991, pp. 39-48.

3. I. Lee and R. K. Iyer, “Software dependability in the Tandem GUARDIAN system,”
IEEE Transactions on Software Engineering, Vol. 21, 1995, pp. 455-467.

4. D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do Internet services fail,
and what can be done about it?” in Proceedings of the 4th USENIX Symposium on
Internet Technologies and Systems, http://www.usenix.org/publications/library/pro-
ceedings/usits03/tech/oppenheimer.html, 2003.

5. T. Davis, “Linux channel bonding,” http://www.sourceforge.net/projects/bonding/usr/
src/linux/Documentation/networking/bonding.txt, 2003.

6. Intel Corporation, “Intel networking technology – load balancing,” http://www.intel.
com/network/connectivity/resources/technologies/load_balancing.htm, 2003.

7. J. Jann, L. M. Browning, and R. S. Burugula, “Dynamic reconfiguration: basic build-
ing blocks for autonomic computing on IBM pSeries servers,” IBM Systems Journal,
Vol. 42, 2003, pp. 29-37.

8. D. A. Patterson, P. Chen, G. Gibson, and R. H. Katz, “Introduction to redundant ar-
rays of inexpensive disks (RAID),” Digest of Papers for 34th IEEE Computer Soci-
ety International Conference (COMPCON Spring), 1989, pp. 112-117.

9. A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An empirical study of oper-
ating system errors,” in Proceedings of the 18th ACM Symposium on Operating Sys-
tems Principles, 2001, pp. 73-88.

10. J. Corbet, “2003 kernel summit: high availability,” http://lwn.net/Articles/40620/,
2003.

11. C. Inacio, “Software fault tolerance,” http://www.ece.cmu.edu/~koopman/des_s99/
sw_fault_tolerance/, 1998.

ONLINE DRIVER REPLACEMENT FOR INCREASING OS AVAILABILITY

1261

12. M. Lyu, (ed.), Software Fault Tolerance, John Wiley & Sons, Chichester, 1995.
13. C. A. N. Soules, J. Appavoo, K. Hui, R. W. Wisniewski, D. D. Silva, G. R. Ganger,

O. Krieger, M. Stumm, M. A. Auslander, M. Ostrowski, B. S. Rosenburg, and J.
Xenidis, “System support for online reconfiguration,” in Proceedings of the USENIX
Annual Technical Conference, 2003, pp. 141-154.

14. R. Lievin, “Patches to tipar character driver,” http://www.ussg.iu.edu/hypermail/linux/
kernel/0404.2/0018.html, 2004.

15. D. Benham, “Bug number 89192: won’t boot Adaptec’s AIC-7899 SCSI controller,”
Debian Bug Tracking System, http://groups.google.com.tw/group/debian.bugs.closed/
browse_thread/thread/86dc29023e094447/2aeaef46165d6132?lnk=st&q=Adaptec%
27s+AIC-7899+SCSI+controller+infinite+loop&rnum=2&hl=zh-TW#2aeaef46165d
6132, 2001.

16. Netcordia Inc., “The test TCP tool,” http://www.netcordia.com/tools/tools/TTCP/ttcp.
html, 2003.

17. Mindcraft Inc., “WebStone: the benchmark for web servers,” http://www.mindcraft.
com/benchmarks/webstone/, 2004.

18. A. Rubini, “Making system calls from kernel space,” Linux Magazine, http://www.
linux-mag.com/2000-11/gear_01.html, 2000.

19. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy, “Recovering device driv-
ers,” in Proceedings of the 6th Symposium on Operating Systems Design and Imple-
mentation, http://www.cs.washington.edu/homes/mikesw/nooks/recovering-drivers.
pdf, 2004.

20. V. Castelli, R. E. Harper, P. Heidelberger, S. W. Hunter, K. S. Trivedi, K. Vaid-
yanathan, and W. P. Zeggert, “Proactive management of software aging,” IBM Jour-
nal of Research and Development, Vol. 45, 2001, pp. 311-332.

21. F. Merillon, L. Reveillere, C. Consel, R. Marlet, and G. Muller, “Devil: an IDL for
hardware programming,” in Proceedings of the 4th Symposium on Operating Sys-
tems Design and Implementation, http://portal.acm.org/citation.cfm?id=1251229.
1251231&coll=ACM&dl=ACM&CFID=15151515&CFTOKEN=6184618, 2000.

22. IBM Corporation and Intel Corporation, “Device driver hardening,” http://hardened
drivers.sourceforge.net/, 2004.

23. Microsoft Corporation, “Writing drivers for reliability, robustness and fault tolerant
systems,” Microsoft Windows Hardware Engineering Conference, http://www.micro-
soft.com/whdc/system/platform/server/FTdrv.mspx, 2002.

24. L. Columbus, “How Windows XP’s device driver verifier works,” http://www.in-
formit.com/articles/article.asp?p=22085&redir=1, 2001.

25. B. Henderson, “Linux loadable kernel module HOWTO,” http://www.tldp.org/HOW-
TO/Module-HOWTO/, 2004.

26. A. Borg, W. Blau, W. Craetsch, F. Herrmann, and W. Oberle, “Fault tolerance under
UNIX,” ACM Transactions on Computer Systems, Vol. 7, 1989, pp. 1-24.

27. J. Gray, “Why do computers stop and what can be done about it?” in Proceedings of
the Symposium on Reliability in Distributed Software Database Systems, 1986, pp.
3-12.

28. A. Robertson, “High-availability Linux project,” http://linux-ha.org/, 2004.
29. P. Chubb, “User level device drivers,” http://www.disy.cse.unsw.edu.au/Software/

ULDD/, 2004.

DA-WEI CHANG, ZHI-YUAN HUANG AND RUEI-CHUAN CHANG

1262

30. J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” Computer
Journal, Vol. 36, 2003, pp. 41-50.

31. D. A. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler, P. Enriquez,
A. Fox, E. Kiciman, M. Merzbacher, D. Oppenheimer, N. Sastry, W. Tetzlaff, J.
Traupman, and N. Treuhaft, “Recovery-oriented computing (ROC): motivation, defi-
nition, techniques, and case studies,” Technical Report No. UCB//CSD-02-1175,
Computer Science Department, UC Berkeley, 2002.

32. D. E. Lowell, S. Chandra, and P. M. Chen, “Exploring failure transparency and the
limits of generic recovery,” in Proceedings of the 4th Symposium on Operating Sys-
tems Design and Implementation, 2000, pp. 289-304.

33. J. S. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: transparent checkpointing
under UNIX,” in Proceedings of the Usenix Winter Technical Conference, 1995, pp.
213-223.

34. Y. M. Wang, Y. Huang, K. P. Vo, P. Y. Chung, and C. Kintala, “Checkpointing and
its applications,” in Proceedings of the 25th International Symposium on Fault-Tol-
erant Computing, 1995, pp. 22-32.

35. A. Ziv and J. Bruck, “An on-line algorithm for checkpoint placement,” IEEE Trans-
actions on Computers, Vol. 46, 1997, pp. 976-985.

36. V. Lakamraju, I. Koren, and C. M. Krishna, “Low overhead fault tolerant networking
in Myrinet,” in Proceedings of the International Conference on Dependable Systems
and Networks, 2003, pp. 193-202.

Da-Wei Chang (張大緯) received his B.S., M.S., and Ph.D.
degrees in Computer and Information Science from National
Chiao Tung University, Hsinchu, Taiwan, R.O.C., in 1995, 1997
and 2001 respectively. He has been a postdoctoral researcher in
National Chiao Tung University in 2002-2005, and an assistant
professor in Electrical Engineering at National Sun Yat-Sen Uni-
versity, Kaohsiung, Taiwan, R.O.C. in 2006. He is currently an
assistant professor in Computer Science and Information Engi-
neering at National Cheng Kung University, Tainan, Taiwan,
R.O.C. His research interests include operating systems, fault-
tolerant systems, and embedded systems.

Zhi-Yuan Huang (黃致遠) received his B.S. degree in
Computer Science and Information Engineering from National
Central University, Taiwan, R.O.C., in 2004. He is currently a
master student in Computer Science at National Chiao Tung
University, Taiwan, R.O.C. His research interests include operat-
ing systems, driver design, and embedded systems.

ONLINE DRIVER REPLACEMENT FOR INCREASING OS AVAILABILITY

1263

Ruei-Chuan Chang (張瑞川) received his B.S. degree
(1979), his M.S. degree (1981), and his Ph.D. degree (1984), all
in Computer Engineering from National Chiao Tung University.
He is currently a professor in Computer Science at National Chiao
Tung University, Taiwan, R.O.C. He is also an Associate Re-
search Fellow at the Institute of Information Science, Academia
Sinica, Taipei. His research interests include operating systems,
wireless communication technologies, and embedded systems.

