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Elucidating Vehicle Lateral Dynamics
Using a Bifurcation Analysis

Der-Cherng Liaw, Senior Member, IEEE, Hsin-Han Chiang, Member, IEEE, and Tsu-Tian Lee, Fellow, IEEE

Abstract—Issues of stability and bifurcation phenomena in ve-
hicle lateral dynamics are presented. Based on the assumption of
constant driving speed, a second-order nonlinear lateral dynamics
model is obtained. Local stability and existence conditions for
saddle-node bifurcation appearing in vehicle dynamics with re-
spect to the variations in front wheel steering angle are then
derived via system linearization and local bifurcation analysis.
Bifurcation phenomena occurring in vehicle lateral dynamics
might result in spin and/or system instability. A perturbation
method is employed to solve for an approximation of system equi-
librium near the zero value of the front wheel steering angle, which
reveals the relationship between sideslip angle and the applied
front wheel angle. Numerical simulations from an example model
demonstrate the theoretical results.

Index Terms—Bifurcation analysis, perturbation method,
vehicle’s lateral dynamics.

I. INTRODUCTION

IN RECENT years, the study of vehicle lateral dynamics has
attracted considerable attention (e.g., [1]–[9]). One of the

major concerns in vehicle dynamics is safety. Due to the large
number of traffic accidents occurring daily, the link between the
nonlinear behavior of vehicle dynamics and the applied front
wheel steering angle becomes a very important issue. Among
the existing studies, the sliding mode approach has been used
to design robust control laws for providing system stability
with respect to large variations in system parameters such as
axial velocity, vehicle mass, and the contact force between tire
and road surface [3]. A 5-degree-of-freedom (DOF) vehicle
model was used in [7] to design an extended Kalman filter for
estimating the historic data of vehicle motion and tire force.
Based on a linear model of vehicle lateral dynamics, linear
control laws have been proposed in [4] and [5].

Bifurcation theory and its corresponding analytical tech-
niques have been recently well exploited (e.g., [10]–[14]).
These methods have been successfully applied to the study and
control of several engineering systems such as tethered satellite
systems, jet engine compressors, longitudinal flight dynamics,
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Fig. 1. Front-steering vehicle model.

and power systems (e.g., [15]–[18]). Although saddle-node
bifurcation in vehicle dynamics was observed in [6] to link with
system instability via a numerical example, no theoretical ana-
lysis of possible bifurcation phenomena has been studied yet.

Instead of using a numerical approach, the main goal of
this paper is to provide an analytical study of vehicle lateral
dynamics. Based on previous successful applications to the an-
alytical study of longitudinal flight dynamics, tethered satellite
systems and jet engine compressors by Liaw et al. [15]–[18],
the existences and corresponding stability conditions of system
equilibrium will be analytically discussed in this paper.

This paper is organized as follows. Nonlinear dynamics
of a vehicle system is recalled in Section II. It is followed
by the analysis of existences and the corresponding stability
conditions for system equilibrium. Analytical formulas will
then be applied to the detection of possible occurrences of local
bifurcation phenomena and the construction of corresponding
existence conditions. Numerical studies with CarSim software
[21] are also given in Section IV to demonstrate the analytical
results.

II. NONLINEAR VEHICLE DYNAMICS

Consider the vehicle’s steering dynamics as depicted in Fig. 1
(e.g., [19]). Here, we have front-wheel angle δf as system input
and both sideslip angle β and yaw rate γ as two system outputs
for the steering characteristics. In addition, Lf denotes the dis-
tance between the center of gravity (CG) and front-wheel axle,
and Lr is the distance between CG and rear-wheel axle, respec-
tively. Fyfl and Fyrl are the cornering forces of the left front and
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Fig. 2. Cornering characteristics of front and rear tires. Dotted line: high-
friction road, and dashed line: low-friction road.

left rear tires, while Fyfr and Fyrr are the cornering forces for
the right front and right rear tires. Fxfl and Fxrl are the traction
forces for the left front and left rear tires, while Fxfr and Fxrr

are the traction forces for the right front and right rear tires.
We assume the vehicle body is symmetric about the longitu-

dinal plane. Let Fyf = Fyfl + Fyfr, Fyr = Fyrl + Fyrr, Fxf =
Fxfl + Fxfr, and Fxr = Fxrl + Fxrr. The basic equations of
motion for steering dynamics with roll motion neglected were
derived (e.g., [19]) and given as

m (ν̇ − νβγ) =Fxf + Fxr − Fyf sin δf (1)

mν ·
(
β̇ + γ

)
=Fyf + Fyr + Fxf sin δf (2)

and

Iz γ̇ = (LfFyf − LrFyr) cosβ + LfFxf sin δf (3)

where m is the mass of the vehicle, Iz is the yaw moment
around z-axis, and ν is the longitudinal velocity.

In this paper, we focus on the characteristic analysis of
lateral dynamics by assuming Fxf = 0, and the vehicle is not
accelerating or decelerating along the longitudinal direction,
i.e., ν̇ = 0. Thus, (1) can then be neglected in this analysis. The
steering dynamics for constant speed ν can then be reduced to
a second-order model as given by

β̇ =
1
mν

{Fyf + Fyr} − γ (4)

γ̇ =
1
Iz

{LfFyf − LrFyr} cosβ (5)

where Fyf is a function of β, γ, and δf , and Fyr is a function
of β and γ only. Examples of Fyf and Fyr are given in (21)
and (22).

III. STABILITY AND BIFURCATION ANALYSIS

Here, we will study the vehicle steering dynamics by using
the second-order model given by (4) and (5) instead of (1)–(3).
Details are given as follows.

TABLE I
VEHICLE PARAMETERS AND VALUES

TABLE II
COEFFICIENTS OF MAGIC FORMULA

A. Stability Analysis

Define x0 = (β0, γ0)T as an equilibrium point of system (4),
(5) for a given δf = δ0f . We then have

Fyf

(
β0, γ0, δ0f

)
+ Fyr

(
β0, γ0, δ0f

)
= γ0 ·mν (6)

and

LfFyf

(
β0, γ0, δ0f

)
= LrFyr

(
β0, γ0, δ0f

)
(7)

or

cosβ0 = 0. (8)

Consider the condition as given in (8), we have β0 = nπ +
π/2 for n = 0, 1, 2, . . .. It is clear that this condition cannot be
achieved for a vehicle. Thus, the equilibrium point x0 should
satisfy the two conditions given in (6) and (7) only.

Let x = [β, γ]T and x̃ = x− x0. Taking the linearization of
system (4), (5) at x = x0, we have

˙̃x = Ax̃ (9)

where

A =
[
a1 a2

a3 a4

]
(10)

with

a1 =
1
mν

∂

∂β
(Fyf + Fyr)

(
β0, γ0, δ0f

)
(11)

a2 =
1
mν

∂

∂r
(Fyf + Fyr)

(
β0, γ0, δ0f

)
− 1 (12)

a3 =
1
Iz

(
Lf

∂Fyf

(
β0, γ0, δ0f

)
∂β

− Lr

∂Fyr

(
β0, γ0, δ0f

)
∂β

)
cosβ0

(13)

and

a4 =
1
Iz

(
Lf

∂Fyf

(
β0, γ0, δ0f

)
∂r

− Lr

∂Fyr

(
β0, γ0, δ0f

)
∂r

)
cosβ0.

(14)
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Fig. 3. Bifurcation diagram with respect to different setting of ν. (a) Side-slip angle versus front-wheel angle. (b) Yaw rate versus front-wheel angle.
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Fig. 4. Equilibrium point valued at ν = 9 m/s. (a) Side-slip angle versus front-wheel angle. (b) Yaw rate versus front-wheel angle.

By applying the Routh–Hurwitz stability criterion, we then
have the following stability results.
Lemma 1: The equilibrium point x0 of system (4), (5) is

asymptotically stable if a1 + a4 < 0 and a1a4 − a2a3 > 0.
Here, the ais are given in (11)–(14). Moreover, the equilibrium
point x0 is unstable if a1 + a4 > 0 and a1a4 − a2a3 < 0.
Observation 1: It is known from the so-called “Magic for-

mula” that both values of a1 and a4 will generally be negative.
An example is given in Section III. Thus, the stability condition
in Lemma 1 can then be reduced to where the equilibrium point
x0 of system (4), (5) will be stable if a1a4 − a2a3 > 0 and
unstable if a1a4 − a2a3 < 0.

From Observation 1 above, it is clear that the system lin-
earization of (4), (5) at x0 will in general not have a pair of
pure imaginary eigenvalues but might have zero eigenvalue.
That means the lateral dynamics of a vehicle system will not

TABLE III
SADDLE-NODE BIFURCATION FOR DIFFERENT SPEEDS

undergo Hopf bifurcation (e.g., [12]–[14]). However, it might
have chance for the appearance of stationary bifurcation at
some δf = δ0f such that a1a4 − a2a3 = 0.
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Fig. 5. Time responses with initials: β = −0.01 rad and γ = 0.1 rad/s. (a) Side-slip angle β versus time. (b) Yaw rate γ versus time.

B. Local Bifurcations

In the following, we will discuss the possibility of having
a stationary bifurcation (e.g., [11] and [16]) for system (4),
(5). Let x0 be the equilibrium point such that a1a4 − a2a3 = 0

with a1 < 0 and a4 < 0. This implies that the linearization
of system (4), (5) at x0 possesses one zero eigenvalue and
a stable eigenvalue λ = a1 + a4 < 0. In order to study the
possible occurrence of stationary bifurcation for system (4), (5),
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Fig. 6. Time responses with initials: β = 0.01 and γ = −0.1. (a) Side-slip
angle β versus time. (b) Yaw rate γ versus time.

we recall the result regarding the existence condition of the
so-called “saddle-node bifurcation” from (e.g., [10], [12], and
[13]), as presented below.

Consider a class of nonlinear system with the approximation
up to the second order in its state x as given by

ẋ = L0x+Q0(x, x) + gµ. (15)

Here, the Jacobian matrix L0 possesses one zero eigenvalue
with remaining eigenvalues lying in the open left-half of the
complex plane. The variable µ denotes the system parameter,
and Q0(x, x) denotes the quadratic term in x. Moreover, as-
sume x = 0 is an equilibrium point of system (15) at µ = 0.

We recall the following lemma (e.g., [10]) regarding the
existence conditions of saddle-node bifurcation.
Lemma 2: The equilibrium point x = 0 of system (15) will

undergo saddle-node bifurcation from the origin at µ = 0 if
1) lg �= 0;
2) lQ0(r, r) �= 0.

TABLE IV
EXISTENCE CONDITION OF THEOREM 1

Fig. 7. Saddle-node bifurcation point in (δf − ν) space.

Here, l and r denote the left and right eigenvectors correspond-
ing to the zero eigenvalues of L0, respectively, with lr = 1.

Now, we apply Lemma 2 to the study of local bifurcation for
system (4), (5). Define x0 as the equilibrium point of system

(4), (5) with a1a4 = a2a3. Let x̃ = x− x0 ∆= (x1, x2)T and
µ = δf − δ0f . Taking the Taylor series expansion of the system
(4), (5) at (x0, δ0f ), we then have

˙̃x = Ax̃+ gµ+Q(x̃, x̃) +O(2) (16)
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Fig. 8. Vehicle states (a) slip angle and (b) yaw rate before saddle-node point at ν = 72 km/h, δf = −9.09◦. Vehicle states (c) slip angle and (d) yaw rate after
saddle-node point at ν = 72 km/h, δf = −9.14◦.

whereO(2) denotes the remaining second-order term and other
high-order terms

g
∆=
[
g1
g2

]
=

[
1

mν
∂

∂δf
(Fyf + Fyr)

(
x0, δ0f

)
cosβ0

Iz

∂
∂δf

(LfFyf − LrFyr)
(
x0, δ0f

)
]

(17)

and

Q(x̃, x̃) =
[
q11x

2
1 + q12x1x2 + q13x2

2

q21x
2
1 + q22x1x2 + q23x2

2

]
. (18)

The Jacobian matrix A is the same as the one in (10) but with
a1a4 = a2a3, and the values of qij are given in Appendix A.
From Observation 1, matrix A has one zero eigenvalue and a
stable eigenvalue for a general vehicle. In the following, we
assume a1 < 0 and a4 < 0 without loss of generality.

Define l and r as the left and right eigenvectors correspond-
ing to the zero eigenvalues of A with lr = 1. We then have

l =
[

a4

a1 + a4
− a2

a1 + a4

]

and

r =
[

1
−a1

a2

]T
.

It is clear from the relation of a1a4 = a2a3 that we can
rewrite r as

r =
[

1
−a3

a4

]T
.

By applying Lemma 2 to system (16), we have

l · g =
1

a1 + a4
(a4g1 − a2g2) (19)

and

lQ0(r, r) =
[

a4

a1 + a4
− a2

a1 + a4

]

·


 q11 + q12

(
−a3

a4

)
+ q13

(
−a3

a4

)2

q21 + q22
(
−a1

a2

)
+ q23

(
−a1

a2

)2




=
1

a1 + a4

(
a4q11 − a3q12 +

a2
3

a4
q13

− a2q21 + a1q22 −
a2
1

a2
q23

)
. (20)

The next result follows readily from Lemma 2.
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Fig. 9. Vehicle states (a) slip angle and (b) yaw rate before saddle-node point at ν = 108 km/h, δf = −4.89◦. Vehicle states (c) slip angle and (d) yaw rate after
saddle-node point at ν = 108 km/h, δf = −4.93◦.

Theorem 1: The system (4), (5) will undergo saddle-node
bifurcation for the equilibrium point x0 if the following condi-
tions hold:

1) a1a4 = a2a3 with a1 < 0 and a4 < 0;
2) a4g1 �= a2g2;
3) a4q11 − a3q12 + (a2

3/a4)q13 − a2q21 + a1q22 −
(a2

1/a2)q23 �= 0.

C. Application to the Vehicle Dynamics With Magic Formula
Type Cornering Force

There are many models for cornering force. In this paper,
we adopt the well-known “Magic formula” mathematical model
(e.g., [7]) for the nonlinear cornering forces Fyf and Fyr as

Fyf =Df sin
[
Cf tan−1

{
Bf(1 − Ef)αf + Ef tan−1 (Bfαf)

}]
(21)

Fyr =Dr sin
[
Cr tan−1

{
Br(1 − Er)αr + Er tan−1 (Brαr)

}]
(22)

where

αf = β + tan−1

(
Lf

ν
r · cosβ

)
− δf

and

αr = β − tan−1

(
Lr

ν
r · cosβ

)
.

Here, αf and αr denote the slip angle for the front and rear
tires, respectively. The approximation relationship between tire
slip angles and cornering forces are depicted in Fig. 2.

It is clear from (21) that x = (β, r)T = (0, 0)T will make
Fyf = Fyr = 0 when δ0f = 0. Thus, x0 = (0, 0)T is an equi-
librium point for system (4), (5) for δ0f = 0. This agrees with
the natural behavior of vehicle dynamics. In the following, we
first consider to solve the approximation of equilibrium solution
about x0 = (0, 0)T.

It is known that θ ≈ tan θ, sin θ ≈ θ, and cos θ ≈ 1 for
θ ≈ 0. By setting ẋ = 0 to solve for the equilibrium solution
x0 = (β0, r0)T of system (4), (5) near x0 = (0, 0)T, we have,
from (21), that

DfCfBf

(
β0+

Lf

ν
r0−δ0f

)
+DrCrBr

(
β0−Lr

ν
r0
)

=mνr0

(23)

LfDfCfBf

(
β0+

Lf

ν
r0− δ0f

)
−LrDrCrBr

(
β0−Lr

ν
r0
)

=0.

(24)



LIAW et al.: ELUCIDATING VEHICLE LATERAL DYNAMICS USING A BIFURCATION ANALYSIS 203

Fig. 10. Vehicle states (a) slip angle and (b) yaw rate before saddle-node point at ν = 144 km/h, δf = −2.91◦. Vehicle states (c) slip angle and (d) yaw rate
after saddle-node point at ν = 144 km/h, δf = −2.94◦.

By suitable manipulation, we can then rewrite (23) and (24) as

(Lf + Lr)DfCfBf

(
β0 +

Lf

ν
r0 − δ0f

)
= Lrmνr

0 (25)

and

(Lf + Lr)DrCrBr

(
β0 − Lr

ν
r0
)

= Lfmνr
0. (26)

The following observation can be made from (25) and (26).
Observation 2: In general, the values of constants Bf , Br,

Cf , and Cr are positive, while those of Df and Dr are negative.
Example values of these variables will be given in Section IV.
Thus, it is not difficult to find from (25) and (26) that the values
of β0 and r0 will have the same sign if

ν < νss =

√
−Lr(Lf + Lr)DrCrBr

Lfm
(27)

and the sign of the sideslip angle β0 will be opposite from that
of the yaw rate r0 for large axial velocity ν.

Next, we consider the stability of system (4), (5) at the
equilibrium point x0 = (0, 0)T by using Lemma 1. According
to the Magic formula as given in (21) and (22), the values
of ai for the Jacobian matrix A at the equilibrium point

x0 = (β0, γ0)T are calculated as those given in Appendix B.
For the case of x0 = (0, 0)T, we have from Observation 2

a1 =
1
mν

(DfCfBf +DrCrBr) < 0 (28)

a2 =
1
mν2

(LfDfCfBf − LrDrCrBr) − 1 < 0 (29)

a3 =
1
Iz

(LfDfCfBf − LrDrCrBr) > 0 (30)

and

a4 =
1
Izν

(
L2

fDfCfBf + L2
rDrCrBr

)
< 0. (31)

It is clear from (28)–(31) that a1 < 0, a2 < 0, a3 > 0, and
a4 < 0 for practical values of Bi, Ci, Di(i = f, r). One ex-
ample is given in Section IV. These agree with the discussions
in Observation 1. The next stability result follows readily from
Lemma 1.
Corollary 1: The equilibrium point x0 = (0, 0)T for δ0f is

asymptotically stable.
Since the equilibrium point x0 = (0, 0)T is asymptotically

stable, the bifurcation phenomena will not emerge from it.
According to (21) and (22), gi and qij are also calculated and
given in Appendix B. Based on those values of ai, gi, and qij
given in Appendix B, it is not difficult to apply Theorem 1 to
the study of existence conditions of saddle-node bifurcation for
system (4), (5). Numerical examples are given in Section IV for
finding such a possibility.
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IV. NUMERICAL SIMULATIONS

In this section, we present the numerical study of lateral
vehicle dynamics as given in (4) and (5). The selected values of
system parameters given in (21) and (22) are the same as those
of [6]. Details are given in Tables I and II. In order to verify the
study of this paper, the system parameters for low-friction roads
are chosen such that the vehicle has a propensity to spin. This
could conform the driving condition to that of traveling down
hill at constant velocity with equivalent braking effect at zero
throttle being applied.

As discussed in Section III, the applied front wheel angle δf is
treated as a bifurcation parameter. Computer code AUTO [20]
is employed to do the numerical analysis since it can numeri-
cally calculate the system equilibrium branches by the property
of continuity, the eigenvalues of the Jacobian matrix at each
equilibrium point, and then determine the corresponding system
stability. It is known (e.g., [7], [13], and [14]) that a nonlinear
system will have the property of stability exchange before and
after the stationary bifurcation point and possess a new system
equilibrium branch with respect to the variation of bifurcation
parameter. This gives a guide to determine the occurrence of
stationary bifurcation and used in AUTO software.

The bifurcation diagram of system (4), (5) with respect to
the variation of δf is shown in Fig. 3. Note that in Fig. 3,
the solid line denotes the stable equilibrium point while the
dashed line is for the unstable equilibrium point. As depicted in
Fig. 3(a) and (b), the system equilibrium near the origin are all
asymptotically stable for different driving speeds ν. This agrees
with the analytical result given in Corollary 1. As discussed in
Observation 2, the equilibrium values of β and γ will have the
same sign if the value of velocity ν is less than νss ≈ 9.5 m/s.
Figs. 3 and 4 demonstrate such results. Saddle-node bifurcation
emerging from the equilibrium solution of system (4), (5) is
also observed in Fig. 3. The locations of the bifurcation points
for different driving speeds, ν are obtained by using AUTO
and given in Table III. It is clear from Fig. 3 that the system
equilibrium changes stability at the saddle-node bifurcation
point and the magnitude of δf corresponding to the saddle-node
bifurcation becomes smaller as the velocity ν increases.

Note that the equilibrium points within the range of δf
between the two saddle nodes are stable. It should be pointed
out that the equilibrium of sideslip angle is divergent while
the yaw rate is convergent for increasing δf in the bifurcation
diagram. Figs. 5 and 6, respectively, show the time responses
for two initial conditions with ν = 20 m/s for different values of
δf . It can be seen that the vehicle is stable and ends at the value
corresponding to the equilibrium point x0 within the range
|δf | < 0.0158 rad. It is observed in Figs. 5 and 6 that the system
becomes unstable when |δf | > 0.0158 rad. This is attributed by
the existence of saddle-node bifurcation and its corresponding
stability property (e.g., [7], [11], and [12]).

The bifurcation analysis obtained in Section III is employed
to verify the numerical results. As given in Table IV, the saddle-
node bifurcation point for ν = 20 m/s does satisfy the existence
conditions of Theorem 1. Thus, the analytical results presented
in Section III will be very helpful in finding possible bifurcation
scenarios and system stability. In addition, the location of

Fig. 11. Vehicle animation at ν = 72 km/h in CarSim (a) before saddle-
node bifurcation point (δf = −9.09◦). (b) After saddle-node bifurcation point
(δf = −9.14◦).

saddle-node bifurcation for values of δf with respect to the
variation in velocity ν is also given in Fig. 7.

Similar phenomena can be found by using the famous vehicle
simulation software CarSim. An example of using the code
CarSim to find the occurrence of saddle-node bifurcation is
depicted in Figs. 8–10. It is observed from Figs. 8–10 that
both slip angle and yaw rate will reach stable values before
the saddle-node bifurcation point but become unstable after the
bifurcation point for three different values of velocity. Note
that all the simulations presented in Figs. 8–10 are obtained
by sending the steering command at time t = 2 s. Computer
animations of the vehicle’s behavior before and after the bi-
furcation point are also obtained using CarSim and depicted
in Fig. 11 to demonstrate the existence how the existence of
saddle-node bifurcation might affect the vehicle’s stability. The
location of saddle-node bifurcation in two-parameter space is
also obtained as given in Fig. 12.

V. CONCLUSION

In this paper, we focused on the study of stability and non-
linear behavior of vehicle lateral dynamics. This is achieved by
applying the Routh–Hurwitz stability criterion and bifurcation
theory to the second-order model of lateral vehicle dynamics.
Without assuming small angles, the stability condition at a
given constant velocity for steering systems is also derived,
which depends heavily on the cornering force characteristics of
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Fig. 12. Saddle-node bifurcation point in (ν − |δf |) plane for CarSim vehicle
model.

the rear tires. Saddle-node bifurcation phenomenon is observed
from the equilibrium solution of the nonlinear model, while it
never appears in the linear bicycle model (e.g., [3]–[5]). It is
found by this paper that the velocity plays a very important role
in determining the location of bifurcation points, which is not
discussed in the existing results (e.g., [6]). In fact, the value
of the applied front wheel angle for the bifurcation points is
found to be smaller as the velocity increases. This may provide
a partial reason as to why the vehicle steering is hard to control
and easily becomes unstable under high speeds.

APPENDIX A

The values of qij are given as follows:

q11 =
1
mν

(
∂2

∂β2
(Fyf + Fyr)

(
β0, r0, δ0f

))

q12 =
1
mν

(
∂2

∂β∂r
(Fyf + Fyr)

(
β0, r0, δ0f

))

q13 =
1
mν

(
∂2

∂r2
(Fyf + Fyr)

(
β0, r0, δ0f

))

q21 =
1
Iz

((
∂2

∂β2
LfFyf

(
β0, r0, δ0f

)

− ∂2

∂β2
LrFyr

(
β0, r0, δ0f

))
cosβ0

− 2 ·
(
∂

∂β
LfFyf

(
β0, r0, δ0f

)

− ∂

∂β
LrFyr

(
β0, r0, δ0f

))
sinβ0

)

q22 =
1
Iz

((
∂2

∂β∂r
LfFyf

(
β0, r0, δ0f

)

− ∂2

∂β∂r
LrFyr

(
β0, r0, δ0f

))
cosβ0

−
(
∂

∂r
LfFyf

(
β0, r0, δ0f

)

− ∂

∂r
LrFyr

(
β0, r0, δ0f

))
sinβ0

)

q23 =
1
Iz

(
∂2

∂r2
LfFyf

(
β0, r0, δ0f

)

− ∂2

∂r2
LrFyr

(
β0, r0, δ0f

))
cosβ0.

APPENDIX B

The values of ai and gi are shown at the bottom of the page
and are continued on the next page, where ν,m, Iz , Lj ,Bj , Cj ,
Dj , Ej(j = f, r) are as defined in previous sections.

a1 =
1
mν

(
Df cos

[
Cf tan−1

{
Bf(1 − Ef)αf

(
β0, r0, δ0f

)
+ Ef tan−1

(
Bfαf

(
β0, r0, δ0f

))}]

·
[

Cf

1+(Bf(1 − Ef)αf (β0, r0, δ0f )+ Ef tan−1(Bfαf (β0, r0, δ0f )))2

]

·
[
Bf(1 − Ef)+

EfBf

1+(Bfαf (β0, r0, δ0f ))2

]
·
[
1 −

Lf
ν r

0 sinβ0

1+
(

Lf
ν r

0 cosβ0
)2
]

+Dr cos
[
Cr tan−1

{
Br(1 − Er)αr(β0, r0)+ Er tan−1

(
Brαr(β0, r0)

)}]
·
[

Cr

1+(Br(1 − Er)αr(β0, r0)+Er tan−1(Brαr(β0, r0)))2

]

·
[
Br(1 − Er)+

ErBr

1+(Brαr(β0, r0))2

]
·
[
1+

Lr
ν r

0 sinβ0

1+
(

Lr
ν r

0 cosβ0
)2
])
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a2 =
1
mν

(
Df cos

[
Cf tan−1

{
Bf(1 − Ef)αf

(
β0, r0, δ0f

)
+ Ef tan−1

(
Bfαf

(
β0, r0, δ0f

))}]

·
[

Cf

1+(Bf(1 − Ef)αf (β0, r0, δ0f )+ Ef tan−1(Bfαf (β0, r0, δ0f )))2

]

·
[
Bf(1 − Ef)+

EfBf

1+(Bfαf (β0, r0, δ0f ))2

]
·
[

Lf
ν cosβ0

1+
(

Lf
ν r

0 cosβ0
)2
]

+Dr cos
[
Cr tan−1

{
Br(1 − Er)αr(β0, r0)+ Er tan−1

(
Brαr(β0, r0)

)}]
·
[

Cr

1+(Br(1 − Er)αr(β0, r0)+ Er tan−1(Brαr(β0, r0)))2

]

·
[
Br(1 − Er)+

ErBr

1+(Brαr(β0, r0))2

]
·
[
−

Lr
ν cosβ0

1+
(

Lr
ν r

0 cosβ0
)2
])

− 1

a3 =
cosβ
Iz

(
LfDf cos

[
Cf tan−1

{
Bf(1 − Ef)αf

(
β0, r0, δ0f

)
+ Ef tan−1

(
Bfαf

(
β0, r0, δ0f

))}]

·
[

Cf

1+(Bf(1 − Ef)αf (β0, r0, δ0f )+ Ef tan−1(Bfαf (β0, r0, δ0f )))2

]

·
[
Bf(1 − Ef)+

EfBf

1+(Bfαf (β0, r0, δ0f ))2

]
·
[
1 −

Lf
ν r

0 sinβ0

1+
(

Lf
ν r

0 cosβ0
)2
]

− LrDr cos
[
Cr tan−1

{
Br(1 − Er)αr(β0, r0) +Er tan−1

(
Brαr(β0, r0)

)}]
·
[

Cr

1 + (Br(1 − Er)αr(β0, r0) + Er tan−1(Brαr(β0, r0)))2

]

·
[
Br(1 − Er) +

ErBr

1 + (Brαr(β0, r0))2

]
·
[
1 +

Lr
ν r

0 sinβ0

1 +
(

Lr
ν r

0 cosβ0
)2
])

a4 =
cosβ
Iz

(
LfDf cos

[
Cf tan−1

{
Bf(1 − Ef)αf

(
β0, r0, δ0f

)
+ Ef tan−1

(
Bfαf

(
β0, r0, δ0f

))}]

·
[

Cf

1 + (Bf(1 − Ef)αf (β0, r0, δ0f ) + Ef tan−1(Bfαf (β0, r0, δ0f )))2

]

·
[
Bf(1 − Ef) +

EfBf

1 + (Bfαf (β0, r0, δ0f ))2

]
·
[

Lf
ν cosβ0

1 +
(

Lf
ν r

0 cosβ0
)2
]

− LrDr cos
[
Cr tan−1

{
Br(1 − Er)αr(β0, r0) +Er tan−1

(
Brαr(β0, r0)

)}]
·
[

Cr

1 + (Br(1 − Er)αr(β0, r0) + Er tan−1(Brαr(β0, r0)))2

]

·
[
Br(1 − Er) +

ErBr

1 + (Brαr(β0, r0))2

]
·
[
−

Lr
ν cosβ0

1 +
(

Lr
ν r

0 cosβ0
)2
])

g1 =
1
mν

(
Df cos

[
Cf tan−1

{
Bf(1 − Ef)αf

(
β0, r0, δ0f

)}]

·
[

Cf

1 + (Bf(1 − Ef)αf (β0, r0, δ0f ) + Ef tan−1(Bfαf (β0, r0, δ0f )))2

]

·
[
−Bf(1 − Ef) −

EfBf

1 + (Bfαf (β0, r0, δ0f ))2

])

g2 =
Lf cosβ
Iz

(
Df cos

[
Cf tan−1

{
Bf(1 − Ef)αf(β0, r0, δ0f )

}]

·
[

Cf

1 + (Bf(1 − Ef)αf(β0, r0, δ0f ) + Ef tan−1(Bfαf(β0, r0, δ0f )))2

]

·
[
−Bf(1 − Ef) −

EfBf

1 + (Bfαf(β0, r0, δ0f ))2

])
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