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Abstract - Declustering problems are well-known in the databases for parallel computing envi- 
ronments. In this paper, we propose a new similarity-based technique for declustering data. The 
proposed method can adapt to the available information about query distribution (e.g. size, shape and 
frequency) and can work with alternative atomic data-types. Furthermore, the proposed method is 
flexible and can work with alternative data distributions, data sizes and partition-size constraints. The 
method is based on max-cut partitioning of a similarity graph defined over the given set of data, under 
constraints on the partition sizes. It maximizes the chances that a pair of atomic data-items that are 
frequently accessed together by queries are allocated to distinct disks. We describe the application of 
the proposed method to parallelizing Grid Files at the data page level. Detailed experiments in this 
context show that the proposed method adapts to query distribution and data distribution, and that 
it outperforms traditional mapping-function-based methods for many interesting query distributions 
as well for several non-uniform data distributions. Copyright 01996 Elsevier Science Ltd 
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1. INTRODUCTION 

With an increasing performance gap between processors and I/O systems, parallelizing I/O 
operations by declustering [12, 11, 301 data is becoming essential for high performance applica- 
tions. Database machines, multi-processors and parallel computers can all benefit from effective 

declustering. 
The declustering problem can be stated as follows: Given a set of atomic data-items, N disks, 

and a set of queries, divide the set of data items among the N disks, respecting the disk capacity 
constraints, to minimize response time for the given set of queries. Unfortunately, this problem is 
NP-complete in several contexts, which include partial match queries on Cartesian product files [ll] 
and join queries on a set of relations [30]. Thus any method to solve this problem in polynomial. 
time will be heuristic. 

We address the declustering problem in a single processor with a multi-disk environment. We 
abstract the properties of multi-disk secondary storage systems in terms of their capability of car- 
rying out N-independent disk operations in parallel. The storage system is viewed as a collection 
of logical disks, each with an independent read/write head and an independent channel to transfer 
data to/from the processor’s memory. Disk block accesses over different logical disks are indepen- 
dent and can be carried out in parallel. Thus the storage system can reduce the response time for 
large I/O volumes by a factor of N, where N is the number of disks in the system. We focus on 
I/O cost only. Readers are referred to MAGIC [17] f or a more general cost model that includes 
communication cost,s. Furthermore, the data items are assumed to be atomic, i.e., a data item 
will not be split across disks. Data items like records, objects, pages and page-clusters are likely 
to satisfy this assumption. This assumption excludes strategies such as splitting a data item (e.g. 
files) across disks. 

Several heuristic methods have been proposed that are based on the ideas of mapping functions, 
similarity and load-balancing. The mapping-function-based techniques have been proposed for k- 
dimensional and spatial data with partial match queries and range queries. These methods provide 
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a mapping function from the domain of data-items to the set of disk-ids, assuming that all data- 
items and queries are equiprobable. Several single-attribute functions including round robin, hash- 
partitioning, key-range partitioning [6, 151, and a hybrid of these [16], as well as multi-attribute 
functions including grid-based multi-dimensional key-range-partitioning [17], disk modulo [8, 271, 
generalized disk modulo (linear) [8, 351, field-wise-XOR [24], Hilbert [9], error-correcting code [ll], 
latin-square [23, 351, random [3], vector-based declustering [4] and lattice [35] have been proposed 
and evaluated. A survey of multi-attribute functions can be found in [ll, 91. These methods are 
limited inxdvi the case of managing updates, non-uniform data-distributions and non-uniform data- 
sizes. Furthermore, they are limited in their ability to adapt to available information about query 
distribution and size constraints. Lastly, these techniques are not designed for schema partitioning. 

Index-specific load-balancing based declustering methods have been proposed for B-tree [31], 

R-tree [20] and the temporal index [25], etc. Dynamic file allocation methods are proposed in the 
FIVE system [33]. These methods are incremental in nature to balance the load (e.g. storage, I/O 
time) in various partitions for a local window (i.e. a subset of existing data-items in partitions) 

around the new data-item. The incremental nature of the load-balancing methods allows them to 
work well with indexing methods (e.g. B-tree, R-tree) in the face of updates, non-uniform data 
distributions and non-uniform access frequencies to data-items. However, they do not take advan- 
tage of query distribution information, beyond looking at the access frequencies of the individual 
data-items. 

Fang et al. [12] introduced the idea of similarity (e.g. the nearest neighbor) for declustering. 

Two groups Gi and Gs are considered similar if, for every point p in Gi, there exists at least one 
point q in Gs such that either p is a nearest neighbor of q, or q is a nearest neighbor of p. Minimal 

spanning trees and shortest spanning paths were proposed in [12] to divide a set of given data-items 
into two “similar” groups. Similarity for more than two groups is not addressed. Furthermore, it 

is not obvious that the nearest-neighbor based notion of similarity is appropriate for all kinds of 

query and data types. 

Our Approach and Contributions: We propose a new similarity-based technique which can 

take advantage of the available information about query distribution, data distribution, data-item 
size, and constraints on partition size. The declustering scheme is based on max-cut partitioning of 
a similarity graph that has data-items as nodes. The edges have weights that represent similarity 

between the end nodes. The similarity between two data-items measures the likelihood that the pair 
will be accessed together by queries in the query set of interest. Max-cut partitioning maximizes the 

chances that a pair of data-items that are frequently accessed together by queries are allocated to 
distinct disks. We show that the proposed technique adapts to query distribution, data distribution 
and data-size information. We also propose an incremental max-cut method, based on the ideas of 
max-cut similarity and load-balancing, which is a simple greedy technique best suited for dynamic 

allocations as well as for static declustering for large data sets. 

Theoretical analysis and experiments show the superiority of the proposed method in several 
contexts. We also describe how the proposed technique can be used to parallelize grid files. Detailed 
experiments in this context show that the proposed technique can adapt to alternative data dis- 
tributions and query distributions. It outperforms mapping-function-based techniques for several 
query distributions on uniformly distributed data sets, and almost always does so for non-uniform 
data distributions. Experiments also show that the proposed incremental max-cut method out- 
performs the load-balancing based declustering method and provides the best trade-off between 
parallel response time for queries and the cost of declustering. 

Outline: The remainder of this paper is organized as follows. Section 2 illustrates the basic 
concepts and presents our scheme. Section 3 describes the heuristic techniques of the proposed 
scheme. Theoretical analysis of the proposed scheme is presented in Section 4. Section 5 discusses 
the extension of our method to handle data-items of different sizes. Section 6 presents the appli- 
cation of the proposed method to parallelizing Grid Files. Experiments in this context are also 
presented. Finally, Section 7 presents the conclusion and suggests future work. 
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2. SIMILARITY-BASED APPROACH TO DECLUSTERJNG 

Fang et al. [12] introduced the similarity idea for declustering as follows: Given a set of data, 
partition it into two groups such that these two groups are similar to each other. Two groups G1 

and G=J are considered similar if, for every point p in G1, there exists at least one point q in Gz 
such that either p is a nearest neighbor of q, or q is a nearest neighbor of p. The similarity between 
G1 and GS is measured by the number of data-items which have a nearest neighbor in the same 
group. A small value of this measure is desired for effective declustering. 

We propose a new similarity-based approach to the case of multiple disks with possibly different 
capacities and to the case of non-uniform data sizes. We also generalize the notion of “similarity” to 
capture the available information about query distribution. This section defines the basic concept,s 
and formulates our similarity-based approach to declustering. 

2.1. Basic Concepts and Definitions 

In this section, we describe some basic concepts and give the definitions of the parameters of 
the problem. The symbols and their definitions are listed in table 1. 

L N The number of disks 

‘w(F VI The relative frequency that u and v are likely to be accessed together 

R(q) The set of data-items that qualify for the given query 

Svmboiy Meaning 

7W 

/ 

A partitioning of data set V 

EC The set of edges e(u, V) whose end points u and ‘u 
fall in different groups of a partitioning n(V) 

S(x(V)) The degree of similarity among groups of a partitioning r(V) 
i.e., the sum of the weights on all the edges in EC 

t(v) The number of time units required to retrieve the given data item v 

f(s) The relative frequency of the occurrence of the query q 
rt(q) The response time of the given query q 
T” The expected query response time under a partitioning r(V) 

Table 1: Symbols and definitions 

Definition 1 A data set V is a collection of data-items. Each data-item v in V is associated with 
size(v), representing the storage required to contain it. A group of data-items from Vis a subset of 
V. A partitioning of data set V, r(V), is a collection of mutually disjoint groups, Gy , Gz, . . , Gk, 
such that their union is equal to V, i.e., U~V=,Gq = V, and Gq fl Gy = 8. 

Definition 2 A query-set QB = {ql,qz, . . . , qk} is a set of queries over data-set V. The query 
response set R(q) to a query q is the set of data items that qualify for the given query q. Query 
distribution f is a function that maps query set Q8 to a relative frequency, i.e., f(q) provides the 
relative frequency of the occurrence of query q. 

If all queries are equiprobable, then f(q) = &J for all q E QS. We note that query distribution 

function ‘f’ can be generalized to model the situation where the relative frequencies of query classes 
(e.g. range query, square-range query or partial-match query) are known, even though the relative 
frequencies of the individual queries are not known. 

Definition 3 The retrieva2 time t(v) of a given data item v is the number of time units required 
to retrieve v. The response time r+(q) on a query q is defined as max{Tl, T2, . . , TN}, where 
Ti (1 < i 2 N) is the total number of time units required to retrieve qualifying data items on disk 

. 
2, i.e., Ti = C t( ) v over all v E R(q) and v on disk i. If all data items are of equal size, and the 
retrieval time of a data item is assumed to be the unit of time, then t(v) = 1 for all v E V and 

rt(q) = max{lRl(q)l, lR2(4N,. . . , (RN(q)/}, where IRi(q)J (1 5 i < N) is the number of qualifying 
data items on disk %. 
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In general, the retrieval time of an atomic data item is linear in terms of the size of the data 
item. The definitions of t(v) and d(q) take into account data items of different sizes, i.e., different 
retrieval times. We note that most existing methods assume that data items are of equal size and 
that the retrieval time of a data item (e.g. a page or bucket) is assumed to be the unit of time. 
To make our discussion simple to understand, we first present the definitions, proposed scheme 
and theorem based on the same assumption. In Section 5, we discuss the generalization of our 
proposed scheme to the case where atomic data items might have different sizes. 

Definition 4 An allocation method is strictly optimal for a query q if and only if a maximum of 
[w] data items need to be accessed on any of the N disks. An allocation method is strictly 
optimal with respect to a query set Q8 = {ql, qz, . . . , qk} if and only if the allocation method is 
strictly optimal for all qi, with i = (1,2,. . .,k). 

Definition 4 is similar to that used by Du et. al [7, 18, 11, 351. We note that no methods 
can achieve strict optimality for all query-sets [7, 18, 351. For example, no method can be strictly 
optimal for all range queries if the number of disks is greater than 5 [18, 351. However, some 
of the existing declustering methods have been proved to be strictly optimal for simpler query 
sets [8, 11, 351. 

We use a weighted similarity graph to capture the similarity relationship between data items. 
The nodes in the graph represent the data items. The similarity between two data items is 
quantified as the weight on the edge connecting them. There exists an edge connecting two nodes, 
if the weight between them is not zero. The weighted similarity graph is formally defined as the 
following. 

Definition 5 Let WSG = (V, E) be a weighted similarity graph, where V is a data set and E = 
{ e(u, w) 1 u E V, v E V, and u and v are qualified to be accessed together in a query }. Each 
edge e(u, w) in E is associated with a weight UJ(U, v). The weight 2o(u, v) represents the relative 
frequency with which data items u and v are likely to be accessed together by a query of interest. 
The weight on an edge e(u, w), contributed from a query set Q8, is equal to C f(q), over all q E Qs, 
where u E R(q) and w E R(q). 

The similarity between data-items u and u is measured by w(u, v), the weight on edge e(u, w). 
Thus data-items with a high degree of similarity are likely to be accessed together. Similarity be- 
tween two groups, Gi and Gj, of data-items, is measured by s(Gi, Gj), representing the aggregation 
of similarity of the data-items across the two groups. Formally, s(Gi, Gj) = CuEGi C,,eGj w(u, v). 
Two groups Gi and Gj with high s(Gi,Gj) are likely to be accessed together by queries in the 
query set Qs. Thus, higher values of s(Gi,Gj) are desired for effective declustering. 

The degree of similarity among the groups in a partition r(V) is measured by the aggregation 
of the pairwise similarities among its groups. To formalize this concept, we introduce the notion of 
the cut-set EC to represent the set of edges e(u, v) whose end points u and v fall in different groups 
of n(V). Now S(r(V)), the degree of similarity among groups GT, G,“, . . . , G& of a partitioning 
n(V), can be formalized as the sum of the weights on all the edges in the cut-set, as follows: 

S(~V/‘)) = c 
(Gi,Gj) is a doubleton subset of T(V) e(wf)E& 

A doubleton set is a set with two elements. The set of doubleton subsets is used to avoid redundancy 
during computing the weights on the edges in the cut-set. 

2.2. Our Approach 

The basic idea behind our approach is as follows. Since maximizing parallelism in retrieval 
is desirable, the end-nodes u and w of an edge e(u,u) with a high weight (similarity) should be 
allocated into different disks. Thus, maximizing the degree of similarity among N groups in a 
partition should generally provide good concurrency in retrieval. Our approach to declustering 
strives to discover a partitioning of data, n(V), which maximizes S(n(V)) under disk number and 
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disk capacity constraints. Formally, the proposed scheme, namely max-cut declustering, can be 
stated as follows: 

Declustering Scheme : Max-Cut Partitioning of the WSG 

Given a weighted similarity graph WSG = (V, E), the number of disks N and the 
size-constraint predicates Li, where 1 < i 5 N. 

Find a partition r(V) = (Gl, Gz, . . . , GN) among N disks, 

To maximize S(r(V)), i.e., the total weight on all the edges in the cut set, denoted 
as 

c w(e(u,v)), where EC = (e(u,w)le E E, u E Gi and w $2 Gi}. 

e(u,v)~Ec 

Such that Li(Gi) = True, where 15 i 5 N 

We refer to the above max-cut declustering scheme as max-cut partitioning of the WSG, 
a,s it maximizes the total weight on the edges in the cut-set of WSG. The expected query response 

time can be reduced, since data-items with higher similarity are more likely to be distributed into 

different groups. The objective of maximizing S(r(V)) is referred to as the max-cut similarity 
criterion. 

We note that existing declustering methods are all heuristic methods. The max-cut declustering 
scheme is also a heuristic approach for declustering problems. However, it exhibits strict optimality 
under special conditions, as shown in Section 4. 

The size-constraint predicate Li for each disk may be determined based on the disk load- 
balance criterion, available disk capacity, N and sizeof( It could represent either disk-capacity 

constraints, EVE-,; size(v) 5 Cupacity(di&), or storage-load balance constraints. It could bal- 
ance the “heat” [16] or frequency of access to data-items in each group. We note that the max-cut, 
partitioning scheme explicitly accounts for available information about query distribution via the 
weights on the edges. It also accounts for data sizes, data distribution, and partition size con-, 

straints. 
The query profiles can be collected on the basis of the available database statistics for access 

frequencies. One way to gather such statistics would be to record the frequency of query occur-, 
rence and the access frequencies of data items. Another way could be based on the use of available 
information in the application domain. For example, in decision support systems, several reports 
are generated periodically (daily, weekly or monthly). In a terrain-visualization system, the sim- 
ulation of a ground vehicle usually issues a fixed size (e.g. 8 km * 8 km) range queries [32]. In 
spatial databases, the proximity index [20] can be used to estimate the probability of a random 
query retrieving a given pair of rectangles. 

We view the declustering not as a one-time operation, but as an operation that may need 
to be executed periodically to reorganize the allocation of data items, if query profiles change 

substantially. However, a complete study of the effect of change query profiles is outside the scope 
of this paper and needs further study. We plan t,o explore it in our future work. 

If no information about query distribution is available, then each query is assumed to be equally 
likely, and the scheme still takes advantage of data-distribution information in partitioning. The 
scheme can also take advantage of partial information about query distribution. Weights in WSG 
can be defined on the basis of the frequency of query classes, even though the frequency of individual 
queries are not known. For example, the assumption that smaller range queries on spatial data 
are more likely than larger range queries can be used to define a query-distribution function. 

Unlike most previous methods, the proposed scheme makes no assumption about the semantics 
of the data items in terms of dimensionality or domain. Thus the method can be applied to a, 
diverse range of declustering problems. Furthermore, it can be adapted to declustering at various 
data granularity levels, and thus can achieve good declustering that is based on a real data set 
(e.g. non-uniformly distributed data pages, rather than the grid cells). 
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In general, the I/O time of a single disk is linear in terms of the size of the data item to be 
retrieved. The above scheme assumes that the size of each data-item is the same. Thus, it takes 

the same amount of I/O time to retrieve each data item (e.g. a bucket or a page). A generalized 
scheme for modeling different sizes of data-items is discussed in Section 5. 

2.3. Max-cut Graph Partitioning Techniques 

Our proposed max-cut declustering scheme aims at partitioning the WSG so as to maximize the 

total weight on the edges in the cut-set of WSG. Unfortunately, the max-cut graph-partitioning 
problem, as stated, remains NP-complete [14], which can be shown by reducing it to the com- 
plementary min-cut graph partitioning problem [22]. The min-cut graph partitioning problem is 
to partition the nodes of a graph with weights on its edges into subsets of given sizes, so as to 
minimize the sum of the weights on all of the edges in the cut-set. Kernighan and Lin [22] have 
shown that by changing the signs of all the edge weights, the max-cut graph partitioning problem 
can be transformed into the min-cut graph partitioning problem. 

Many good heuristic algorithms which have been developed for the min-cut graph partitioning 
problem can also be applied to efficiently solve the max-cut graph-partitioning problem. We 
note that the minimum-spanning-trees algorithm can also be used as a simple heuristic for the 
graph-partitioning approach. However, the ratio-cut (51, KL [22] and other methods [21] are 
superior [5, 21, 221. These heuristics are based on spectral partitioning and iterative approaches. 
In spectral techniques [l], eigenvalues and eigenvectors of the matrix representation of the graph 
are computed. Partition results are derived by mapping the information provided by eigenvectors 
onto actual partitions. Iterative approaches [5, 13, 22, 341 start from an initial partition, then 
iteratively apply pairwise swapping or moving of nodes across partitions to minimize edge cuts. 

In general, graph partitioning algorithms are expensive and their CPU and memory costs often 

grow non-linearly with the size of the graph. There are two ways to manage the cost: (i) use an 
efficient and effective graph partitioning algorithm; (ii) reduce the size of the individual graph to 
be partitioned by using an incremental declustering method. A survey of graph-partitioning algo- 
rithms, along with their costs and quality of partition is available in [21]. The latest developments 
have yielded algorithms that can partition graphs with a hundred thousand nodes in a couple of 
minutes [21] on workstations. Similar run-times (e.g. within 50 seconds on a Spare 2 workstation 
for partitioning a graph with 170,000 nodes and 230 K edges into 64 partitions) are also reported 
in [2]. An incremental declustering algorithm is presented in Section 3.1 and is experimentally 
evaluated for a large data set in Section 6.3.4. In future work, we would like to evaluate the 
suitability of the latest graph-partitioning algorithm for declustering. 

3. HEURISTIC TECHNIQUES FOR MAX-CUT DECLUSTERING 

In this section, we present two heuristic techniques, Incremental max-cut and Global max-cut 
graph partitioning, for the max-cut declustering scheme. Incremental max-cut is based on the max- 
cut similarity criterion and local load-balancing. The global max-cut graph partitioning technique 
is based on a global min-cut graph partitioning algorithm with adaptation of the max-cut similarity 
criterion. 

The Incremental max-cut is a simple greedy technique best suited for dynamic allocations, as 
well as for static declustering of large data sets. It achieves competitive quality of declustering at 
lower cost. The global max-cut graph partitioning technique is more expensive and might not be 
suitable for frequent reallocations. It is likely to achieve better quality of declustering; however, it 
will have a higher cost. 

3.1. Incremental Max-cut Deelustering 

The incremental max-cut allocates data items to the disks in a greedy manner, using the max- 
cut similarity criterion and local load-balancing. Different from the classical local load-balancing 
strategy [20, 311, which allocates a data item to the disk with the lowest load (e.g. storage) over 
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:I loc~al winclow, Incremental max-cut declustering aims at allocating a data item to a disk, such 
Ihat t.hcl max-cut, similarity criterion within a local window is best fulfilled. 

A local window around a data item u defines a subset of data items which are likely to be 
accessed together with u via many queries. For example, a local window in a grid file may be 8x8 
grid cells centered around a newly created page. We note that the definition of a local window 
is determined based on the application domain and the overall cost of incremental declustering 
strategy depends on the size of the window. In presenting the incremental max-cut technique,, 
without loss of generality, we assume that the definition of local window has been provided. We 
will discuss the local window for the grid file in Section 6. A key issue in the incremental declustering 
technique is the degree of reorganization over a given window. In general, many data items within 
the window may be reallocated; however, for simplicity, we will focus on the case where existing 
data items are not reallocated across disks. 

Procedure: IncrMa.xCutAllocOne(u: data item; N: number of disks) 
P: set of data items; 

si7nilarity: set of weights ~(a, b); 
Allot-diskid[]: array of disk-id of disk in which data item is allocated; 

begin 
P = local-window(u); // comments : P includes u 
// comments: P is a set of data items within the local window defined around u 
similarity =: create-sub-WSG(u, P); 
Allot-diskid[u] = GreedyAlloc(u, P, similarity, N); 

end; 

Fig. 1: Incremental Max-Cut Algorithm for one Data Item 

Figure 1 shows t,he incremental max-cut declustering algorithm for allocating one data item. 

Let u be the data item (e.g. the newly inserted data item) to be allocated. Let P be the set of data 
items within the local window, defined around u. The similarity (weight) between u and other 
data items of P is derived first. A local weighted similarity graph WSG6 = (V’, E6) is constructed 
next, where V6 = { a 1 a is U, or a E P such that w(u,u) > 0 } and Es = {e(zl, b) 1 b E V6 and 
w(u, b) > 0). We note that only the edges between u and other members of P are considered, and 
the edges among other members of P are not considered. Incremental max-cut declustering aims 

at allocating u to a disk, such that the max-cut similarity criterion within the local window is best 
satisfied. The IncrMaxCutAllocOne() algorithm calls the GreedyAlloc() algorithm to allocate the 
data item. 

The GreedyAlloc() algorithm is described in Figure 2. Given the data item u to be allocated, the 
local window P and t,he similarity (weight) among u and data items in P, the algorithm allocates 

u to a disk such that the max-cut similarity criterion within the local window P is best satisfied. 
For every disk D, we compute the similarity measure which is defined as the summation of 
similarity(u, v), where II E P, and v is stored in D. The data item u is allocated to the disk that, 
has the lowest similarity measure. We break the tie by choosing the disk with the lowest storage 
load (e.g. the fewest data items). It can be shown that the above strategy best meets the max-cut 
similarity criterion within the local window, among all possible allocations of ‘IL. 

The algorithm presented in Figure 1 can be generalized for declustering a set of data items, as 

shown in Figure 3. A simple way to generalize is to invoke the IncrMaxCutAllocOne() algorithm 
for each data item in the data set. The cost of this iterative procedure can be reduced by grouping 
the unallocated data items by the local windows. The IncrMaxCutAllocSet() algorithm in Figure 3 
starts by selecting an unallocated data item p as a seed node to form a subset P which contains 
all data items (both allocated and unallocated) within the local window defined around the data 
item p. Let Up be the set of all unallocated data items in P. For every data item u in Up, the 
similarity between u and other data items of P is derived first. A local weighted similarity graph 
WSG’ = (V6, E6) is constructed next, where V6 = { a 1 u E lTp, or a E P such that there exists 
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Procedure: GreedyAlloc(u: data item; P: set of data items; 
similarity: set of weights; N: number of disks) : return disk-id; 

Disk;: set of data item; TJ : data item; 
Allot-diskidu: array of disk-id of disk in which data item is allocated; 

begin 
for disk-id i = 1 to N do 

Let Diski = {data item v 1 data item v E P and Allot-diskid[v] is equal to i} 
compute similarity measure Mi = CvEDiski similarity(u, v); 

endfor 
return disk i, where A4i is the lowest 

among disks which satisfy disk-load capacity constraints; 
end; 

Fig. 2: Greedy Allocation Algorithm 

u E Up and w(u,u) > 0 } and E6 = {e(a, b) 1 a E Up, b E V6 and zu(a, b) > 0). Finally, all 
the unallocated data items in the local window, i.e., members of Up, are allocated to disks one 
by one in a greedy manner by using the GreedyAlloc() algorithm. The process repeats until all 
the data items have been allocated to disks. The quality of declustering can also be improved by 
simultaneously allocating all unallocated data items in P to disks. 

Incremental max-cut declustering reduces the size of the data set to be allocated by incremen- 

tally declustering subsets of data items within a local window. Thus the method can handle larger 
data sets. The ordering of unallocated data items may affect the quality of declustering. We plan 
to study the effect of ordering in future work. 

Procedure: IncrMaxCutAllocSet(V: set of data items; N: number of disks) 
P, Disk;: set of data items; u, v : data item; 
similarity: set of weights w(a, b); 

begin 
Repeat 

Select an unallocated data item p in V 
P = local-window(p); 
// comments: P is a set of data items within the local window defined around p 
// comments: p E P 
Let Up be the set of all unallocated data items in P 
similarity = create-sub-WSG(UP, P); 
for each unallocated data item u E Up 

Allot-diskid[u] = GreedyAlloc(zl, P, similarity, N); 
endfor 

Until all data items have been allocated; 
end; 

Fig. 3: Incremental Max-Cut Algorithm for a set of data items 

3.2. Global Max-Cut Graph Partitioning 

The global max-cut graph partitioning technique is based on partitioning a single similarity 
graph over all data items. This technique declusters all data items simultaneously, in contrast to 
the incremental technique discussed in Section 3.1. The declustering of a set of data items into 
multi-disks is based on a heuristic N-way rnax-cut graph-partitioning algorithm to partition the 
nodes of WSG into N groups that satisfy the disk-load size constraints, such that the total weight 
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on all the edges in the cut-set is maximized. Those data items which belong to the same group 
are allocated to the same disk. 

In general, N-way partitioning can be implemented via generalizing the two-way partitioning 
or via repeated applications of the two-way partitioning [22]. We implement the N-way max- 
cut graph partitioning by repeated applications of two-way graph partitioning, using the modified 
ratio-cut heuristic [5]. Chen and Wei [5] define the ratio cost metric for a two-way min-cut partition 

to be Wc/lAl * IBI .h w ere W, is the sum of the weights of the edges in E,, and that /A( and IBI are 

the sizes of the two partitions. The cost metric for the two-way max-cut algorithm is modified to 

be w, * I4 * PI, and the sign of the weight on the edge is changed to be negative, to maximize 
the weight on the edges in the cut-set. We will abstract two-way max-cut graph partitioning in 
this paper as follows: 

2-way-maxcut-partition(V: set of nodes; E: set of edges; Allimit; A2li,it) + < Al, A2 > 
where Al and A2 are the set of nodes, sizeof(A1) < Alli,itand sizeof(A2) < A21imit. 

The 2-way-maxcut-partition algorithm adapts the iterative approach [5], which starts from an 

initial partition (i.e. two subsets), and then iteratively moves nodes across subsets in an attempt to 
achieve a global minimum weight on the edges in the cut set. We note that the sign of the weight 
on the edge is changed to negative, such that the effect of maximizing the total weight on the edges 
in the cut-set can be achieved. The implementation of 2-way-maxcut-partition algorithm is based 
on the bucket-list data structure and requires a time complexity of O(lEl) [13] with respect8 to the 
number of edges I E I. 

We have chosen a competent algorithm, ratio-cut heuristic algorithm [5]. Our max-cut parti- 

tioning scheme can adapt any existing graph partitioning algorithms as the basis for declustering. 
Readers are referred to [21] for a survey and comparison of alternate graph partitioning algorithms. 

Figure 4 shows the global max-cut declustering algorithm based on the max-cut graph parti- 

tioning technique. The procedure starts by finding an initial partition into N subsets, via using 
the procedure find-initial-partitiono. Then, it repeatedly applies the 2-way-maxcut-partition pro- 

cedure to pairs of subsets and makes the partition as close as possible to being pairwise optimal 
(pairwise max-cut). Pairwise optimization is performed by choosing pairs of subsets and applying 
the 2-way-max-cut-partition to these pairs. Notice that the disk-load parameter is used for the 

size constraint in the 2-way-max-cut-partition. The disk-load for each disk is assumed to model 
available disk capacity, storage-load balance criterion, sizeof and N, etc. 

Procedure: GlobalMa&utDeclustering(V: set of nodes; E: set of edges; N: number of disks, 
disk-load: array[l..N] of disk load-size constraint): partition 

P : partition // comment: set of groups; 
A,, A, : group // comment: set of nodes; 

begin 
// comment: find initial partition of N subs&s 
P = find-initial-partition(V, E, N); 
// comment: pairwise optimal 
Repeat 

Choose a candidate pair of Ai and A3 from P 
E’={(u,v) 1 (U,V) E ET U E Ai U Aj and v E Ai U Aj} 
< A;, A, :> = 2-way-max-cut-partition(Ai U Aj, E’, disk-load[i], disk-loadlj]) 
// comment: sizeof < disk-load[i] and sireof (AI) 5 disk-load[j] 

until no candidate pair can yield improvement on S(P) or the number of trials > T 
//comment: S(P) is the total weight on all edges in the cut-set of P. 

return P; 
end: 

Fig. 4: The Global Max-Cut Declustering Algorithm 

Pairwise optimization is performed until no more improvement can be found to the cut set, 
or until the number of passes is greater than a predefined number, T. The pairwise optimization 
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process may converge quickly, if the number of disks (groups) is not very large. The CPU cost for 
partitioning can also be controlled by T, which limits the number of passes for pairwise optimize 

tion. As mentioned in [22], pairwise optimal&y is only a necessary condition for global optimality. 
There may be situations when some complex interchange of three or more elements from three 
or more groups is required to achieve global optimum. Other multi-way graph partitioning meth- 
ods [34] can also be used as the basis of our scheme to further improve the result of partitioning, 
if computation complexity and CPU cost, is not a concern. 

To find the initial partition, we use the following two approaches suggested in [22] t. In the 
case that N is a power of 2, we apply the 2-way-maxcut-partition0 procedure to partition the 
initial data set, into two equally balanced subsets, then we repeatedly partition each of the subsets 
into two equally balanced subsets until N subsets are found. Otherwise, if N is not a power of 
2, the initial data set of IV1 elements is partitioned into a subset, of l$ elements and a remaining 

subset of (N - 1) 9 elements. The 2-way-maxcut-partition0 procedure is repeatedly applied 

to the remaining subset to split out a subset of l$ elements, until N subsets have been found. 
Alternatively, the incremental max-cut declustering technique presented in Section 3.1 can also be 
used to create the initial partition. 

4. ANALYSIS OF MAX-CUT DECLUSTERING SCHEME 

In this section, we present the analysis of the max-cut declustering scheme. The analysis will 
demonstrate in the Theorem 1 that the max-cut declustering scheme is capable of achieving strictly 
optimal declustering, if strictly optimal declustering exists. 

We characterize the situation where the proposed max-cut declustering scheme has strict op- 
timality in Theorem 1, and illustrate two interesting cases in corollary 1 and 2. We recapitulate 
the relevant notations and properties here first. The weighted similarity graph, with respect to a 
query q and a query set Qs, has several properties. The weighted similarity graph with respect 

to a query q, WSG(q), is a complete gragDh G’J = (V’J,E’J), where Vq = { Y 1 v E R(q) }, Eq = { 

(u, w) 1 u E R(q) and v E R(q) }, and th e weight with respect to a query q, wQ(u,v) on each edge 
e(u, V) E EQ is identical. The cut-set under the partition of n(VQ) is denoted by E,Q, where E,” = 
{e(u,v) 1 e E Eq, and u and v are in different, groups}. The in-set under the partition of x(V’J) is 
denoted by EiQ,, where Ein q = EQ - Ez. Let W(Eq), W(Ez) and W(EiQ,) be the total weight on 
the E’J, Ez and Ei”,, respectively. 

The weighted similarity graph with respect to a query set Qs, WSG(Q,), is G = (V, E), where 
V = { v I w E R(q), for q E Qs }, E = {e(u,v) I u E R(q) and v E R(q), for q E Qs }. The weight 
w(u,~) on edge e(u,v) E E is equal to Cf(q), where q E Q8, u E R(q) and v E R(q). The cut-set 
under the partition of n(V) is denoted by EC. 

Lemma 1 An allocation/partition of WSG(q), f or a query q into N groups, has the maximal 
weight on the cut-set, if and only if the allocation/partition is strictly optimal with respect to q. 

Proof. For simplicity, let us assume that R(q) is divisible by N. The proof for the case, where R(q) 
is not divisible by N, can be found in [28]. Let the partition of R(q) be &(q),&(q), . . . , RN(q), 
where R(q) = U&(q), for i = 1 to N. WSG(q) is a complete graph with weight, on the edges all 
equal to a constant Ic. Without loss of generality, let us assume that k = 1, i.e., w’J(u,~) = 1 for 
all e(u,v) E Eq. Then W(P) is equal to IR(q)l(lR(q)l - 1)/2 and W(E,P) is equal to W(E’J) - 
W(E,P,), where 

W(E;,J = c lw7wwl - w 
i=1torv 

= I%d12 + IR2k)12 +.*a+ I%&)12 _ I&(!?>1 + IRZ((I)I +a*.+ k(Q)l 

2 2 

tone may also use simple mapping-function-based methods to create the initial partition, if the data semantics 

allow that. 
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From the Schwarz inequality, 

(M9)12 + lR2(9112 +. . . + IM9)12)(12 + l2 +. . . + 12) > W1(9)l+ IR2(9)l+. ” + Ih4dl)2 (1) 

F’rom the above equation, we can derive the following. 

W(E” ) > pwl + IRz(dl +. . . + l~N(9)l)2 IWdI > Iwd12 IWdI -__ ~__ *?I - 2N 2 - 2N 2 

W(E&) is the m.inimum when the equality in equation 1 holds. The equality holds if only if 

I&(q)] = I&(q)] = . = l&(q)]. W(-W is th e maximum when W(E:n) is the minimum, since 
W(Ez) is equal to W(Eq) - W(E&). This shows that the partition achieves maximal weight on 

the cut-set if and only if the partition is strictly optimal with respect to q. 0 

Lemma 2 If an allocation/partition method is strictly optimal with respect to a query set Q,, then 
it has the maximal weight on the cut-set of WSG(Q,). 

Proof. From definition 4, the allocation/partition method is strictly optimal for all qi in the query 
set Q8. From lemma 1, it has the maximal weight on the cut-set of WSG(qi), i.e., W(Ep) is the 
maximum with respect to the partition of WSG(qi), for every qi E Qs. The total weight on the 

cut-set of WSG(Q,) is equal to the summation of all the W(EF). It is the maximum, since every 

W(Er ) is the maximum for the corresponding qi. cl 

Theorem 1 If there exists a strictly optimal allocation/partition method for a query set Qs, then 
max-cut declustering is also strictly optimal with respect to the query set Qs. 

Proof. From lemma 2, a strictly optimal method for Q9 leads to a partitioning K,, with maximal 
weight S(?T~) on any cut-set of WSG(Q,). Let S(q,xr) be the sum of the weights on t,he cut-set 

imposed by 7rP on WSG(q). Note that S(7rP) = CqEQ, d(q,nr), and S(q, rrr) is the maximal weight 

on any cut-set of WSG(q) due to lemma 1. Now we show that if max-cut partitioning discovers 

a partition 7r,,, for WSG(Q,), then 6(q,r,) = 6(q,rrp), for any q E Qs. This can be shown from 
the following two observations: (a) S(7rm) = S(n,), f rom lemma 2 and the definition of max-cut 

partitioning; (b) 6(q> rr,) 5 6(q, xi,), f rom lemma 1. The constraints, (a) and (b), can be satisfied 
only if 6(q,7rm) = 6(,q,rr,), for all q E Qs. Thus, max-cut partitioning nm is strictly optimal for 

each q E Qs according to lemma 1, and it is strictly optimal with respect to Qs. IJ 

Corollary 1 The max-cut declustering method is a strictly optimal allocation method with respect 

to the Row/Co1 queries over a two-dimensional grid. 

Proof. A linear allocation method, Disk(z, :I) = (px + qy + r)modN, where GCD(p, N) = 
GCD(q,N) = 1, is strictly optimal with respect to Row/Co1 queries over a two-dimensional 
grid [35]. Therefore, the corollary follows from T.heorem 1. 0 

The above result can be extended to Row/Co1 type queries over a k-dimensional grid. The 
partial match queries with only one unspecified attribute over a Cartesian product file are instances 

of Row/Co1 type queries over a k-dimensional grid. 

Corollary 2 The max-cut declustering method is a strictly optimal allocation method with respect 

to the Row/Co1 queries over one dimension of a k-dimensional grid. 

Proof. The Disk Modulo method is strictly optimal for all partial match queries, with only one 
unspecified attribute [B]. Therefore, the corollary is derived from Theorem 1. 0 

Theorem 1 demonstrates that the max-cut declustering (partition) is capable of achieving 
strictly optimal declustering if a strictly optimal declustering exists. However, strictly optimal 
declustering does not, exist for all query-sets, for example range queries [35]. In this situation, 
no declustering method can achieve theoretically optimal response time. In addition, heuristic 
implementation of max-cut declustering may not always provide strictly optimal declustering. 
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5. HANDLING DATA ITEMS WITH DIFFERENT SIZES 

In previous sections, we assume that the size of each data item was identical. However, the sizes 

of data-items can vary a great deal in databases containing data items like composite application 
objects, spatial objects (e.g. polygons), maps (vector or raster), images, etc. Such databases 
include geographical information systems (GIS), statistical and scientific databases, object-oriented 
databases, etc. Declustering techniques therefore need to be generalized to handle data items of 
different sizes. 

In this section, we demonstrate the capability of the proposed method to work with complex 

data-types (e.g. polygons) that have varying sizes of data-items. We assume that data items are 
atomic, i.e., that a data item will not be split across multiple disks. In future work, we plan to 
relax this assumption to model the situation of data items split across disks. 

Let t(v) be the number of time units required to retrieve the given data item V. In general, t(w) 
is linear in terms of the size of the data item to be retrieved, assuming that the entire data item 
is not allowed to be split across disks. The size(v) can be used to denote t(u), if the information 
for t(v) is not available. Considering two data items u and v that are accessed by a query, if both 
data items are allocated into the same disk, then the response time required to retrieve both ‘u and 
u is equal to t(u) + t(w). However, if they are allocated into different disks, the response time for 
accessing both of them is the maximum of t(u) and t(w). The possible savings in response time 
achieved by putting them into different disks vs. putting them into the same disk is thus equal 
to the minimum of t(u) and t(v). With the objective of minimizing the expected response time 
over the query set of interest, it is highly desirable to maximize possible savings in response time. 

This gives us the following generalized max-cut declustering scheme, which includes the possible 
response time savings in the cost metric. 

Generalized Max-Cut Partitioning of the WSG 

Given a weighted similarity graph WSG = (V, E), the number of disks N and the 
size-constraint predicate Li, where 1 5 i 5 N, 

Find a partition n(V) = (GI, Gz, . . . , GN) among N disks, 

To maximize possible response time savings, +“, denoted as 

C w(e(u, u)) * min{t(u), t(v)), where EC = {e(u,v)le E E, u E Gi and v @ Gi). 

e(zl,v)EE, 

Such that Li(Gi) = True, where 1 < i 5 N 

Methods used for the max-cut declustering scheme can also be applied to the generalized max- 

cut declustering scheme. This can easily be done by changing the weight on any edge e(u, r~) in 

WSG, to be w’(e(u, v)), where w’(e(u, w)) = w(e(u, w)) * min{t(u), t(v)}. Obviously, generalized 
max-cut partitioning reduces to max-cut partitioning as described in Section 2.2, if the data items 
are identical in size. 

We have constructed the following theorem regarding the set of binary queries, where the 
number of atomic data items that qualify for each given query is two. 

Theorem 2 Generalized max-cut dec2ustering is an optimal deelustering method for the set of 
binary queries. 

Proof. The proof can be found in [28]. cl 

Theorem 2 should be interpreted in the proper context. It suggests that the max-cut declus- 
tering scheme provides the best declustering for a set of binary queries of atomic data items. 
Theorem 2 assumes that each data item is allocated to a single disk, ruling out the splitting of 
data items. 

Example 1 We use a simple example to illustrate the application of max-cut partitioning to 
handling data-items of different sizes. The proposed scheme has been applied to decluster polygonal 
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(1) I (2) 
rt(q) - f(q) I Ns) * f(q) 

I Pl I Pl II Pl, P2 I 4*2 I 4’2 
1 Ply P3 5’2 9*2 

P4 P3 Pl, P4 5*2 4*2 

P2> P3 7’1 5*1 
P2 P2 P2, P4 282 3*2 

2 P37 P4 5*1 5’1 
P3 P4 T” 44 50 

ti” 15 9 

Table 2: Two allocations of example database 

maps which contain polygons of different sizes [32]. In Figure 5 (a), we show a database for four 
polygons. For simplicity, we assume that all the queries in this particular database are polygons- 
intersection queries involving two polygons (spatial join queries). 

The polygons are shown as vertices of the graph in Figures 5 (a) and (b). The number on the 
vertex denotes the size of the data item, as well as the number of time units required to retrieve 
the data item, assuming that the retrieval time is proportional to the size of the data item. We 
note that the numbers on the edges in Figure 5 (a) represent their weights, i.e., query likelihood. 
In Figure 5 (b), the numbers on the edges denote the response-time savings which are equal to 

w(‘IL, w) * min{t(u>, t(v)}, where W(U,D) is the number (i.e. weight) on the edges that connect 
vertices u and u as shown in Figure 5 (a). For example, the sizes of pl and p3 are equal to 4 and 5, 
respectively. Also, t(p1) = 4 and t(p3) = 5. In Figure 5 (a), edge(pl,p3) has the weight w(pl,p3) 
equal to 2. In Figure 5 (b), edge(pl,p3) has weight of r~(pl,p3) * min(t(pl),t(p3)), i.e., 8. 

p~y.qp2 pwp2 
P4 P3 P4 

(a) (b) P3 

Fig. 5: An example database; (a): weighted similarity graph; (b): graph to be partitioned 

Assume that the number of disks is two and that the capacity of each disk is ten units. Figure 5 
(b) shows the possible response-time savings that corresponds to Figure 5 (a). According to 
Figure 5 (b), we have the following allocation. It is beneficial to place pl and p3 on different disks, 
since the join query of pl and p3 gives the greatest possible response-time savings. Meanwhile, it is 
better to put p2 and pl on separate disks to maximize possible response-time savings. By following 
this plan, max-cut partitioning maximizes the possible savings of response time via putting pl,p4 
on the same disk and p2,p3 on the same disk. 

Table 2 lists the two-way polygon intersection queries and their expected response-time under 
two allocations, respectively. Allocation 1 is obtained via max-cut partitioning. In order to show 
the effect of max-cut partitioning, we also list another possible declustering, allocation 2. We can 
see that allocation 1 is more effective than allocation 2, since the expected response time (T”) for 
allocation 1 is less than that for allocation 2. Allocation 1 achieves a higher savings of response 
time, i.e., 4” (the total weight on the cut-set of the graph in Figure 5 (b)) than allocation 2 does. 

6. EXPERIMENTS WITH GRID FILES 

Previous sections have theoretically illustrated the ability of the proposed declustering method 
to adapt to query distributions, data distributions, data sizes and data semantics. In this section, 
we focus on a detailed experimental evaluation in the context of a real-world indexing method, 
namely the Grid Files. The experiments allow a comparative evaluation of the method with 
mapping-function and load-balancing based declustering methods. These experiments also fa- 
cilitate the characterization of the dominance region of the proposed method in the context of 
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multi-dimensional data. In the future, we intend to extend the comparisons to other domains. 

6.1. Parallelizing Grid Files 

We apply the max-cut declustering scheme to parallelizing Grid files [29], a well known access 
method for multi-dimensional and spatial data. Multi-dimensional data refers to a collection of 
data values embedded in a coordinate space which has dimension 2 2. The Grid file partitions 
the coordinate space into rectangular grids called cells. We will work with a two-dimensional 
coordinate space for simplicity. The result can be generalized to higher dimensions. Queries on 
multi-dimensional data represent various subsets of the data. To process a query, the database 
manager has to retrieve the data points contained inside each cell which intersects with the query. 

Most existing declustering methods for grid files [l&35] are based on coordinate mapping of the 
data pages in the grid-directory to the disk-id, assuming that the data are uniformly distributed. 
However, for many nonuniform distributions, multiple grid cells may need to share a disk block [29], 
and the mapping-function based methods will then need to resolve conflicts. In addition, the 
mapping-based methods need to be extended to deal with the splitting and merging that result 
from updates, since these events may change the grid-coordinates of existing data-pages. 

Parallel implementations of the Grid-File need to address two distinct situations: (i) declus- 
tering a given Grid File, and (ii) determining disk allocation for the new page generated during 
updates (incremental declustering). For the former problem, we use the max-cut declustering tech- 
nique at the data page level. To apply the max-cut declustering technique, a weighted similarity 
graph is created for the data-pages, using the grid directory and the query distributions that de- 
fine the query class frequency. The nodes in the WSG are the data pages of the grid files. The 
similarity (weight) between two data pages D1 and D2 can be derived by estimating the frequency 
with which given query types will access both D1 and Ds. This computation needs to trace the 
data-page pointer of the grid-directory cells. Note that only the query-type information is used 
to determine the weights. The details of individual queries and their expected frequency are not 
used. 

For incremental declustering during updates, we use the proposed incremental max-cut tech- 
nique . Incremental max-cut techniques need to define the notion of a local window for the grid 
file. We use the following approach to define a local window. A local window of upper-bound order 
RxW can be defined as being centered around the bounding rectangle of a selected data page p. 
The bounding rectangle for a data page p is the union of those grid cells which share the same data 
page p. The data page p could be the newly created page or the merged page. Let the grid-directory 
coordinates of the center of the bounding rectangle be (xc, yC), and the size of the allocation win- 
dow AW be RxW. Then the allocation window, AW, is bounded by (x, - R/2, yC - W/2) and 
(CC, + R/2, yC + W/2). The allocation data set P is defined as follows: P = {data page D 1 the 
bounding rectangle of D is within AW or intersects with AW }. To apply incremental max-cut 
declustering, the similarity is estimated in terms of the local window, i.e., the sub-grid directory. 
The order of the windows controls the extent and cost of incremental declustering and also depends 
upon the number of disks and the ratio of read/update queries since the last allocation. 

6.2. Experiment Design 

We examine range queries over a two-dimensional data set that is partitioned by the grid file. 
The response time averaged over the queries of interest is used as the measure of performance. 
Uniform and non-uniform data distributions are generated and partitioned by the grid file. The 
non-uniform data set includes the hot-spot data distributions. Various declustering methods axe 
applied to decluster the data pages indexed by the grid-cells directory. Query execution is simulated 
to measure the response time, i.e. the number of parallel I/O required to fetch the data pages 
qualifying in the queries. 
Query Sets: We introduce simple notations to describe the grid file and query sets. A Rx M grid 
file has a grid directory with R rows and M columns. For example, a grid file storing a uniform 
data distribution with no sharing of data pages will have R * M pages. A pxq query accesses 
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p * q grid cells in the grid directory, spanning p rows and q columns. In a dense grid directory, it 
accesses p * q data pages as well. 

We consider several types of queries, including square-shaped, Row/Column and diagonal range 
queries. The square-shaped queries represent range queries with equal lengths on both sides and 
have been used to evaluate declustering methods in recent studies [9, 181. In our experiments, 
we examine all possible square-range queries. Suppose that the grid file is an MxM grid. The 
row-query (Row) set is a set of 1xM rectangle-shaped queries, and the column-query (Col) set 
is a set of Mx 1 rectangle-shaped queries. The diagonal queries include the Principal Diagonal 
(PD) queries and the Anti-Diagonal (PA) queries [35]. PD is represented by a set of queries 
{PD,,, PD1, PD_I,. , PD,, PD-,}, where query PDj = {(xi, yi) ) cell (zi, yi) and zi - yi = j), 
for all j={O, 1, -1,2, -2,. . , M, -Ad}. Similarly, query set PA is represented by a set of queries 
{PAo, PAI, PA-I, , PA,, PA_,}, where query PAj = {(xi, yi) 1 cell (z;, yi) and ~i + yi = j)i, 
for all j={0..2M-2). 

Data Sets: The uniform data (UU) set, being factorizable, is a collection of points (5, y) where 
z and y are independent, uniformly distributed random variables. The hot spot (HS) data-set 
of K points is generated from an initial uniform distribution (K/4) over the unit square. We 
then generate and insert 3K/4 other points from the normal distribution, with a small standard 
deviation. We note that the hot-spot data-set is not factorizable, and that it has been used in the 
literature [26] to simulate skewed distributions. 

It is possible to use the “fractal dimension” [lo] to generate experimental data. However, it 
is not likely to change the major trends (e.g. the proposed method outperforms others for non- 

uniform data distributions). In fact, the proposed methods are already being used for real data 
sets (e.g. the poly,gonal map of Killeen, Texas) [32]. The relative performance and rankings of 
declustering methods have been found to be the same as those predicted in this paper. Interested 

readers please refer to [32]. 

Grid File Creation: These data sets are stored into the grid file via a sequence of insert 
operations with the grid access method. Each data page has 16 records at most. A given data 
set can result in many different grid-directories based on the insertion order, split policies and the 
initial grid. The data was inserted into the grid file in the order of a space-filling curve function, 
Z-curve [19]. If one of the data pages overflows, the row or column of the grid that contains that 
data page is split. The split policy alternates between splitting rows and columns. The data pages 
may be shared by multiple cells after the split, as is natural in grid files. Sharing of the data page 
by cells introduces a distortion. For example, a grid-directory for uniformly distributed data may 
not have uniform distribution over data pages of cells in the grid-directory. To isolate the effect of 
page-sharing by cells, we use two kinds of initial grids. For the experiments on the effects of query 

sets and data distributions, the grid file is provided with an initial grid based on its distribution so 
as to reduce page splits and page sharing among grid-cell entries. For the experiments on the effects 
of page-sharing, data was inserted into the grid file with an initial 1x1 grid directory structure. 

Declustering Methods: We compare max-cut declustering with two well-known mapping- 
function-based methods, the Hilbert (MF-Hilb) allocation method [9] and the Linear method [27, 
8, 351. The Hilbert, method is chosen for comparison, since it achieves good performance for square.- 
shaped range queries [9]. Two types of linear methods are used in our experiments. The first one, 
denoted as MF-CMD, uses the modulo function (z + y) mod N. The second one, represented as 
MF-GDM, uses the modulo function (X + 5y) mod N . The MF-CMD method is also known as the 
CMD method [27] or the Disk Modulo method (DM) [8] m a two-dimensional space. The specific 
mapping function method, MF-GDM, that we choose in the experiment, belongs to the class of 
Generalized Disk Modulo methods (GDM) [8], vector based declustering methods [4] and lattice 

allocation methods 1351. 

Two global max.-cut declustering strategies are derived which use different approaches to es- 
timate the weights. The first approach derives the weight of the graph in terms of these query 
types : row/column, Nxl/lxN, and small square-range queries (e.g. fixfi queries). The 
second approach derives the weight based on specific queries of interest in the experiment. We 
will consider the first approach as a general max-cut declustering technique (SM-GP-G), since it 
will not. be adapted to a query set of interest in an experiment. The second one will be called a 
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specific max-cut declustering technique (SM-GP-S), since it is adapted to the query sets. Instances 
of SM-GP-S use weights derived from the proper subset of square-range queries, row/column and 
diagonal queries in relevant experiments. Both SM-GP-G and SM-GP-S are based on heuristic 
global max-cut graph partitioning, as described in Section 3.2. 

We evaluate the incremental max-cut technique (SM-INCR) along with the load-balancing 
method, LoadBal. The SM-INCR derives the weight between data pages in terms of these query 
types: row/column, Nxl/lxN and small square-range queries (e.g. fixfi queries), over the 
local window (i.e., sub grid-directory). We used a row-major ordering of the cells of the grid- 
directory to determine the order in which data items are allocated to disks. Load-balancing based 
declustering techniques allocate page p to the disk with the lowest load over the local window. The 
load on individual disks represents the objective function of declustering. The LoadBal method 
uses the storage load, i.e., the number of pages within the local window residing on the disk, as 

the measure [31]. 

Choice of Parameters: Our experiments with the grid file focus on the effect of query distri- 
bution and data distribution. We leave the exploration of the effect of partition constraints out of 
this study, as it has not been explored in related work. We do not explore the effect of the number 
of disks, since it is not likely to impact the ranking of alternative declustering methods. MF-CMD 
has been used for performance comparison in previous research. However, we do not report the 
performance of MF-CMD in our comparison, since MF-CMD is a special case of MF-GDM. In our 
experiments, MF-CMD has not performed better than MF-GDM. 

6.3. Experimental Observations 

In this subsection, we compare alternative declustering techniques under the effect of query 
sets, data distributions and page sharing. Mapping-function based methods MF-GDM, MF-CMD 
and MF-Hilb need to resolve conflicts in the disk-allocation of pages that are shared by multiple 
cells of the grid file. We broke the tie in a fair manner by choosing a disk at random. This is 
consistent with the tie-breaking approaches used previously in mapping-function based methods 
to decluster grid files [35]. Each query is executed by searching qualified grid cells to retrieve 

data pages. The response time for each query is computed by counting the maximum number of 
qualified data pages on the disk. 

6.3.1. E#ect of Query Sets 

In this experiment set, data was inserted using an initial 16x16 grid partitioning of the domain 
of the data distribution provided to the grid file so as to reduce page sharing. The declustering 
was done statically after the final grid was formed. The final grid file for the UU data set has a 
16x16 grid directory with no page sharing, where the final grid file for the HS data set has a 20x20 

grid directory with data page sharing among grid cells. Figure 6 shows the average response time 
for three query sets on grid files for the UU data set and for the HS data set, which are declustered 
by alternate methods for 16 disks. The average response time measures the average number of 
parallel I/O needed over all queries in each query set. 

SM-GP-S (query-set specific max-cut declustering) outperforms other methods. It illustrates 
the ability of the proposed method to adapt to query distribution. For the UU data set, MF-GDM 
(mapping function based general disk modulo) performs well on row/column and square-shaped 
query sets. However, it does not perform well on diagonal queries. For the HS data set, SM- 
GP-G (query-set independent max-cut declustering) outperforms all declustering methods except 
SM-GP-S. We note that SM-GP-G does not take advantage of query-set information and thus 
represents a weak case of similarity max-cut graph partitioning. Yet this method can outperform 
mapping function based methods for a non-uniform HS data set. 

The detailed results for the square query set are shown in Figure 7, using the HS data set. The 
performance of SM-GP-S is the best, followed very closely by that of SM-GP-G and SM-INCR. 
The performance of LoadBal, MF-GDM and MF-Hilb follow behind that of the similarity max-cut 
techniques. 
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6.3.2. Effect of Data Distributions 

We examine the results shown in Figure 6. On the average, the performance of SM-GP-S is 
the best under both data distributions, followed by that of SM-GP-G and SM-INCR. MF-GDM 
is very competitive with SM-GP-S with the UU data set. However, the performance of MF-GDM 
with the non-uniform (HS) data set drops behind that of SM-GP-G and SM-INCR. The result 
shows that the proposed similarity max-cut techniques adapt to different data distributions and 
also outperform the mapping-function based methods. 

6.3.3. Effect of Page Sharing 

We examine the case of a high page-sharing grid file in this section. The experiment is conducted 
on the uniformly distributed data set with 16 disks. Data is inserted into a Grid-file with an initial 
1x1 grid directory. The resulting grid file has a 55x56 grid directory with a very high degree of 
page sharing (a data page shared by 1 to 30 cells). The incremental max-cut (SM-INCR) and 
load-balancing (LoadBal) methods assign pages to disks incrementally, as splits occur. The global 
max-cut graph partitioning (SM-GP-G and SM-GP-S) and mapping function (MF-GDM and MF- 
Hilb) methods perform declustering at the end, after all the data is inserted and the final grid has 
been created. 

The result is shown in Figure 8 (b). To illustrate the effect of page sharing, we also list the 
results from Figure 6 (a) in Figure 8 (a), which show the results for a dense (i.e., without page 
sharing) grid file. 
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Fig. 8: Average response time V.S. query set (VU data set) 

Figure 8 (b) shows that similarity-based methods, including global max-cut graph partitioning 
and the incremental max-cut methods, outperform mapping-function and load-balancing methods. 
The performance of SM-GP-S is the best, followed by that of SM-GP-G, SM-INCR and the others. 
The incremental max-cut technique, SM-INCR, outperforms the load-balancing-based method, 
LoadBal. Figure 8 (b) shows that MF-GDM and MF-Hilb perform worse than the other methods 
because of high page-sharing, even though the data set is uniformly distributed. Although mapping 
function based methods have been modified to resolve conflicts in the disk allocation of pages that 
are shared by multiple cells of the grid file. They do not perform well in the case of poorly 
partitioned initial grid directory or high ratio of splits and merges during updates. 
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6.3.4. Experiment on a Larger Data Set 

We examine the scalability of max-cut declustering for a larger data set in this subsection. 
Incremental max-cut declustering decomposes the data set into subsets of data items within a 
local window. Thus the method can handle larger data sets. The scalability of global max-cut 
graph partitioning technique for large data sets needs further work and is proposed as future work. 
The experiment is conducted on a uniformly distributed data set, using an initial 160x160 grid 
directory and an initial 128x128 grid directory, which result in a 160x160 grid directory (25600 data 
pages) with no page sharing, and a 304x305 grid directory (16737 data pages) with page sharing, 
respectively. We compare SM-INCR, MF-GDM, MF-Hilb and LoadBal using square range queries 
and 16 disks. All four methods perform static declustering at the the end, after all the data is 
inserted and the final grid has been created. 

The result is shown in Figures 9 and 10 for the experiment on a 160x160 grid with no page 
sharing, and 304x305 grid with page sharing, respectively. Without page sharing, the performance 
of MF-GDM is the best for square-shaped range queries, followed closely by that of SM-INCR. SM- 
INCR outperforms MF-Hilb and LoadBal. With page sharing, the incremental max-cut technique, 
SM-INCR, outperforms the others, as shown in Figure 10. 
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Fig. 9: Average response time V.S. query side r (Query = TXT, Grid size = 160x160) 

6.4. Summary of Observations 

In t,his subsection, we summarize our observations. 

l Similarity-based max-cut declustering methods can adapt to data distribution, query distri- 

bution and page sharing, and they outperform mapping-function based methods. Mapping- 
function based methods do not adapt well to the high page-sharing typical of non-uniform 
data distributions, or even to uniform data distributions where the initial grid directory 
structure is not well partitioned. 

l Similarity-based max-cut declustering methods are competitive with mapping-function based 
methods for many query sets, even if there is no page sharing in the grid-directory. The 
incremental max-cut method outperforms the load-balancing methods and provides the best 
trade-off between the parallel response time for queries and the cost of declustering. 
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Fig. 10: Average response time V.S. query side r (Query = T-XT, Grid size = 304x305) 

l There is a trade-off between the declustering quality and the overhead of declustering meth- 
ods. The global max-cut graph partitioning technique is likely to achieve better declustering. 

However, it also takes more computation than incremental declustering methods. It may be 
used when data-distributions and query-distributions change infrequently. Further study of 
the trade-off between the declustering quality and the overhead is needed. 

7. CONCLUSIONS 

In this work, we have presented a new similarity-based technique, max-cut declustering, for 
allocating data items to multiple disks. Our method uses the max-cut declustering approach to 
maximize the chances that a pair of data-items frequently accessed together by queries are al- 
located to distinct disks. Max-cut declustering can take advantage of the available information 
about query distribution, data distribution, data sizes, and partition size-constraints. It is flexi- 
ble and applicable to alternative data semantics. An incremental max-cut method based on the 
ideas of max-cut similarity and load-balancing is also proposed to handle declustering for dynamic 
allocations as well as for static declustering for large data sets. 

Our analysis demonstrates that the max-cut declustering approach can achieve a strictly opti- 
mal allocation for a query set, if there exists any other declustering method which will achieve the 
strictly optimal allocation for that query set. It also shows that the max-cut declustering approach 
can achieve strictly optimal allocation for row/column queries on uniform data distribution, etc. 
Furthermore, we demonstrate that the max-cut declustering scheme can achieve optimal allocation 
for the set of binary queries. 

Experiments in the context of parallelizing grid files show that our method is competitive with 
existing effective declustering methods for uniformly distributed data sets, and that it outper- 
forms competing methods for non-uniform data. In general, it is beneficial to use the max-cut 
declustering approach when the application domain is unstructured, as with non-uniform data dis- 
tribution or non-equiprobable query distribution, etc. If the application domain has uniform data 
distribution and a well partitioned structure, then mapping-function based methods are competent 
choices, since max-cut declustering requires higher complexity. Experiments also show that the 
proposed incremental max-cut method outperforms the load-balancing based declustering method 
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and provides the best trade-off between the parallel response time for queries and the cost of 

declustering. 
In this paper, data items are assumed to be atomic, i.e., a data item will not be split across 

multiple disks. In future work, we plan to relax this assumption to model the situation of data 
items split across disks. In the future, we also plan to evaluate our scheme for other applications 

beyond grid-files that have data items of different sizes. In addition, Scalability of declustering 
techniques for very large data sets is an important issue. Incremental max-cut declustering reduces 
the size of the data set to be allocated by incrementally declustering subsets of data items within 
a local window. Thus the method can handle very large data sets. The scalability of the global 
max-cut graph partitioning technique for very large data sets needs further study. Besides, the 
effect of buffering is not investigated in this paper. Further evaluation is needed to consider the 
effect of buffering. Finally, We would like to characterize the trade-off between the computational 
overhead of the max-cut approach and declustering performance, particularly in the context of 
incremental declustering arising from small changes in data distribution and query distribution. 
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