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[1] An approximate solution is useful if the corresponding analytical solution is
complicated and difficult to accurately evaluate. In the past, the relationship of
small p versus large t was commonly applied to the Laplace domain solution and could
successfully obtain a large-time solution in the groundwater area. The large-time
solution usually has a simpler form than the analytical solution and is much easier for
estimating the transient behavior of the groundwater flow system. However, Chen and
Stone (1993) pointed out that the use of this relationship might fail to yield the correct
solution in calculating the wellbore flux for the constant head test problem. Later, Mathias
and Zimmerman (2003) indicated that a poor result was obtained by Gerke and
van Genuchten (1993) when using the relationship of small p versus large t to derive the
water transfer coefficient for the dual-porosity media problem. This note is to show
the detailed mathematical derivations involved in the issues that Chen and Stone (1993)
and Gerke and van Genuchten (1993) addressed and to ensure that the relationship of
small p versus large t is correct to obtain a large-time solution for transient groundwater
flow problems.
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1. Introduction

[2] The constant head aquifer test is suitable for use in
estimating the hydraulic parameters of low-permeability
aquifer in groundwater areas. This test keeps a constant
head at a pumping/injection well throughout the test period,
and the change of flow rate across the wellbore versus time
is recorded [Batu, 1998]. The head distribution for constant
head test in a confined aquifer is analogous to the heat
distribution for constant temperature maintained at a
bounded circular cylinder; thus the head solutions for both
Laplace domain and time domain can be obtained from
Carslaw and Jaeger [1959]. The wellbore flux can then be
derived on the basis of the solution of head distribution and
Darcy’s law [e.g., Yang and Yeh, 2002; Peng et al., 2002].
However, the time domain solution of the wellbore flux is
complex and difficult to accurately evaluate. Therefore it
was common to derive the approximate solutions for small
or large value of the time for the wellbore flux [e.g.,
Carslaw and Jaeger, 1959, p.336].
[3] One way for obtaining the small- or large-time

solution is to apply the relationship of large p versus small t
(hereinafter referred to as LPST) or small p versus large t
(hereinafter referred to as SPLT), respectively, to the
Laplace domain solution. This concept is based on a
symbolic relation between the derivative operator of time,
i.e., d/dt, in the time domain and the dummy variable, p, in
the Laplace domain [van Everdingen and Hurst, 1949].

Then, one may obtain a small- or large-time solution by
taking inverse Laplace transform on the reduced Laplace
domain solution while the dummy variable is large or small,
respectively. Some of the successful illustrations of applying
this concept can be found in the groundwater literature. van
Everdingen and Hurst [1949] used the relationships of
LPST and SPLT to derive the pressure head of groundwater
flow in a reservoir for time which were small and large,
respectively. Hantush [1960] considered the aquitard stor-
age for flow in a leaky aquifer system and obtained small-
and large-time drawdown solutions by applying those two
relationships. Neuman and Witherspoon [1969] studied the
problem for flow in a confined two-aquifer system by
considering the aquitard storage and drawdown in the
unpumped aquifer. They used the LPST relationship to
obtain the small-time solution for their problem. Singh
and Sagar [1980] proposed approximate solutions of head
to the linearized flow equation of slightly compressible
fluids by using the relationships of LPST and SPLT.
Javandel and Witherspoon [1983] and Butler and Liu
[1993] provided a large-time solution for pumping-induced
drawdown in a vertical and horizontal nonuniform aquifer,
respectively, based on the SPLT relationship. Chakrabarty
et al. [1993] provided a nonlinear pressure distribution of
compressible liquid in a homogeneous formation and the
corresponding small- and large-time solutions obtained
using the relationships of LPST and SPLT, respectively. In
addition, a number of approximate solutions for small and/
or large value of time were derived on the basis of these
relationships in areas such as the solute transport problem
[van Genuchten et al., 1984; Chen, 1985, 1986; Yates,
1990], dual-porosity media problem [Barker, 1985], and
unsteady infiltration problem [Philip, 1986].
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[4] However, one may also find two articles indicating
that erroneous results were obtained when applying the
SPLT relationship. On the constant head test problem, Chen
and Stone [1993] presented a calculation for the flow rate
across the wellbore from the constant head test problem and
concluded that the SPLT relationship failed to yield a correct
large-time solution in this case. For the dual-porosity media
problem, Gerke and van Genuchten [1993] solved a large-
time water transfer coefficient by comparing two Laplace
domain solutions, one was the ‘‘first-order’’ flux equation
between fracture and matrix and the other was Richards’s
equation within the matrix block, while p became small.
Moreover, Mathias and Zimmerman [2003] also obtained a
large-time water transfer coefficient for the dual-porosity
media problem based on the time domain approach. Their
solution differs from the one obtained by Gerke and van
Genuchten [1993] using the Laplace domain approach based
on the SPLT relationship. When comparing both Laplace and
time domain solutions with the exact solution, they implic-
itly indicated that the SPLT relationship did not hold.
[5] The relationships of LPST and SPLT had been widely

used in the groundwater literature for more than 40 years.
Previous researches indicated that the SPLT relationship
could successfully yield correct large-time solutions if
applied to the related Laplace domain solutions. The con-
trary results of Chen and Stone [1993] and Mathias and
Zimmerman [2003] stimulate our curiosity and further study
on this issue. The objectives of this note are to go through
detailed mathematical derivations involved in the issues that
Chen and Stone [1993] and Gerke and van Genuchten
[1993] addressed and to resolve the dispute on the validity
of the SPLT relationship. In addition, on the basis of the
Laplace domain solution and the SPLT relationship, we will
derive a correct large-time solution of the wellbore flux rate
for the constant head test and the correct water transfer
coefficient for the dual-porosity media problem.

2. Problem of Wellbore Flux for the Constant
Head Test

2.1. Analytical Solution of Wellbore Flux

[6] A constant head test conducted in a confined aquifer
is considered in this section. Assume that the confined
aquifer is homogeneous, isotropic, laterally infinite, and
with a constant thickness. The flow rate across the wellbore
at the test well can be obtained by applying Darcy’s law to
head distribution for the constant head test problem
[Carslaw and Jaeger, 1959] and the results in Laplace
domain and time domain are, respectively,

Q rw; pð Þ ¼ 2prwT
hw

p

qK1 qrwð Þ
K0 qrwð Þ ð1Þ

Q rw; tð Þ ¼ 8Thw

p

Z1
0

exp � T

S
u2t

� �
du

u J 2
0
rwuð Þ þ Y 2

0
rwuð Þ

h i ð2Þ

where rw is the well radius; p is the Laplace variable; hw is
the constant head maintained at test well; q =

ffiffiffiffiffiffiffiffiffiffiffi
pS=T

p
in

which S is the storage coefficient and T is the transmissivity
of the confined aquifer; K0(�) and K1(�) are modified Bessel
functions of the second kinds of order zero and order one,
respectively; t is time variable; J0(�) and Y0(�) are Bessel

functions of the first and second kinds of order zero,
respectively. Note that the negative sign of Q corresponds to
withdrawal and the positive sign corresponds to injection.

2.2. Large-Time Solution of Wellbore Flux

[7] With the limiting forms of K0(x) ffi �[ln(x/2) + g] and
K1(x) ffi 1/x, where g = 0.57722 . . . is Euler’s constant, for
small value of x [Abramowitz and Stegun, 1970, p.375], the
wellbore flux in Laplace domain, (1), for small p can be
reduced to

Q rw; pð Þ ffi �4pThw
1

p ln p=lð Þ ð3Þ

where l = 4T/(c
2
rw
2
S) and c = exp(g). The large-time

wellbore flux is subsequently obtained by taking the inverse
Laplace transform on (3). Chen and Stone [1993] used a
inverse Laplace transform formula given by the
Oberhettinger and Badii [1973, p. 276, equation (6.75)] for
the inverse Laplace transform of term 1/[p ln(p/l)] in (3) as

L�1 1

p ln p=lð Þ

� 	
¼
Z1
0

ltð Þx

G xþ 1ð Þ dx ð4Þ

where G(x) is the gamma function. They derived the
integration of (4) and obtained the large-time wellbore flux
as Q(rw, t) = �1. In addition, they showed this large-time
wellbore flux was contradictory to the result obtained by
applying the Tauberian theorem (also called final value
theorem [Spiegel, 1965]) to (3), i.e.,Q(rw, t!1) = 0. On the
basis of this study, they concluded that the application of the
SPLT relationship should be used with care because of
possible failure to yield a correct large-time solution.
[8] In fact, we found that the use of inverse Laplace

transform formula of (4) should be under a constraint of p >
l which is proven in the Appendix A. For most confined
aquifers, the value of the storage coefficient falls in the
range 10�5 
 10�3 and for sand and silt formations the
values of hydraulic conductivity falls in the range of 10�2 

101 m/day [Todd and Mays, 2005]. Assuming that the
thickness of confined aquifer is 10 m and the radius of
test well is 5 cm; then, the value of l ranges from 104/day
to 109/day. Notice that the Laplace variable p is required to
be small in (3) and l should be small too. Yet, the value
of l is larger than 104/day for the real-world problem as
demonstrated above; accordingly, (4) does not hold at all.
[9] Hereafter, we propose an alternative formula for the

inverse Laplace transform of term 1/[p ln(p/l)] in (3).
Ritchie and Sakakura [1956] presented an article on the
approximate expansions of solutions of the heat conduction
equation in an internally bounded cylindrical solid. They
gave the inverse Laplace transform for the term 1/[p ln(p/l)]
when p is small as

L�1
1

p ln p=lð Þ

� 	
¼
XN
s¼0

�1

ln h

� �sþ1 �1

s

0
@

1
A ds

dns
1

G 1� nð Þ

� �����
n¼0

2
4

3
5

ð5Þ

where the dimensionless variable h = lt, column vector
(�1, s)T is the binomial coefficient, and N is the number of
truncated terms depending on the values of the remainder.
[10] The right hand side (RHS) of (5) is a summation of

products of the dimensionless variable lnh and the constant
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value of the Gamma function. For the large value of time,
the terms of 1/(lnh)5 and higher-order terms may be trun-
cated since h is proportional to the dimensionless time.
Therefore the large-time wellbore flux can be obtained on
the basis of (3) and (5). Appendix B shows the detailed
expansion of (5) and the large-time solution for the wellbore
flux is obtained approximately as

Q rw; tð Þ ¼ 4pThw
1

ln h
� g

ln hð Þ2
þ
g2 � p2

6

ln hð Þ3
�
g3 � p2

2
g þ 2x 3ð Þ

ln hð Þ4

2
664

3
775

ð6Þ

[11] The numerators of the RHS terms of (6) are all
constants and the denominators are the function of dimen-
sionless time, h = 4Tt/(c2rw

2S). The value of lnh reaches
infinity if t approaches infinity; therefore (6) becomes zero;
that is, the steady state solution for the wellbore flux is zero.
Notice that Jaeger [1943] and Carslaw and Jaeger [1959,
p. 336] gave a large-time wellbore flux which has the first
three terms and first two terms of (6), respectively.

3. Problem of the Water Transfer Coefficient for
the Dual-Porosity System

3.1. Large-Time Water Transfer Coefficient From
Time Domain Approach

[12] In this section we consider the dual-porosity system
with parallel rectangular slabs which are matrix blocks
separated by a fracture pore studied by Gerke and van
Genuchten [1993]. The water flow of dual-porosity system
is described by two Richards’s equations, one for the
fracture pore and the other for the matrix block. Those
two flow equations are coupled by means of a sink/source
term to account for water transfer between the dual-porosity
systems. Gerke and van Genuchten [1993] proposed a first-
order model to calculate the water transfer which is propor-
tional to the difference in pressure head between the fracture
and matrix pore systems. The water transfer coefficient,
denoted as aw, was defined as the ratio of water transfer and
head difference.
[13] If the pressure head of the fracture pore is considered

to be a constant in time, the water transfer coefficient can be
obtained by comparing two rearranged flow equations in
Laplace domain as [Gerke and van Genuchten, 1993]

hm pð Þ ¼ hf � hm;i

p

� �
tanh xð Þ

x
þ hm;i

p
ð7Þ

hm pð Þ ¼ hf

p

1

1þ z

� �
þ hm;i

p

1

1þ z�1

� �
ð8Þ

where hm and hm,i are the Laplace domain head and the
initial head, respectively, in the matrix block; hf is the
imposed head at the fracture boundary; and variables x =
a[(1 � wf)Cmp/Ka]

0.5 and z = (1 � wf)Cmp/aw while a is the
characteristic half width of the matrix block, wf is
the fracture porosity, Ka is the hydraulic conductivity of the
matrix block near the fracture/matrix interface, and Cm is
the specific water capacity at the matrix.
[14] Mathias and Zimmerman [2003] applied the Laurent-

type expansion to (7) and (8) and transferred those series to
the time domain by the asymptotic formula of Doetsch
[1961] when time is large. On the basis of the time domain
approach, they obtained an exact large-time water transfer
coefficient of aw = p2Ka/4a

2(ffi 2.47 Ka/a
2) which differs

from the Laplace domain approach of aw = 3Ka/a
2 obtained

by Gerke and van Genuchten [1993] derived from (7) and
(8) on the basis of the SPLT relationship.
[15] Once the water transfer coefficient is obtained, the

normalized head difference for large value of time is
[Mathias and Zimmerman, 2003]

hm tð Þ � hf

hm;i � hf
¼ exp

�awt

1� wf

� �
Cm

" #
ð9Þ

where hm is the time domain head. Equation (9) can be
verified by comparing it with the exact solution given by
Crank [1956, p. 48] which was shown by Mathias and
Zimmerman [2003] as

hm tð Þ � hf

hm;i � hf
¼ 8

p2

X1
n¼0

1

2nþ 1ð Þ2
exp

� 2nþ 1ð Þ2p2Kat

2að Þ2 1� wf

� �
Cm

" #
ð10Þ

It is clear that the normalized head difference approaches
zero while dimensionless time Kat/[(2a)

2(1 � wf)Cm] on the
RHS of (10) goes to very large.
[16] After comparing with the exact solution given by

Crank [1956], Mathias and Zimmerman [2003] concluded
that the discrepancy of the water transfer coefficient from
the time domain approach and Laplace domain approach
arise from the use of the SPLT relationship. However,
following careful investigations, we find that this relation-
ship is indeed correct and the defect of Gerke and van
Genuchten [1993] is mainly caused by neglecting the
convergent requirements of series expansion for (7) and (8).

3.2. Large-Time Water Transfer Coefficient From the
Laplace Domain Approach

[17] Gerke and van Genuchten [1993] used series expan-
sion for tanh(x) and 1/(1 + z) in (7) and (8), respectively.
Those two equations were then respectively expressed as

hm pð Þ ¼ hf

p
1�

a2 1� wf

� �
Cmp

3Ka

þ
2a4 1� wf

� �2
C2
m p

2

15K2
a

�
17a6 1� wf

� �3
C3
m p

3

315K3
a

þ . . .

" #

þ hm;i

p

a2 1� wf

� �
Cmp

3Ka

�
2a4 1� wf

� �2
C2
m p

2

15K2
a

þ
17a6 1� wf

� �3
C3
m p

3

315K3
a

� . . .

" #

hm pð Þ ¼ hf

p
1�

1� wf

� �
Cmp

aw

þ
1� wf

� �2
C2
m p

2

a2
w

�
1� wf

� �3
C3
m p

3

a3
w

þ . . .

" #

þ hm;i

p

1� wf

� �
Cmp

aw

�
1� wf

� �2
C2
m p

2

a2
w

þ
1� wf

� �3
C3
m p

3

a3
w

� . . .

 !

ð11Þ

ð12Þ
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The water transfer coefficient can then be obtained as aw =
3Ka/a

2 if one compares (11) with (12) and sets the second
term on RHS of these two equations are equal. Similarly, the
water transfer coefficients obtained from the third and
fourth terms are aw =

ffiffiffiffiffiffiffiffiffiffi
15=2

p
Ka/a

2 (ffi 2.74Ka/a
2) and aw =

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
315=17

p
Ka/a

2 (ffi 2.65Ka/a
2), respectively. It seems that

the estimated water transfer coefficient appears monoto-
nously decreasing from 3 and asymptotically approaches
2.47. Notice that Gerke and van Genuchten [1993] truncated
the third and remaining higher-order terms of p in (11) and
(12) because of small p.
[18] The series expansion for tanh(x) in (7) and 1/(1 + z)

in (8) should be restricted to the convergent criteria jxj < p/2
and jzj < 1 [Abramowitz and Stegun, 1970, pp. 15, 85],
respectively. Accordingly, the Laplace variable, p, has to
satisfy the constraints of p < p2Ka/[4a

2(1 � wf)Cm] and
p < aw/[(1 � wf)Cm] respectively for (7) and (8). In order to
satisfy these two constraints simultaneously, the water
transfer coefficient has to be aw = p2Ka/4a

2 which is indeed
equal to that ofMathias and Zimmerman [2003]. Obviously,
the coefficient of aw = 3Ka/a

2 obtained by Gerke and van
Genuchten [1993] is larger than the one of aw = p2Ka/4a

2

and consequently violates the former constraint. A detailed
derivation for large-time water transfer coefficient is shown
in Appendix C and the result also yields aw = p2Ka/4a

2.
This result obtained from the Laplace domain approach
based on the SPLT relationship is exactly the same as that of
Mathias and Zimmerman [2003] derived from the time
domain approach. Therefore the dispute in the discrepancy
that was calculated using Laplace domain approach by
making use of the SPLT relationship and those found by
working in the time domain is clearly resolved.

4. Conclusions

[19] In this note we demonstrate that the inverse Lap-
lace transform formula of Oberhettinger and Badii [1973,
pp. 276, 424] adopted to invert Laplace domain solution by
Chen and Stone [1993] should be under the constraint p > l
where l is a finite value. One will obtain an erroneous
solution if applying that inverse Laplace transform formula
without satisfying this necessary constraint. Therefore the
inconsistent results obtained by Chen and Stone [1993]
from the SPLT relationship and the Tauberian theorem that
arose from a violation the constraint occurred when apply-
ing the inverse Laplace transform formula rather than using
the SPLT relationship. In addition, we also derive a large-
time solution for the dimensionless wellbore flux of the
constant head test based on the SPLT relationship and the
work of Ritchie and Sakakura [1956]. Moreover, our large-
time solution obtains the steady state result, when the time
approaches infinity, which is exactly the same as that
obtained by Chen and Stone [1993] by applying the
Tauberian theorem to the Laplace domain solution.
[20] In regard to the estimation of water transfer coeffi-

cient in a dual-porosity media problem, the series expansion
for tanh(x) and 1/(1 + z) used by Gerke and van Genuchten
[1993] should satisfy the convergent criteria of jxj < p/2 and
jzj < 1, respectively. By neglecting these two convergent
criteria, Gerke and van Genuchten [1993] obtained a poor
estimated result for the water transfer coefficient. We also
derived a large-time water transfer coefficient from the
Laplace domain solution based on series expansion

approaches and the SPLT relationship. Our water transfer
coefficient obtained from the Laplace domain approach is
exactly the same as that of Mathias and Zimmerman [2003]
derived from the time domain approach. Therefore the long-
standing discrepancy in the estimated water transfer coef-
ficients in dual-porosity systems obtained using the time
domain approach and the Laplace domain approach is
clearly and thoroughly resolved. We therefore conclude that
the SPLT relationship is correct and applicable to the Lap-
lace domain solution in obtaining a large-time solution for
transient groundwater flow problems.

Appendix A: Derivation of Equation (4)

[21] By applying the Laplace transform, the integral
function of (4) can be expressed as

L

Z1
0

ltð Þx

G xþ 1ð Þ dx

2
4

3
5 ¼

Z1
0

e�pt

Z1
0

ltð Þx

G xþ 1ð Þ dxdt ðA1Þ

The RHS of (A1) is a double integral and can be rearranged
as

Z1
0

e�pt

Z1
0

ltð Þx

G xþ 1ð Þ dxdt ¼
1

p

Z1
0

l=pð Þx

G xþ 1ð Þ

Z1
0

e�pt ptð Þxd ptð Þ

2
4

3
5dx
ðA2Þ

[22] The Gamma function is defined as [Abramowitz and
Stegun, 1970, p. 255]

G xþ 1ð Þ ¼
Z1
0

e�uuxdu ðA3Þ

Replacing the second integral in (A2) by Gamma function,
the RHS of (A2) after the integration gives

1

p

Z1
0

l
p

� �x

dx ¼ � lim
z!1

1

p

1

ln p=lð Þ
p

l

� ��x
����
x¼z

x¼0

ðA4Þ

[23] If p > l, the term (p/l)�z approaches zero as z ! 1,
then (A4) reduces to

L

Z1
0

ltð Þx

G xþ 1ð Þ dx

2
4

3
5 ¼ 1

p ln p=lð Þ ðA5Þ

This derivation shows that (4) is hold only under the
condition that p > l.

Appendix B: Derivation of Equation (6)

[24] The first four terms of (5) can be rewritten using the
notation of Ritchie and Sakakura [1956] as

L�1
1

p ln p=lð Þ

� 	
¼ � B

0;�1
0

ln h
þ B

0;�1
1

ln hð Þ2
þ B

0;�1
2

ln hð Þ3
þ B

0;�1
3

ln hð Þ4

" #
ðB1Þ
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B0;�1
s ¼ �1ð Þs

�1

s

0
@

1
A ds

dn s

1

G 1� nð Þ

� 	����
n¼0

; s ¼ 0; 1; 2; 3 ðB2Þ

where the coefficient Bs
0,�1 relates to the Gamma function.

The selected properties of binomial coefficient, Gamma
function, and Polygamma function for following derivation
are, respectively, [Abramowitz and Stegun, 1970]

�1

s

0
@

1
A ¼ �1ð Þs ðB3Þ

G 1� nð Þ ¼ �nG �nð Þ ðB4Þ

ds

dn s
y nð Þ ¼ dsþ1

dnsþ1
lnG nð Þ½ 
 ðB5Þ

[25] The values of Bs
0,�1 for s equaling 0, 1, 2, and 3 can

be derived as, respectively,

B
0;�1
0 ¼

�1

0

0
@

1
A �1ð Þ0 1

G 1ð Þ ¼
1

G 1ð Þ ¼ 1 ðB6Þ

B
0;�1
1 ¼

�1

1

0
@

1
A �1ð Þ1 d

dn
1

G 1� nð Þ

� 	����
n¼0

¼ G0 1ð Þ
G2 1ð Þ

¼ �g ðB7Þ

B
0;�1
2 ¼

�1

2

0
B@

1
CA �1ð Þ2 d

2

dn2
1

G 1� nð Þ

� 	����
n¼0

¼ �G00 1ð Þ
G2 1ð Þ

þ 2
G0 1ð Þð Þ2

G3 1ð Þ
¼ g2 � p2

6
ðB8Þ

B
0;�1
3 ¼

�1

3

0
B@

1
CA �1ð Þ3 d

3

dn3
1

G 1� nð Þ

� 	����
n¼0

¼ G000 1ð ÞG2 1ð Þ � 2G00 1ð ÞG0 1ð ÞG 1ð Þ
G4 1ð Þ

� 2
2G00 1ð ÞG0 1ð ÞG3 1ð Þ � 3 G0 1ð Þð Þ2G2 1ð ÞG 1ð Þ

G6 1ð Þ

¼ �g3 þ p2

2
g � 2x 3ð Þ ðB9Þ

where the Riemann Zeta function x(3) = 1.2020569032.
[26] Substituting (B6)–(B9) into (B1) gives

L�1
1

p ln p=að Þ

� 	
¼ � 1

ln h
� g

ln hð Þ2
þ
g2 � p2

6

ln hð Þ3
�
g3 � p2

2
g þ 2x 3ð Þ

ln hð Þ4

2
664

3
775

ðB10Þ

Thus the inverse Laplace transform of (3) results in (6)
when truncating high-order terms of (5).

Appendix C: Derivations of the Water Transfer
Coefficient

[27] The series expansion of tanh x can be expressed as
[Abramowitz and Stegun, 1970, p.85]

tanh x ¼ x� x3

3
þ 2

15
x5 � 17

315
x7 þ . . .

þ 22n 22n � 1ð ÞB2n

2nð Þ! x2n�1 þ . . . ; n ¼ 1; 2; . . .

ðC1Þ

where B2n is the nth Bernoulli number and the convergent
criterion of tanh x is jxj < p/2.
[28] Subsequently, one uses the Fourier expansion of the

Bernoulli number [Abramowitz and Stegun, 1970, p. 805]
and obtains

B2n ¼
�1ð Þn�1

2 2nð Þ!
2pð Þ2n

X1
k¼1

1

k2n
; n ¼ 1; 2; . . . ðC2Þ

Therefore the nth term of water transfer coefficient is
obtained by letting (11) equal (12) as

aw;n ¼ �1ð Þn�1
2nð Þ!

22n 22n � 1ð ÞB2n

" # 1
n�1

Ka

a2
¼ p2n

22nþ1 � 2ð Þ
X1
k¼1

1

k2n

2
6664

3
7775

1
n�1

�Ka

a2
; n ¼ 2; 3; . . .

ðC3Þ

[29] The limit of aw for n ! 1 is

aw ¼ lim
n!1

p2n

22nþ1 � 2ð Þ
X1
k¼1

1

k2n

2
6664

3
7775

1
n�1

Ka

a2
¼ p2

4

Ka

a2
ðC4Þ

where the limit of Riemann Zeta function, lim
n!1

X1
k¼1

k�2n,
equals 1.
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