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Abstract

In communication networks, many applications, such as video on demand and video conferencing, must establish a
communications tree that spans a subset K in a vertex set. The source node can then send identical data to all nodes in
set K along this tree. This kind of communication is known as multicast communication. A network optimization problem,
called the Steiner tree problem (STP), is presented to find a least cost multicasting tree. In this paper, an OðjEjÞ algorithm is
presented to find a minimum Steiner tree for series–parallel graphs where jEj is the number of edges. Based on this algo-
rithm, we proposed an Oð22c � jEjÞ algorithm to solve the Steiner tree problem for general graphs where c is the number of
applied factoring procedures. The c value is strongly related to the topology of a given graph. This is quite different from
other algorithms with exponential time complexities in jKj.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The demand for multimedia transmission in computer networks is rapidly increasing, and these multimedia
transmissions are time sensitive. To maintain Quality of Service (QoS), networks must allocate enough band-
width for transmitting multimedia data. Two types of multimedia transmissions are usually used. They are
point-to-point transmission and point-to-multipoint transmission. The point-to-multipoint transmission,
known as multicast, occurs when the multimedia data is delivered to a subset of nodes in the network. Notable
examples of multicast applications include video conferencing, distributed games, distributed simulations, and
file replication on mirrored sites. In a multicast communication, the source sends identical data to all destina-
tions. Since the data can be duplicated at switching nodes, it is not necessary for the source node to send sep-
arate copies to all destinations. Thus a good multicasting path can help reduce the number of redundant
streams flowing on the network.
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Fig. 1. A minimum Steiner tree in a graph.
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A communication network can be modeled as a weighted undirected graph G ¼ ðV ;E;CÞ, where V is the set
of vertices that represents communication nodes, E is the set of edges that represents the communication links
and a cost function C : E ! Rþ maps each edge to a positive real number which represents the communica-
tion cost. Let w(H) denote the weight of a graph H which is equal to

P
ei2EðHÞcðeiÞ where cðeiÞ is the edge cost

of ei. For a given vertex set K � V , the STP is to find a tree T, such that K � V ðT Þ and wðT Þ are minimized.
Throughout this paper, we refer T �KðHÞ represents the minimum Steiner tree for graph H with respect to the

Steiner vertex set K. A vertex v in H is also called a non-Steiner vertex if v 2 K; otherwise, vertex v is called a
Steiner vertex. In Fig. 1, the black nodes indicate the non-Steiner vertices. The heavy line segments indicate the
minimum Steiner tree for this graph.

The STP is known to be NP-complete [10]. Several solution approaches, such as, dynamic programming
[6,17,20], branch-and-bound [9,27,33], enumeration approaches [2,12], linear relaxations [18,32], and Lagran-
gean relaxations [4,7], have been proposed for finding the exact solution for STP. Among these works, Hakimi
[12] has proposed a spanning tree enumeration algorithm that runs in Oðk22n�k þ n3Þ time, where n ¼ jV j and
k ¼ jKj. Levin [17] has proposed a dynamic programming approach algorithm that runs in Oð3knþ 2kn2 þ k2nÞ
time. Beasley [4] has presented a Lagrangean relaxation algorithm. In addition, there are many centralized
heuristic algorithms [1,8,13,15,19,22–26,28,31,34,35] and distributed heuristic algorithms [3,11,16] presented
for solving STP. For detailed descriptions and more lectures on both exact and heuristic methods, one can
refer to two survey papers, Hwang and Richards [14] and Winter [30].

Note that the computation time for Hakimi’s (Levin’s) algorithm increases exponentially with the number
of set V � K (K). That is, Levin’s algorithm is favored when the number of non-Steiner vertices is small. Con-
versely, when the number of non-Steiner vertices is large, Hakimi’s algorithm is favored. However, the perfor-
mance of these algorithms are all limited by size of K or V � K. This paper proposes a factoring approach for
solving undirected STP. The complexity of this algorithm increases exponentially not in the number of k or
n � k but in the number of factoring procedures applied (c). The c value strongly relates to the graph topology.
This is quite different from other algorithms.

This paper is organized as follows. In Section 2, a polynomial time algorithm for finding the minimum Stei-
ner tree on Series–Parallel (SP) graph is described. In Section 3, we extend the solution method in Section 2 to
general graphs. Concluding remarks are given in Section 4.

2. Solution method for series–parallel graphs

Although the STP is known to be NP-complete, there are many special classes of graphs in which STP are
solvable in polynomial time. Prodon et al. [21], Wald and Colbourn [29] presented algorithms that solve STP
for SP graphs in OðjEjÞ, where E is the set of edges. An SP graph (with two end vertices), also known as Two-
Terminal Series–Parallel graph (TTSP graph), has a well-defined structure. It can be defined recursively as
follows.

1. A single edge is a TTSP graph.
2. If H1 and H2 are TTSP graphs, so is the graph obtained by collapsing one end vertex of H1 with one end

vertex of H2 (series composition. The resulting graph is denoted by H1 * H2).
3. If H1 and H2 are TTSP graphs, so is the graph obtained by collapsing two end vertices of H1 and two end

vertices of H2, respectively (parallel composition. The resulting graph is denoted by H 1 _ H 2).
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Following is a description of the algorithm proposed by Wald and Colbourn [29] which summarize solving
STP on TTSP graphs in detail. The solution strategy here is to reverse the recursive composition; that is, start-
ing from each edge repeatedly applying a series or parallel composition until the whole TTSP graph is com-
pletely constructed. During each composition, we maintain five types of subgraphs, which summarizes useful
Steiner tree information for each TTSP subgraph.

We use TK(H) to denote a subtree T of TTSP graph H where vertex set K � V ðT Þ. In particular, we use
T KþuðHÞ (T K�vðHÞ) to denote a subtree T of H where K � V ðT Þ and u 2 V ðT Þ (v 62 V ðT Þ). Note that,
T �KðHÞ is the minimum Steiner tree for H; i.e., wðT �KðHÞÞ ¼ minT K ðHÞ�H wðT KðHÞÞ. With respect to SP graph
H which has two end vertices u, v, and a Steiner vertex set K, we define five subgraphs T �KþuþvðHÞ,
T �Kþu�vðHÞ, T �Kþv�uðHÞ, T �K�u�vðHÞ, and ST �KþuþvðHÞ for H as follows:

• Tree T �KþuþvðHÞ is a subtree of H such that
wðT �KþuþvðHÞÞ ¼ min
T KþuþvðHÞ�H

wðT KþuþvðHÞÞ ð1Þ
• Tree T �Kþu�vðHÞ is a subtree of H such that
wðT �Kþu�vðHÞÞ ¼ min
T Kþu�vðHÞ�H

wðT Kþu�vðHÞÞ ð2Þ
• Tree T �Kþv�uðHÞ is a subtree of H such that
wðT �Kþv�uðHÞÞ ¼ min
T Kþv�uðHÞ�H

wðT Kþv�uðHÞÞ ð3Þ
• Tree T �K�u�vðHÞ is a subtree of H such that
wðT �K�u�vðHÞÞ ¼ min
T K�u�vðHÞ�H

wðT K�u�vðHÞÞ ð4Þ
• Subgraph ST �KþuþvðHÞ is a union of trees T Uþu�vðHÞ and T ðKnUÞþv�uðHÞ, where U � K, such that
wðST �KþuþvðHÞÞ ¼ min
U�K

wðT Uþu�vðHÞ [ T ðKnUÞþv�uðHÞÞ ð5Þ

We refer to these five subgraphs T �KþuþvðHÞ, T �Kþu�vðHÞ, T �Kþv�uðHÞ, T �K�u�vðHÞ, and ST �KþuþvðHÞ as the ele-
mentary Steiner subgraphs of a TTSP graph H. Fig. 2 gives an example of a TTSP graph and its corre-
sponding elementary Steiner subgraphs.

Let H1 with end points ðu1; v1Þ and H2 with end points ðu2; v2Þ be two TTSP subgraphs, and K1 and K2 be
the Steiner vertex sets for H1 and H2, respectively. Assume that ðT �K1þu1þv1

ðH 1Þ, T �K1þu1�v1
ðH 1Þ, T �K1þv1�u1

ðH 1Þ,
T �K1�u1�v1

ðH 1Þ, ST �K1þu1þv1
ðH 1ÞÞ and ðT �K2þu2þv2

ðH 2Þ, T �K2þu2�v2
ðH 2Þ, T �K2þv2�u2

ðH 2Þ, T �K2�u2�v2
ðH 2Þ, ST �K2þu2þv2

ðH 2ÞÞ
denote the elementary Steiner subgraphs for H1 and H2, respectively. Thus, the elementary Steiner subgraphs
for H 1 � H 2 and H 1 _ H 2 can be numerically computed and summarized as follows.

(1) The elementary Steiner subgraphs for H 1 _ H 2 (Parallel composition).
Note that the end point u (v) of graph H 1 _ H 2 is collapsed by nodes u1 and u2 (v1 and v2). We will consider

the computation for T �KþuþvðH 1 _ H 2Þ first. The definition of T �KþuþvðH 1 _ H 2Þ is equal to the minimum subtree
that contains both end vertices u, v and set K ¼ K1 [ K2. Obviously, there are only six classes from the com-
binations of T K1þu1þv1

ðH 1Þ, T K1þu1�v1
ðH 1Þ, T K1þv1�u1

ðH 1Þ, ST K1þu1þv1
ðH 1Þ, T K2þu2þv2

ðH 2Þ, T K2þu2�v2
ðH 2Þ,

T K2þv2�u2
ðH 2Þ, and ST K2þu2þv2

ðH 2Þ for tree T KþuþvðH 1 _ H 2Þ, which are shown in Fig. 3.
Note that T K1þu1þv1

ðH 1Þ [ T K2þu2þv2
ðH 2Þ is not a tree. This is because T K1þu1þv1

ðH 1Þ contains a path from u to
v in subgraph H 1, and T K2þu2þv2

ðH 2Þ also contains a path from v to u in subgraph H2. Thus, these two paths
form a cycle in T K1þu1þv1

ðH 1Þ [ T K2þu2þv2
ðH 2Þ.

For any graph H with Steiner vertex set K, using Eq. (5), we have
wðST �KþuþvðHÞÞ ¼ min
U�K

wðT Uþu�vðHÞ [ T ðKnUÞþv�uðHÞÞ
If U = K, then
wðST �KþuþvðHÞÞ 6 wðT �Kþu�vðHÞ [ T �;þv�uðHÞÞ ¼ wðT �Kþu�vðHÞÞ ð6Þ



Fig. 2. (a) A TTSP graph H, (b) the elementary Steiner subgraphs for H.

Fig. 3. Possible combinations for T KþuþvðH 1 _ H 2Þ.
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Similarly, if U ¼ ;, we have
wðST �KþuþvðHÞÞ 6 wðT �Kþv�uðHÞÞ ð7Þ
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It is clear that H1 and H2 are edge disjoint. From Inequation (6), we have
wðT �K1þu1þv1
ðH 1Þ [ ST �K2þu2þv2

ðH 2ÞÞ ¼ wðT �K1þu1þv1
ðH 1ÞÞ þ wðST �K2þu2þv2

ðH 2ÞÞ
6 wðT �K1þu1þv1

ðH 1ÞÞ þ wðT �K2þu2�v2
ðH 2ÞÞ

¼ wðT �K1þu1þv1
ðH 1Þ [ T �K2þu2�v2

ðH 2ÞÞ
That is,
wðT �K1þu1þv1
ðH 1Þ [ ST �K2þu2þv2

ðH 2ÞÞ 6 wðT �K1þu1þv1
ðH 1Þ [ T �K2þu2�v2

ðH 2ÞÞ ð8Þ
Similarly, from (7) we have
wðT �K1þu1þv1
ðH 1Þ [ ST �K2þu2þv2

ðH 2ÞÞ 6 wðT �K1þu1þv1
ðH 1Þ [ T �K2þv2�u2

ðH 2ÞÞ ð9Þ
From (8) and (9), we conclude that if the tree T �KþuþvðH 1 _ H 2Þ occurs in classes of combinations T K1þu1þv1
ðH 1Þ

and T K2þu2�v2
ðH 2Þ, T K2þv2�u2

ðH 2Þ, ST K2þu2þv2
ðH 2Þ, then tree T �KþuþvðH 1 _ H 2Þ is equal to the combination of

T �K1þu1þv1
ðH 1Þ and ST �K2þu2þv2

ðH 2Þ. (i.e., T �KþuþvðH 1 _ H 2Þ ¼ T �K1þu1þv1
ðH 1Þ[ ST �K2þu2þv2

ðH 2Þ). Similarly, we have
the following inequalities:
wðT �K2þu2þv2
ðH 2Þ [ ST �K1þu1þv1

ðH 1ÞÞ 6 wðT �K2þu2þv2
ðH 2Þ [ T �K1þu1�v1

ðH 1ÞÞ and

wðT �K2þu2þv2
ðH 2Þ [ ST �K1þu1þv1

ðH 1ÞÞ 6 wðT �K2þu2þv2
ðH 2Þ [ T �K1þv1�u1

ðH 1ÞÞ
Conversely, if the tree T �KþuþvðH 1 _ H 2Þ occurs in classes of combinations T K2þu2þv2
ðH 2Þ and T K1þu1�v1

ðH 1Þ,
T K1þv1�u1

ðH 1Þ, ST K1þu1þv1
ðH 1Þ, then T �KþuþvðH 1 _ H 2Þ ¼ ST �K1þu1þv1

ðH 1Þ [ T �K2þu2þv2
ðH 2Þ. Therefore,

T �KþuþvðH 1 _ H 2Þ is the tree such that
wðT �KþuþvðH 1 _ H 2ÞÞ ¼ minfwðT �KþuþvðH 1Þ [ ST �K2þu2þv2
ðH 2ÞÞ;wðST �K1þu1þv1

ðH 1Þ [ T �KþuþvðH 2ÞÞg ð10Þ
Next, consider T �Kþu�vðH 1 _ H 2Þ. Note that the subgraph H 1 _ H 2 is composed of two edge-disjoint subgraphs
H 1 and H 2. Thus,
wðT �Kþu�vðH 1 _ H 2ÞÞ ¼ minfwðT K1þu1�v1
ðH 1Þ [ T K2þu2�v2

ðH 2ÞÞg
¼ minfwðT K1þu1�v1

ðH 1ÞÞ þ wðT K2þu2�v2
ðH 2ÞÞg

¼ minfwðT K1þu1�v1
ðH 1ÞÞg þminfwðT K2þu2�v2

ðH 2ÞÞg
¼ wðT �K1þu1�v1

ðH 1ÞÞ þ wðT �K2þu2�v2
ðH 2ÞÞ
Therefore,
T �Kþu�vðH 1 _ H 2Þ ¼ T �K1þu1�v1
ðH 1Þ [ T �K2þu2�v2

ðH 2Þ ð11Þ
Similarly,
T �Kþv�uðH 1 _ H 2Þ ¼ T �K1þv1�u1
ðH 1Þ [ T �K2þv2�u2

ðH 2Þ ð12Þ
ST �KþuþvðH 1 _ H 2Þ ¼ ST �K1þu1þv1

ðH 1Þ [ ST �K2þu2þv2
ðH 2Þ ð13Þ
Now, consider the computation for T �K�u�vðH 1 _ H 2Þ. If K1 6¼ ; and K2 6¼ ; then T �K�u�vðH 1 _ H 2Þ ¼ ;. This is
because a tree contains a vertex a 2 K1 and a vertex b 2 K2 should at least contain a vertex u or v. If K1 ¼ ;
and K2 6¼ ; then T �K�u�vðH 1 _ H 2Þ ¼ T �K2�u2�v2

ðH 2Þ. Similarly, if K2 ¼ ; and K1 6¼ ; then T �K�u�vðH 1 _ H 2Þ ¼
T �K1�u1�v1

ðH 1Þ. Thus we have
T �K�u�vðH 1 _ H 2Þ ¼
T �K2�u2�v2

ðH 2Þ if K1 ¼ ; and K2 6¼ ;
T �K1�u1�v1

ðH 1Þ if K1 6¼ ; and K2 ¼ ;
;; otherwise

8><
>: ð14Þ
Therefore, we have the following lemma.

Lemma 1. Given two TTSP graphs H1 and H2, the elementary Steiner subgraphs with respect to H 1 _ H2 can be

correctly obtained using Eqs. (10)–(14).
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(2) The elementary Steiner subgraphs for H 1 � H 2 (Series composition).
Assume that the Steiner vertex set K of H 1 � H 2 is equal to K1 [ K2, nodes u1; v2 are two end points of

H 1 � H 2, and node s is collapsed by end points v1 and u2. It is clear that
T �Kþu1þv2
ðH 1 � H 2Þ ¼ T �K1þu1þv1

ðH 1Þ [ T �K2þu2þv2
ðH 2Þ ð15Þ
Consider the computation for T �Kþu1�v2
ðH 1 � H 2Þ. If K2 6¼ ; (see Fig. 4a), the tree T �Kþu1�v2

ðH 1 � H 2Þ is equal to
T �K1þu1þv1

ðH 1Þ [ T �K2þu2�v2
ðH 2Þ. For the other case K2 ¼ ;, it is clear that T �Kþu1�v2

ðH 1 � H 2Þ ¼ T �K1þu1�v1
ðH 1Þ.

That is
T �Kþu1�v2
ðH 1 � H 2Þ ¼

T �K1þu1þv1
ðH 1Þ [ T �K2þu2�v2

ðH 2Þ; K2 6¼ ;
T �K1þu1�v1

ðH 1Þ; otherwise

(
ð16Þ
Similarly
T �Kþv2�u1
ðH 1 � H 2Þ ¼

T �K1þv1�u1
ðH 1Þ [ T �K2þu2þv2

ðH 2Þ; K1 6¼ ;
T �K2þv2�u2

ðH 2Þ; otherwise

(
ð17Þ
The computation for T �K�u1�v2
ðH 1 � H 2Þ can be divided into three cases, i.e., case 1: K1 6¼ ; and K2 6¼ ; ; case 2:

K1 6¼ ; and K2 ¼ ;; case 3: K1 ¼ ; and K2 6¼ ;. These three cases are shown in Fig. 4b. Applying the same
arguments for Eq. (16), we have
T �K�u1�v2
ðH 1 � H 2Þ ¼

T �K1�u1�v1
ðH 1Þ if K2 ¼ /

T �K2�u2�v2
ðH 2Þ if K1 ¼ /

T �K1þv1�u1
ðH 1Þ [ T �K2þu2�v2

ðH 2Þ; otherwise

8><
>: ð18Þ
Finally, we will consider ST �Kþu1þv2
ðH 1 � H 2Þ. Let T U�

1
þu1�v1

ðH 1Þ and T ðK1nU�1Þþv1�u1
ðH 1Þ (T U�

2
þu2�v2

ðH 2Þ and
T ðK2nU�2Þþv2�u2

ðH 2Þ) denote two subtrees composed of ST �K1þu1þv1
ðH 1Þ ðST �K2þu2þv2

ðH 2ÞÞ. Using Eq. (5):
wðST �KþuþvðH 1 � H 2ÞÞ ¼ min
U�K

wðT Uþu�vðH 1 � H 2Þ [ T ðKnUÞþv�uðH 1 � H 2ÞÞ
Note that there are three cases of U � K, i.e., U ¼ U �1, U ¼ K1 [ U �2 and U ¼ K1 (see Fig. 5).
Fig. 4. Possible cases for T �Kþu1�v2
ðH 1 � H 2Þ and T �K�u1�v2

ðH 1 � H 2Þ.
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Therefore, the tree ST �Kþu1þv2
ðH 1 � H 2Þ is the tree such that
wðST �Kþu1þv2
ðH 1 � H 2ÞÞ ¼ minfwðST �K1þu1þv1

ðH 1Þ [ T �K2þu2þv2
ðH 2ÞÞ;wðT �K1þu1þv1

ðH 1Þ
[ ST �K2þu2þv2

ðH 2ÞÞ;wðT �K1þu1�v1
ðH 1Þ [ T �K2þv2�u2

ðH 2ÞÞg ð19Þ
Therefore we have the following lemma:

Lemma 2. Given two TTSP graphs H1 and H2, the elementary Steiner subgraphs with respect to H 1 � H 2 can be

correctly obtained using Eqs. (15)–(19).

The complete algorithm for solving STP on TTSP graphs is shown in Fig. 6. Fig. 7 shows the solution steps
for a TTSP graph H with Steiner vertex set K ¼ fu; u1; u4g (see Fig. 7a). Initially, each edge ðu; vÞ is associated
with elementary Steiner subgraphs ðfðu; vÞg; fug; fvg; ;; fu; vgÞ. We can apply series composition to edges
ðu; u1Þ and ðu1; u3Þ and find the elementary Steiner subgraphs for H 1 ¼ ðu; u1Þ � ðu1; u3Þ by Eqs. (15)–(19)
(see Fig. 7b). Similarly, the elementary Steiner subgraphs for H2,H3, and H4 can also be obtained.

Next, we apply parallel composition to TTSP subgraphs H1 and H2 (H3 and H4) and obtain elementary
Steiner subgraphs for H 5 ¼ H 1 _ H 2 (H 6 ¼ H 3 _ H 4) (see Fig. 7c). Apply a series composition for H5 and
Fig. 5. The possible cases for ST �Kþu1þv2
ðH 1 � H 2Þ.

Fig. 6. Algorithm for finding minimum Steiner tree in a TTSP graph.
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H6 and obtain the elementary Steiner subgraphs ðT �KþuþvðHÞ; T �Kþu�vðHÞ; T �Kþv�uðHÞ; T �K�u�vðHÞ; ST �KþuþvðHÞÞ
for graph H ¼ H 5 � H 6 (see Fig. 7d). Since u 2 K and v 62 K, then wðT �KðHÞÞ ¼ minfwðT �Kþu�vðHÞÞ;
wðT �KþuþvðHÞÞg ¼ minf7; 9g ¼ 7, the minimum Steiner tree is T �KðHÞ ¼ T �Kþu�vðHÞ.
Fig. 7. A numerical example for solving STP in TTSP graph H.



2426 C.-F. Wang, R.-H. Jan / Information Sciences 177 (2007) 2418–2435
Let us consider the complexity of this algorithm. Note that the computation of either series or parallel com-
position takes only constant time. Moreover, the number of series or parallel composition processes applied to
a TTSP graph is equal to the number of edges jEj. Thus, we have the following theorem:

Theorem 3. Algorithm 1 takes OðjEjÞ to determine the minimum Steiner tree for weighted TTSP graph

H ¼ ðV ;E;CÞ.
3. Solution method for general graphs

Given a weighted undirected graph G ¼ ðV ;E;CÞ and a Steiner vertex set K, if G is a TTSP graph, then
algorithm 1 can solve STP in G to optimal using OðjEjÞ time. However, algorithm 1 will fail if the input graph
is not a TTSP graph. In this section, we will extend the solution method for algorithm 1 to solve STP in gen-
eral graph cases. The proposed solution method consists of two major operations called the TTSP subgraphs
reduction and the factoring reduction. For the TTSP subgraphs reduction, a recognizing procedure is first
applied to identify every TTSP subgraph in G. Algorithm 1 can then compute the five elementary Steiner sub-
graphs with respect to each TTSP subgraph. Each TTSP subgraph is replaced using a single edge and asso-
ciating this edge with the respective elementary Steiner subgraphs. We call the above operations the TTSP
subgraph reduction (a detailed description will be given in Section 3.1) and the resulting graph is denoted
by ½G�. For the factoring reduction, an edge in graph ½G� is chosen arbitrarily for application to the reduction
operation, which can decompose the STP into several subproblems. Note that the graph size for each subprob-
lem is reduced compared to the original graph size of ½G�. Moreover, the optimal solution for the original
problem can easily be computed using the solutions from those subproblems (a detailed description will be
shown in Section 3.2).

The complete solution method for solving STP in a general graph is illustrated by constructing a solution
problem tree and summarized as follows. In the first step, we apply the TTSP subgraph reduction to the ori-
ginal problem and regard the resulting reduced problem as the root node of the solution problem tree. An edge
is arbitrarily chosen in the resulting graph for applying the factoring reduction and then several subproblems
will be obtained. Meanwhile, the TTSP subgraph reduction is applied to each subproblem. Let each of the
resulting reduced subproblems be the child-node of the root in the solution problem tree. By continuously
applying the factoring reduction and the TTSP subgraph reduction to the problem of each leaf node, the solu-
tion problem tree can be expanded. Note that if the resulting graph of a subproblem is a TTSP it can then be
solved using algorithm 1 and no further expansion of this branch is required. The complete solution problem
tree can then be constructed. In the solution problem tree, since the optimal solution with respect to each of
the non-leaf node’s problem can be determined by the solutions of its child-nodes, in the second step, we start
the optimal solution computation from the leaf-nodes of the solution problem tree and then go upward until
the root node is reached. The Steiner tree of the original graph will then be obtained. A detailed description of
this proposed method will be discussed later in Section 3.2.

Now we define some notations and operations for graphs that will help to illustrate the proposed method.
Given a weighted graph G ¼ ðV ;E;CÞ and a vertex u in G, let G � u be a subgraph of G obtained by deleting u

and all edges that incident to u from G. Let H be a TTSP subgraph with end vertices u and v in G. G � H is a
subgraph of G in which the vertex set of G � H is V ðGÞ � V ðHÞ [ fu; vg and the edge set of G � H is
E(G) � E(H). In graph G, contracting the TTSP subgraph H of G involves finding G� H and then merging
the end vertices u and v into a supervertex. Furthermore, if parallel edges occur in the resulting graph, only
the edge with the least cost is retained. The graph obtained from G by contracting H is denoted by G � H .
Fig. 8 shows an example for TTSP subgraph deletion and contraction. Fig. 8a shows a graph G and a TTSP
subgraph H with end vertices u and v, which is enclosed by a dashed line. The subgraph G � H is shown in
Fig. 8b. The subgraph G � H can be obtained by merging u and v of G � H into a supervertex u0. The resulting
graph is shown in Fig. 8c.

The following subsections will detail the proposed method for solving the Steiner tree problem in general
graphs. In Section 3.1, an OðjEjÞ procedure to identify all TTSP subgraphs in a graph is first given. Based on
this procedure, the TTSP subgraphs reduction is discussed. The factoring reduction and the complete algo-
rithm to solve STP for general graphs will be discussed in Section 3.2.



Fig. 8. An example for TTSP subgraph deletion and contraction.
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3.1. The TTSP subgraphs reduction

A more stricter and more formal definition of TTSP subgraphs, called the maximal strict TTSP subgraphs,
is given as follows:

Definition 1. A strict TTSP subgraph Huv of a graph G is a TTSP with end vertices u and v, such that there
does not exist any edge exy in G, where x 2 V ðGÞ � V ðH uvÞ and y 2 V ðH uvÞ � fu; vg.

Definition 2. A strict TTSP subgraph Huv of a graph G is called maximal if Huv is not a proper subgraph of any
other strict TTSP subgraph of G.

Consider a graph G as shown in Fig. 9a. The maximal strict TTSP subgraphs Had and Hcg are shown by
heavy line and dash line in Fig. 9b, respectively. In the following, a recognized procedure called MaxStri-
TTSP-Recog is proposed to identify every maximal strict TTSP subgraph in a given graph. We will illustrate
this procedure step by step by taking Fig. 9 as an example. Note that any TTSP subgraph can be recognized
and constructed alternatively by series composition and parallel composition. For example, as shown in
Fig. 9b, the TTSP subgraph Hcg can be constructed using the following steps. At first, the series composition
of two edges ece and eef in G can be easily recognized since the degree of the incidence node e is 2. We then
update the graph G by removing node e from G and then add a new edge ecf into G; that is G ¼ G� eþ ecf .
Since, ecf is already an edge in G before updating, the resulting graph will therefore contain two parallel
edges, which reveals a parallel composition case. Now we retain only one edge in the resulting graph and
Fig. 9. An example of maximal strict TTSP subgraphs.
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consequently another series composition case occurrs due to node degree of f becoming 2. Continue the same
approach until no series or parallel composition case is found. A maximal strict TTSP subgraph Hcg will then
be obtained.

In the MaxStri-TTSP-Recog procedure, let node set S be the collection of nodes whose degree are 2, P a
multi-set of edges that contains every parallel edge in graph G, and T a subgraph set that contains the TTSP
subgraphs found so far. Initially, we compute the degree of each node in G. In the case of a node with degree 2
we put it into set S. Fig. 10a shows the results after the initial step is applied, where S ¼ fb; eg, P ¼ ;, and
T ¼ ;. A node in S is arbitrarily chosen, say node b. Since the degree of node b is 2, a series composition case
in G is found. We let the newly found TTSP subgraph be H ad ¼ ðfa; b; dg; feab; ebdgÞ and then put it into set T.
The graph G is update to G ¼ G� bþ ead . Note that the resulting graph contains two parallel edges. We use
notation e2

ad to denote these two parallel edges and then put e2
ad into set P. Similarly, the same operations are

made on node e 2 S. The results are shown in Fig. 10b. Since set P ¼ fe2
ad ; e

2
cf g, two parallel composition cases

were found. For the parallel edges e2
cf in P, we only retain one edge in G and update the node degrees of c and f

by decreasing 1, respectively. After the updating process, since the node degree of f becomes 2, another series
composition case is found and we add node f into S for later manipulation. The respective TTSP subgraph
Hcf 2 T is updated by adding edge ecf into it. Similarly, the same operations are made on parallel edges
e2

ad in P. The results are shown in Fig. 11a. The same steps are continued until both set S and P are empty,
and every maximal strict TTSP subgraph in G is recognized (see Fig. 11b). Notice that any edge in the resulting
graph G may represent a single edge or a TTSP subgraph in the original graph. The complete description for
MaxStri-TTSP-recog is shown in Fig. 12. Obviously, the computation time for procedure MaxStri-TTSP-
recog is OðjEjÞ.

Let H 1
u1v1
;H 2

u2v2
; . . . ;Hm

umvm
be all the maximal strict TTSP subgraphs of G that were recognized by MaxStri-

TTSP-recog (see Fig. 13a). If we apply algorithm 1 to each TTSP subgraph Hi
uivi
ð1 6 i 6 mÞ, then five elemen-
Fig. 10. An example for applying procedure MaxStri-TTSP-recog.



Fig. 11. An example for applying procedure MaxStri-TTSP-recog (cont.).
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tary Steiner subgraphs ðT �K 0þuiþvi
ðH i

uivi
Þ; T �K 0þui�vi

ðH i
uivi
Þ; T �K 0þvi�ui

ðHi
uivi
Þ; T �K 0�ui�vi

ðH i
uivi
Þ; ST �K 0þuiþvi

ðHi
uivi
ÞÞ with

respect to H i
uivi

are obtained, where K 0 � K is the collection of Steiner vertices in H i
uivi

. In the next subsection
we will show that the intersection of the Steiner tree and the TTSP subgraph H i

uivi
is equal to one of the fol-

lowing elementary Steiner subgraphs T �K 0þuiþvi
ðHi

uivi
Þ, T �K 0þui�vi

ðH i
uivi
Þ, T �K 0þvi�ui

ðHi
uivi
Þ, T �K 0�ui�vi

ðH i
uivi
Þ, or

ST �K 0þuiþvi
ðHi

uivi
Þ. Based on this fact, for each TTSP subgraph Hi

uivi
, we only need to retain its respective elemen-

tary Steiner subgraphs for later Steiner tree computation. Thus, we replace Hi
uivi
ð1 6 i 6 mÞ in G with only a

single edge euivi and associate the respective elementary Steiner subgraphs with this edge. A problem that is
reduced and equivalent to the original STP will then be obtained. We call the above operation the TTSP sub-
graphs reduction.

3.2. The factoring reduction

Let H be a TTSP subgraph with end vertices u and v in G, subset K 0 � K the collection of Steiner vertices in
H. Let ðT �K 0þuþvðHÞ; T �K 0þu�vðHÞ; T �K 0þv�uðHÞ; T �K 0�u�vðHÞ; ST �K 0þuþvðHÞÞ be the elementary Steiner subgraphs for
H. Without loss of generality, we assume K 0 6¼ ;. We call a subtree found by H \ T �KðGÞ an induced subtree
of T �KðGÞ and denote it as hHi. Note that every path from a vertex in H to a vertex in G� H must pass u or v:
Because K 0 6¼ ;, tree T �KðGÞ at least contained an end vertex u or v. On the condition of the connectivity
between u and v for T �KðGÞ, we have

Case 1: T �KðGÞ does not contain a path from u to v. Since T �KðGÞ is a tree and at least has an end vertex u or v,
case 1 can be divided into two subcases: one is u 2 T �KðGÞ; v 62 T �KðGÞ and the other is
u 62 T �KðGÞ; v 2 T �KðGÞ. In subcase u 2 T �KðGÞ; v 62 T �KðGÞ, it is clear that hHi ¼ T �KðGÞ\
H ¼ T �K 0þu�vðHÞ since T �KðGÞ is connected (see Fig. 14b). Similarly, in subcase u 62
T �KðGÞ; v 2 T �KðGÞ, we have hHi ¼ T �KðGÞ \ H ¼ T �K 0þv�uðHÞ (see Fig. 14c).



Fig. 13. The TTSP subgraphs reduction.

Fig. 12. Procedure MaxStri-TTSP-Recog.

2430 C.-F. Wang, R.-H. Jan / Information Sciences 177 (2007) 2418–2435
Case 2: T �KðGÞ contains a path P uv from u to v. We also divide case 2 into two subcases: one is P uv 6� H , and the
other is P uv � H . In subcase P uv 6� H , it is clear that hHi ¼ ST �K 0þuþvðHÞ (see Fig. 14d). In the other
subcase P uv � H , we have hHi ¼ T �K 0þuþvðHÞ (see Fig. 14e).



Fig. 14. Possible cases for T �KðGÞ \ H .
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Therefore, we claim that
hHi ¼

T �K 0þu�vðHÞ if u 2 T �KðGÞ; v 62 T �KðGÞ
T �K 0þv�uðHÞ if u 62 T �KðGÞ; v 2 T �KðGÞ
ST �K 0þuþvðHÞ if u; v 2 T �KðGÞ; pathP uv 6� H

T �K 0þuþvðHÞ if u; v 2 T �KðGÞ; pathP uv � H

8>>><
>>>:

ð20Þ
This result implies that we only need to maintain the elementary Steiner subgraphs for each TTSP subgraph H

of G, and based on subgraph H, the STP for G can be composed into four subproblems (four subcases). Con-
sider a graph G as shown in Fig. 15. The Steiner vertex set K ¼ fr; s; x; yg is indicated by black points. To find
a Steiner tree T �KðGÞ for G, we apply MaxStri-TTSP-Recog to identify every maximal strict TTSP subgraph of
G. Assume that subgraph H is a maximal strict TTSP subgraph of G. Thus, the elementary Steiner subgraphs
(T �K 0þuþvðHÞ; T �K 0þu�vðHÞ; T �K 0þv�uðHÞ; T �K 0�u�vðHÞ; ST �K 0þuþvðHÞ) for H can be obtained using algorithm 1 where
K 0 ¼ fx; yg (see Fig. 15).

Using Eq. (20), we decompose the STP for G into four subproblems. Fig. 16 shows the tree that is generated
using our solution method. Node 0 of the tree has four child nodes that represent four cases (subproblems).
Node 1 of the tree shown in Fig. 16 represents case 1. In case 1, hHi ¼ T �K 0þu�vðHÞ. Since T �K 0þu�vðHÞ is a rooted
tree with root vertex u, and does not contain vertex v, we shrink tree T �K 0þu�vðHÞ into vertex u and then consider
STP for graph G1 ¼ G� H � v with Steiner vertex set K1 ¼ K � K 0 þ fug. Similarly, we shrink tree T �K 0þv�uðHÞ
into vertex v and consider STP for graph G2 ¼ G� H � u with Steiner vertex set K2 ¼ K � K 0 þ fvg (see Node
2 in Fig. 16). Since tree ST �K 0þuþvðHÞ contains two subtrees T U�þu�vðHÞ and T ðK 0�U�Þþv�uðHÞ, we shrink
T U�þu�vðHÞ and T ðK 0�U�Þþv�uðHÞ into vertices u and v, respectively, and then consider STP for graph
G3 ¼ G� H with Steiner vertex set K3 ¼ K � K 0 þ fu; vg (see Node 3 in Fig. 16).

Node 4 of the tree shown in Fig. 16 represents case 4. Note that tree T �K 0þuþvðHÞ contains vertices u and v.
We apply the contracting operation on H and obtain the graph G � H . After contraction, we consider STP on
resulting graph G � H with Steiner vertex set K4 ¼ K � K 0 þ fu0g where vertex u0 is the supervertex that is
merged by u and v. In this way, we can solve this problem recursively. The optimal solution T �KðGÞ is the tree
such that



Fig. 15. A numerical example for finding minimum Steiner tree in graph G.
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wðT �KðGÞÞ ¼ minfwðT �K 0þu�vðHÞÞ þ wðT �K1
ðG� H � vÞÞ;wðT �K 0þv�uðHÞÞ

þ wðT �K2
ðG� H � uÞÞ;wðST �K 0þuþvðHÞÞ þ wðT �K3

ðG� HÞÞ;wðT �K 0þuþvðHÞÞ þ wðT �K4
ðG � HÞÞg

ð21Þ
We call Eq. (21) the factoring theorem. In Fig. 16, since graphs G1, G2 and G3 are TTSP graphs, we can solve
these subproblems directly and obtain the optimal solutions T1, T2 and T3, respectively. Because graph G4 is
not an SP graph, we choose a maximal strict TTSP subgraph from G4, say edge (r,s) for applying the factoring
theorem. Node 5 represents subproblem 1 for G4. Note that if vertex s 2 K then this case (r 2 K5 and s 62 K5)
violates the constraint of the STP (i.e., s 2 T �KðGÞ). Thus this node is bounded. Similarly, node 6 is also
bounded. We solve STPs for TTSP graphs G7 and G8 and obtain the minimum Steiner trees T7 and T8. Since
wðT �K4

ðG4ÞÞ ¼ minfwðT 7Þ;wðT 8Þg ¼ minf11; 12g ¼ 11. Thus, we have the optimal solution T 7 for STP in
graph G4 with Steiner vertex set K4 ¼ fr; s; u0g. Now, we claim that the optimal solution T �KðGÞ ¼ T 1 since
wðT �KðGÞÞ ¼ minfwðT 1Þ;wðT 2Þ;wðT 3Þ;wðT 7Þg ¼ minf7; 14; 10; 11g ¼ 7. The complete algorithm for solving
STP for general graphs is shown in Fig. 17.

Let us consider the complexity of this algorithm. Note that if G is reduced into a TTSP graph using the
factoring theorem, then it takes only OðjEjÞ to solve it. Assume in the worst case, graph G applies the factoring
theorem c times before graph G is decomposed into TTSP graphs. The complexity for algorithm 2 is then
Oð22c � jEjÞ. Using the above arguments through this section, we have the following theorem:

Theorem 4. Algorithm2 takes Oð22c � jEjÞ to determine the minimum Steiner tree of a weighted undirected graph G.

The c value in Theorem 4 is strongly related to the topology of a given graph G. For one extreme case,
assume G is a TTSP graph, and regardless of how many vertices are in the graph, the value c will be zero. That
is, no factoring theorem needs to be applied and the time complexity becomes polynomial time. In the worst
case, assume G is a complete graph Kn. Let cðKnÞ denote the number of factoring theorem applications on Kn

before Kn is decomposed into TTSP graphs, and let the vertex set V be fv1; v2; . . . ; vng. Assume we choose edge
e ¼ ðu; vÞ for applying the factoring theorem and then Kn will be decomposed into four subcases of graphs;
they are G1 ¼ Kn � e� u, G2 ¼ Kn � e� v, G3 ¼ Kn � e, and G4 ¼ Kn � e. Because the topology of
G3 ¼ Kn � e is more complex than the others, the problem of determining the number of factoring theorem



Fig. 16. The solution tree for finding minimum Steiner tree in graph H.
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applications on the subcases of graph G1, G2, and G4 is dominated by the subcase of G3. Now, we will only
consider this subcase. If we choose edges ðv1; v2Þ; ðv1; v3Þ; ðv1; v4Þ; . . . ; ðv1; vn�2Þ to apply the factoring theorem
iteratively, then the resulting graph will become Kn�1. That is, ½½� � � ½½½Kn � ðv1; v2Þ� � ðv1; v3Þ� �
ðv1; v4Þ� � � �� � ðv1; vn�2Þ� ¼ Kn�1. Thus we have cðKnÞ ¼ ðn� 3Þ þ cðKn�1Þ. Using the fact of cðK3Þ ¼ 0 to solve
the above recurrence relation, we then have cðKnÞ ¼ ðn� 2Þðn� 3Þ=2 ¼ Oðn2Þ, for n P 3. Our proposed algo-
rithm becomes worse in such an extreme case.

Note that a better choice of a TTSP subgraph for factoring may cause the logarithmic term to become
small. However, a bad choice will not. It is an important issue of our proposed method to determine which
TTSP subgraph to apply the factoring theorem to, such that the value c is as small as possible. Fortunately,
Bein et al. [5] showed that for any DAG (directed acyclic graph) G there exists an edges sequence e1; e2; . . . ; ec�



Fig. 17. Factoring algorithm for general graphs.
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called a reduction sequence. If we choose the edge in the above edge sequence for factoring iteratively, then the
logarithmic term c of the algorithm will be minimized. They also presented an algorithm to find the minimum
reduction sequence in OðjV j2:5Þ. Because our considered graph G is undirected, a transformation which con-
verts graph G into a DAG is required. The transformation procedures are given as follows. Firstly, apply the
breadth-first-search on graph G, where the starting node is chosen randomly. Secondly, label each node
sequentially from 1 to jV j according to the order of visiting. Lastly, convert each undirected edge in graph
G into a directed edge ðu; vÞ if labelðuÞ < labelðvÞ. Obviously, the resulting graph is a DAG. Apply the algo-
rithm of Bein et al. on the resulting graph and then an edge reduction sequence will be obtained. The edge
reduction sequence will provide a good choice for factoring in our proposed method, with the consequence
that the value c becomes small.
4. Concluding remarks

In this paper, we consider the Steiner tree problem for weighted graphs and propose a factoring algorithm
with time complexity Oð22c � jEjÞ to solve it. Comparing this algorithm’s logarithmic term of time complexity
with other algorithms, our algorithm is strongly related to the topology of the graph, while the others are
related to the number of Steiner vertices. In the future, we will try to enhance our proposed method to min-
imize the c value for any given undirected graph. A distributed algorithm to solve STP will also be the focus of
our future work.
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