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In this paper we show that both music composition and brain function, as revealed by the electroencepha-
logram �EEG� analysis, are renewal non-Poisson processes living in the nonergodic dominion. To reach this
important conclusion we process the data with the minimum spanning tree method, so as to detect significant
events, thereby building a sequence of times, which is the time series to analyze. Then we show that in both
cases, EEG and music composition, these significant events are the signature of a non-Poisson renewal process.
This conclusion is reached using a technique of statistical analysis recently developed by our group, the aging
experiment �AE�. First, we find that in both cases the distances between two consecutive events are described
by nonexponential histograms, thereby proving the non-Poisson nature of these processes. The corresponding
survival probabilities ��t� are well fitted by stretched exponentials ���t��exp (−��t��), with 0.5���1.� The
second step rests on the adoption of AE, which shows that these are renewal processes. We show that the
stretched exponential, due to its renewal character, is the emerging tip of an iceberg, whose underwater part has
slow tails with an inverse power law structure with power index �=1+�. Adopting the AE procedure we find
that both EEG and music composition yield ��2. On the basis of the recently discovered complexity match-
ing effect, according to which a complex system S with �S�2 responds only to a complex driving signal P
with �P��S, we conclude that the results of our analysis may explain the influence of music on the human
brain.
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I. INTRODUCTION

The study of neuronal systems is a challenge for statistical
physics, insofar as experimental evidence is proving that the
ordinary Poisson paradigm is inadequate to deal with these
complex systems. According to some neurophysiologists the
neurons are renewal �1� and they are markedly non-Poisson
�2�. More precisely, the experimental evidence of in vitro
observations coupled with analysis of in vivo spiking pat-
terns indicate that single neurons are fundamentally non-
Poisson processes �3�. In the literature the implicit assump-
tion is frequently made that even if the spiking activity of a
single neuron is not Poissonian, the activity of a set of many
neurons is Poissonian. This assumption may lead us to con-
clude that the human brain is a Poisson system. The authors
of the paper of Ref. �4� proved that this assumption is in-
valid. In this paper, through the electroencephalogram �EEG�
analysis we reach the conclusion that the human brain is not
a Poisson system, in line with the theoretical remarks of Ref.
�4�. It is important to point out that in this paper the term
non-Poisson process indicates a strong deviation from the
exponential decay. This kind of non-Poisson behavior im-
plies, as we shall see, the emergence of fat tails with an
inverse power law behavior, although for many reasons,
ranging from the finite time observation to the influence of
spurious random fluctuations, in the long-time region these
tails are truncated.

In this paper we apply the same statistical analysis to
music composition. There is a wide agreement that music
composition can be thought of as a complex signal. It is
convenient to quote the seminal work by Voss and Clarke
�5�. These authors have found in fact that music composition
yields a 1/ f noise spectrum, which is generally regarded as a
complexity manifestation �6–9�.

The power of music to evoke emotions is well known, but
only recently, as discussed in the short review of Ref. �10�, it
has attracted the attention of neuroscientists �11�. How does
the communication between music and the brain take place?
The authors of an interesting paper �12� have recently stud-
ied the brain response of musicians and nonmusicians to mu-
sic listening and have found that musicians yield a higher
degree of the gamma band synchrony. A more recent study of
these investigators �13� has supported the theory that phase
synchronization is a significant marker in human cognition
�14�.

The phase synchronization established by the authors of
Refs. �12,13� is one of the interesting properties of chaos
synchronization �15�, which is in fact attracting the increas-
ing interest of neuroscientists �16�. According to the seminal
work of Ref. �17� both driving system �the music composi-
tion� and response system �the brain� are dynamic systems
with strange attractors �for instance, Rössler systems �18��.

In this paper we analyze both EEG data and music com-
position with the joint use of two techniques, the minimum
spanning tree �MST� approach and the aging experiment
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�AE�. Both EEG and music composition data are expressed
as multidimensional vectors Vi, with i=1, . . . ,N. The differ-
ent components of these vectors correspond to the informa-
tion afforded by different electrodes in the EEG case, and
timber, pitch, harmony, melody, rhythm, …etc., in the case
of music composition. In this representation the existence of
events is not evident. Thus to reveal their presence we build
the MST proposed by Kruskal �19� and we study its time
evolution: From time to time the topology of this MST un-
dergoes an abrupt change that we interpret as an event. The
probability of an event occurrence at a time distance 	 from
the preceding event is found to be a stretched exponential.
With the help of the AE method we prove this process to be
renewal. The conclusion of this paper is that both EEG and
music composition are non-Poisson renewal processes, gen-
erated by an inverse power law distribution with index �
�2. This condition apparently departs from those conditions
considered to be essential for synchronization, and so for the
brain to be sensitive to music. We note, however, that it has
been shown �20,21� that while a non-Poisson complex sys-
tem does not respond to harmonic perturbation �22,23�, it is
very sensitive to the influence of a complex perturbation with
the same complexity. The authors of Refs. �20,21� denoted
this effect as the complexity matching �CM� phenomenon.
Therefore, the non-Poisson renewal condition is compatible
with the transmission of information from a complex system
to another, and, on top of that, thanks to the CM effect, might
allow us to explain the influence of music on the brain.

The outline of this paper is as follows. In Sec. II, with the
help of Appendix A, we show under which condition a sur-
vival probability �SP� with the form of a stretched exponen-
tial can be considered a non-Poisson renewal process with
power law index ��2. In Sec. III we illustrate the MST
method. Sections IV and V illustrate how we reached the
conclusion that both EEG and music composition data are
manifestations of non-Poisson renewal processes with �
�2. In Sec. VI we concisely review the CM effect so as to
support the main conclusion, illustrated in Sec. VII, that it is
possible to tune music composition to the brain so as to make
the brain respond to it.

II. STRETCHED EXPONENTIAL AS A TRUNCATED
MITTAG-LEFFLER FUNCTION

The purpose of this section is to derive the following con-
clusions: �i� A particular class of stochastic processes leads,
in an appropriate limit, to a renewal process with SP de-
scribed by a Mittag-Leffler �ML� function; �ii� The ML func-
tion has the small 	 limiting form of a stretched exponential,
exp(−��	��), with ��1, and a large 	 power law limit; �iii�
The power law index is related to the stretched exponential
parameter � by Eq. �4�; �iv� One can deduce the power law
index from the small 	 stretched exponential fit, even in situ-
ations where there is no information about the long tail in the
data recorded. This is important for the main purpose of this
paper. In fact, in Secs. IV and V we shall prove that EEG’s
and complex sounds, respectively, are examples of such a
process because they are renewal processes and are well fit-
ted by a stretched exponential. By means of Eq. �4� we shall
derive the hidden information on �.

The ML function �24� is attracting an ever increasing in-
terest in the literature of complex fluids such as liquid crys-
tals, glass-forming liquids, and polymeric and colloid sys-
tems �25�. A remarkable property of the ML function is that
the complex susceptibility produced by the ML relaxation
function yields the Cole-Cole experimental form �26�. For
this interesting property the reader can consult also Refs.
�25�, �27�, and �28�.

The ML function establishes a bridge between the
stretched exponential behavior for short time and an inverse
power law in the long-time limit �29�. This property is im-
portant, since it may settle the controversy between the ad-
vocates of stretched exponentials and those of inverse power
laws. In the case of the financial market, the authors of Ref.
�30� have found that the ML function affords a very good
fitting of experimental data. There is a problem with the tails,
however, insofar as the lack of sufficiently rich statistics
make noisy the time region where the ML fat tail should
appear �31�. The authors of Ref. �31� used the aging experi-
ment to make an inverse power law behavior distinctly
emerge from the noisy background of the long-time regime.

Here we show an approach to the ML proving that in
some noisy conditions only the stretched exponential portion
of the ML function can remain visible. Our theoretical ap-
proach refers to the time distance between two consecutive
events, rather than a molecular relaxation process �26�: The
motor driving our process is a physical generator of events.
Let us assume that a natural-time scale exists, where this
physical generator of events is a Poisson process with rate
r
1, so as to make the discrete time representation virtually
indistinguishable from the continuous time picture. The time
distance between two consecutive events produced by this
generator is given by the waiting time distribution density
�P�n�, which has the following exponential form:

�P�n� = r exp�− rn� . �1�

To generate the sequence of events of interest for this paper,
we operate as follows. We record the activity of this physical
generator at each and every time step of its natural time n. At
the same time, following the prescription of the subordina-
tion theory �32�, we turn the time n into the continuous time
t�n�, by setting

t�n + 1� − t�n� = 	n. �2�

It is straightforward to prove �see the Appendix� that the
adoption of an inverse power law with no truncation and
power index � as subordination function, together with the
renewal assumption for the events production and the condi-
tion r
1, creates a SP with the form of a ML function of
order �, denoted by the symbol �SP, whose analytical ex-
pression is

�SP�t� � E�„− ��t��
… = �

n=0

�

�− 1�n ��t��n


��n + 1�
, �3�

with
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� = � − 1, �4�

and � is a time scale given by Eq. �A8�. In the case 0��
�1 it is well known that the ML function admits two limit-
ing conditions, namely,

E�„− ��t��
… �

1

��t�� t → �, t �
1

�
, �5�

that is, an inverse power law, and

E�„− ��t��
… � exp„− ��t��

… t → 0, t �
1

�
, �6�

which is a stretched exponential.
To take into account that the data under study are finite, it

is convenient �32� to select for the subordination function
��	� an inverse power law with index �, which is exponen-
tially truncated at t�1/
, where 
��. As an effect of this
choice �see the Appendix� we get for the function �SP�t� a
resulting form virtually indistinguishable from a stretched
exponential, in the intermediate time scale where the depar-
ture from the exponential form is significant. This derivation
of the stretched exponential is different from the one recently
proposed by the authors of Ref. �33�. However, a comparison
between our approach and that of these authors is not quite
appropriate: in fact, Magdziarz and Weron �33� aim at the
same purpose as that of the earlier work of Ref. �26�, the
explanation of the nonexponential Cole-Cole relaxation, and
do not afford prescriptions to evaluate the distribution of the
time distances among consecutive renewal events, which is
the main trust of this section.

The subordination process is realized by means of a ran-
dom prescription and, consequently, �SP�t� is expected to fit
the renewal condition. We shall assess this property by
means of the aging experiment of Sec. IV. We shall also
establish a connection between the stretched exponential
exp(−��t��), with ��1 and the power index � by means of
the relation of Eq. �4� generated by the subordination proce-
dure. Since the subordination is realized with a function
��	�, which is a truncated inverse power law, the resulting
process in the long-time scale does not violate the ergodic
condition. Thus the Poisson behavior, and the consequent
lack of aging, as we shall see by means of the statistical
analysis of both EEG data and music composition, is recov-
ered. The same limitations are shared by many other com-
plex processes, see, for example, �32�, due to the obvious
fact that an exact inverse power law behavior is an idealiza-
tion that would imply the infinite size of the systems under
study. The study of this idealized condition is useful to shed
light into the transient behavior before the eventual Poisson
condition.

III. MINIMUM SPANNING TREE APPROACH AS A
GENERATOR OF EVENTS

In this Section we introduce an algorithmic procedure that
will allow us to process the data at our disposal so as to
generate events and, consequently, time series to analyze.
The method is based on the famous minimal spanning tree

�MST� algorithm �34�, which we now briefly introduce.
To define the MST approach we closely follow the argu-

ments of Ref. �35�. Imagine a data set consisting of N col-
umns, each column representing the signal recorded by an
electrode, or the timber, pitch, note, …, etc., of the music
composition. Taking two columns, say x and y, we define the
correlation coefficient between the two columns as follows:

�xy =

�
k=0

t

�xk − �x	��yk − �y	�

�x�y
, �7�

where the quantities �x	 and �x are, respectively, the average
and the standard deviation of the values that x takes over the
interval �0, t�. Consider now the following quantity:

x̃ =
x − �x	

�x
�8�

and assume that in the interval �0, t� there are t values of the
vector x̃, namely, x̃k ,k=1, . . . , t. The distance between two
columns x̃ and ỹ over the time interval t is easily obtained
adopting the well known formula of the Euclidean distance

dxy
2 = 
x̃ − ỹ
2 = �

k=1

t

�x̃k − ỹk�2. �9�

Moreover, �k=1
t x̃k

2=1. Therefore, Eq. �9� becomes

dxy
2 = �

k=1

t

�x̃k
2 + ỹk

2 − 2x̃kỹk� = 2 − 2�
k=1

t

x̃kỹk. �10�

The last sum on the right-hand side of Eq. �10� is the corre-
lation coefficient between x and y of Eq. �7� at the time t. It
is therefore possible to define the distance between the col-
umns x and y as

dxy = �2�1 − �xy� . �11�

Since −1��xy�1, then 0�dxy�2. Moreover, dxy fulfills
the property of a distance �35�.

Through the distance dxy we now introduce the MST ap-
proach over the time interval t. In a connected graph of N
objects, weighted through the distances dxy, the MST is the
tree with N−1 links for which the total sum of the edges is
minimum. In the literature there are many algorithms to cre-
ate the MST. Here we select the method proposed by Kruskal
�19�. This method consists of the following steps: we sort the
distances in increasing order; we select the shortest distance
and draw an edge between the associated nodes; we go to the
next distance and draw edges; if an edge creates a loop we
erase it; we continue drawing lines until all the N columns
are represented.

In this paper we make a dynamical use of the MST. We
build the MST over a time window of length t, then we move
to the next �nonoverlapped� window and build the MST cor-
responding to the new position. An event is defined when-
ever a change in the distribution of links occurs. This way of
proceeding allows us to define events and, consequently, the
distribution of waiting times between two consecutive,
events. Moreover, when building the distribution of the num-
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ber of edges, we do not label our electrodes, but simply look
at the shape of the distribution, that essentially characterizes
the topology of the MST. If distributions at subsequent times
do not exactly coincide, we consider it to be a signal of a
change in the global properties of the brain, and indicate this
as our critical event.

The MST has been recently adopted in the literature in an
increasing number of papers on different complex systems,
from networks �e.g., �36� among the others� and financial
markets �e.g., �37� among the others� to neurophysiological
processes �38�. Particularly, we quote the recent paper of
McDonald et al. �39�. In this paper the MST approach has
already been used and applied to financial time series, but in
a different way. In fact, the authors of Ref. �39� monitor the
survival ratio of edges in time, that is, the ratio between the
number of edges connected to a certain node at time 0 and
the same quantity computed at a later time t, and find that it
decays nonexponentially.

According to Ref. �39�, the MST, by definition, is more
suitable to study positively than negatively correlated sys-
tems. Indeed, negatively correlated electrodes contribute dif-
ferently to the MST than positively correlated electrodes. In
our analysis this criticism only relatively applies, as we are
interested in the changes of the MST topology in time, i.e., in
the changes of the correlations with time.

In the next section we shall analyze the statistical proper-
ties of the time series obtained in the aforementioned way.

IV. ANALYSIS OF EEG

Digital EEG data was collected on five subjects, utilizing
a Scan LT-40 amplifier, manufactured by NeuroScan Medical
Systems, El Paso, Texas. The Scan LT-40 is an FDA ap-
proved medical device for the collection of digital EEG. On-
line monitoring of EEG was provided by NeuroScan Medical
Systems 1.2 software. Offline evaluation and the removal of
artifacts from the EEG record and the conversion of the data
to ASCII files were accomplished using NeuroGuide 2.2.6
software. An electrode cap from Electrocap International Inc.
was used to provide standardized electrode placement. Digi-
tal EEG data was collected from 19 locations using the in-
ternational 10-20 system of electrode placement. A reference
electrode was placed on each earlobe to provide a linked ears
montage for the physical reference of the scalp recordings.
The impedance of the respective earlobe reference electrodes
was maintained within 1 K� of each other. All other elec-
trode impedances were maintained at 1 or 2 K� relative to
amplifier input impedance with no more than 1 K� of vari-
ance between any of the electrode contacts. The amplifiers
used to acquire the EEG were calibrated with sine waves
before the acquisition of EEG. The EEG data was digitized
at a rate of 250 samples per second. Before analog to digital
conversion, antialiasing was achieved by a low-pass filter
built into the software. The EEG was visually inspected on-
line during acquisition to monitor for artifact. When neces-
sary, data collection was stopped to identify and remove per-
sistent sources of artifact such as muscle tension. The
subjects included two healthy subjects, one subject with
chronic back pain, and two subjects with mental depression.

Subjects were medication-free during the data acquisition.
The average number of data collected is 26 141, correspond-
ing to about 104 seconds of record. The minimum number of
data for a single subject is 10 961, corresponding to about
43 seconds of recording, for one of the healthy subjects,
while the maximum number of data for a single subject is
56 544, corresponding to about 226 seconds, for the subject
with chronic back pain. Only two states were considered for
the subjects, namely, eyes open �EO� and eyes closed �EC�.
The acquisitions were made in the same conditions for all the
subjects.

The MST approach, discussed in the previous section, is
applied to the set of 19 columns that the data acquisition
method affords. The time series of MST topological changes
is obtained and, to be consistent with the theoretical results
of Sec. II, the SP ��t� of the time distances between two
consecutive MST topological changes is evaluated. The
length of the time window inside which the MST is evalu-
ated has been chosen to be t=3 samples, corresponding to
0.012 seconds. In Fig. 1 we show the SP relative to the in-
dividual with back pain in the EO condition. We fit the re-
sulting curve with a stretched exponential of the form of Eq.
�6� with parameters �=0.205 and �=0.595.

Similar results have been obtained for the SPs of all the
other individuals at our disposal. Using Eq. �4�, we find that
the values of � for the EO condition lie between
1.595±0.005 and 1.960±0.013, while for the EC condition,
between 1.746±0.018 and 1.974±0.024.

The results of Fig. 1 suggest that the process is strongly
non-Poissonian. However, the mere analysis of the distribu-
tion of waiting times is not enough to establish the real na-
ture of the process. In fact, as pointed out in Refs. �40,41�, a
modulated Poisson process as well can have as an outcome a
nonexponential waiting time distribution. In order to assess if
the time series under study is produced by a genuinely non-
Poisson renewal process, the authors of Ref. �41� propose the
renewal aging experiment �AE�. According to this procedure,
in addition to the waiting time density ��	�, an aged waiting
time density �exp�	 , ta� must be evaluated. This is done as
follows: Let �ti
 be the series of absolute time obtained

0.001

0.01

0.1

1

0.1 1 10 100 1000

Ψ
(τ

)

τ

Ψ

e-(γ τ)α

FIG. 1. The SP of MST topological changes for the individual
with back pain in the EO condition. The curve is fitted using a
stretched exponential of the form of Eq. �6� with �=0.205 and �
=0.595.
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through the prescription indicated in the previous section.
For each time ti the first time of the sequence at a distance
from ti equal to or larger than ti+ ta is recorded. This time
will be tk, with k� i. The time distance 	�ti , ta�= tk− �ti+ ta� is
considered. The procedure is repeated for all the times of the
sequence �ti
, and the sequence of these recorded time dis-
tances is used to generate the distribution density �exp�	 , ta�.
Moreover, the following quantity is evaluated:

�ren�	,ta� =

�
0

ta

dy�num�	 + y�

K�ta�
, �12�

where K�ta� is a suitable normalization constant and �num�t�
is the numerical waiting time distribution corresponding to
ta=0.

To establish the renewal character of the process by
means of the AE it is convenient to plot the corresponding
SP’s, �ren�	 , ta�, �exp�	 , ta�, and the SP of age ta=0, indi-
cated as �0. In Fig. 2 the three SPs are compared, and it is
found that �exp and �ren virtually coincide. According to
Ref. �41� this good accordance is the numerical evidence of
the renewal nature of the process.

Moreover, this result confirms the theoretical framework
of Sec. II, allowing us to obtain the index of the inverse
power law distribution from the index of the stretched expo-
nential, namely, from Eq. �4�. Since all the values of � are
smaller than 1 we conclude that ��2, and therefore that the
human brain is a nonergodic system. It is important to repeat
here what we already pointed out in Sec. II, that in the long
run, as all the anomalous processes occurring in nature, the
ergodic properties, as well as the Poisson condition and the
associated lack of aging, are recovered.

How can we explain the emergence of this stretched ex-
ponential of renewal origin? An anonymous referee pointed
to us that there may exist a dominant structure and that the
spanning trees appearing in the processed data may produce
short and long waiting times according to their distance from
the dominant structure. If there is a systematic alternation of
short and long times, we end up in a model recently dis-
cussed in Ref. �40�. In this case there would be a drastic

reduction of renewal aging. If on the contrary, the process is
not a systematic alternation of short and long waiting times,
it becomes indistinguishable from the non-Poisson model
that we propose with the theory of Sec. II.

Now we have to address an important issue, concerning
the physical origin of the complexity property revealed by
our analysis. We share the opinion of Haken �42� that the
brain global behavior is an emergent property produced by a
synergetic process of synchronization �43�. As a conse-
quence, the different electrodes are correlated and the MST
of Sec. III detects the emergence of this global property. The
electrodes on which the MST analysis is based are single
units, like the interacting columns of a surface growing as an
effect of random deposition �32�. Due to the cooperation
with the other columns the single columns inherit the com-
plexity of the whole growing surface �32�.

On the basis of this observation, we are tempted to make
the conjecture that the single electrodes inherit the global
complexity. It is important to stress that Buiatti and his co-
workers �44� have recently obtained results confirming this
conjecture, with a method of analysis based on the observa-
tion of a single EEG. Our conjecture is also compatible with
the results found by the authors of Ref. �45�. To understand
the connection between the results of this section and those
found by the authors of Ref. �45� the reader should consult
the recent article of Ref. �46�. The authors of this paper have
studied the dynamic approach to fractional Brownian motion
�FBM�, as expressed by

d

dt
x�t� = ��t� , �13�

where ��t� is a fluctuating velocity with memory, namely, a
correlation function with slow tails. The dynamical approach
to FBM proves that the variable x in the asymptotic time
regime shares the same properties as the traditional form of
FBM. They have also proved that the origin recrossing of
x�t� generates a non-Poisson renewal process with the power
� related to the FBM scaling coefficient H by

� = 2 − H . �14�

Note that the adoption of the more realistic model of the
interacting columns of an interface growing as an effect of
random deposition of particles would produce saturation and
also a truncation of the inverse power law waiting time dis-
tribution, a property similar to the long-time Poisson behav-
ior revealed by Figs. 1 and 2. However, if the observation is
limited to the short-time region, the condition of Eq. �14�
applies.

The analysis of the authors of Ref. �45� rests on ��t�,
rather than on x�t�. We are convinced in fact that the single
electrodes yield a signal that has to be interpreted as the
variable x of Eq. �13�. Thus to relate the results of Ref. �45�
to the results of this section, we must adopt Eq. �14�. This
procedure generates ��2. With this interpretation in mind,
we find that also the analysis of Ref. �45� proves that indi-
viduals whose signal was recorded in the EC condition is
closer to �=2 than the individuals in the EO condition.
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FIG. 2. The AE analysis on the time series of Fig. 1, for ta

=30. The aging is present and compatible with the renewal condi-
tion. �ta=30�.
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Stressing this result is a way for us to draw the attention
of the reader to the fact that the discovery of non-Poisson
renewal events, made possible by the method adopted in this
paper, does not yield results conflicting with the work of
other groups. In Table I, we present a sample of the results of
our analysis on our group of individuals. We remind that two
of them were healthy, one had back pain, and two had mental
depression. The values of � refer to the same subject, in the
two conditions. We see that the parameters � of individuals
in the EC condition are significantly closer to 2 than the
parameters � of patients in the EO condition. In Table II we
report a sample of the results of Ref. �45� �healthy individu-
als only, Table I� in terms of �, by means of the rule of Eq.
�14�. By comparing the results of Table I with those of Table
II we reach the conclusion that the results of our analysis are
compatible with those of Ref. �45�. It is necessary to stress
that this result is not statistically significant, given the small
size of our sample, but it represents indeed a trend, compat-
ible with the results present in the literature. More research
work is necessary to be done to confirm the presence of this
interesting effect.

Before ending this section, we want to stress that the main
result of this paper, namely, the surprising complexity match-
ing between brain and complex sounds that we shall discuss
in Sec. V, does not depend in any way on the conjecture we
make about the emergence of ��2 in the single electrodes.
This conjecture would have the effect of explaining the find-

ings of Refs. �44,45�, but, if proved wrong, would not
weaken the validity of the main result of this paper.

V. ANALYSIS OF MUSIC COMPOSITION

The music composition data that we analyze in this sec-
tion have been produced by means of a virtual instrument
�software synthesizer� suitably designed �47,48� to produce
physiological effects �49,50�. The instrument is capable of
generating abstract sonic textures that are free from overt
cultural influences. Moreover, through the use of presets, a
record can be kept of all parameters of consequence in the
generation of the musical material. This feature is important
for purposes of correlating the output sonic textures with, for
instance, biological data from EEG recordings. In this way,
researchers can precisely pinpoint areas of interest in biologi-
cal data for analysis of and comparison with the generative
parameters of the sound structures. Designed to allow control
over the redundancy of time-point and pitch �frequency� pat-
terns in a hierarchical framework, the virtual instrument
sonic textures can be gradually morphed between constant
states �stable� regimes and chaotic �complex� regimes via
controls built into the graphical user interface. Moreover,
precise measurement and recording of all generative schemes
is possible, as well as synchronization with the EEG data
time series. An important characteristic of the instrument is
that vertical sonic textures are flexibly configurable with re-
spect to the degree of vertical and horizontal redundancy of
pitch- and time-space organization within the ongoing sonic
flow. Various degrees of complexity can be introduced via
presets prior to and during the transmission of audio data to
the test subject. For instance, microtonal controls are built
into the instrument, so that the researcher can regulate the
content of the sonic texture at any given point to create a
relative harmonicity shift of the composite sonic data stream.
In other words, there is maximum control over the degree of
complexity via overlapping, phase-modulated patterning of
melodic, harmonic, rhythmic, and texture-density data.

The instrument produces a vector V�t�, with seven com-
ponents, namely, pitch onset time �in milliseconds�, note fre-
quency �in hertz�, wave form type, amplitude, articulation,
preset number, and oscillator number. All these components
are filed and assumed to afford information about the signal.
We therefore adopt for the music composition the same pro-
cedure applied before for the EEG signal, building also in
this case a time series of MST topological changes. The re-
sulting SP for a sample record is plotted in Fig. 3.

We see from the figure that also in this case the distribu-
tion of topological changes produces a nonexponential SP,
namely a stretched exponential with parameters �=0.430
and �=0.600. As in Sec. IV, a further test is needed to prove
that the process is renewal. The results of the AE are plotted
in Fig. 4.

Also in this case the AE supports the renewal assumption
for the process. We conclude that music composition shares
the same properties as the EEG signal analyzed in Sec. IV.
This suggests that both human brain and music composition,
sharing the condition ��2, are complex systems that, in the
absence of the exponential truncation, would violate the er-
godic condition �51�.

TABLE I. This table shows a sample of the results of the analy-
sis on our group of individuals in the EO �left side of the table� and
EC �right side of the table� conditions. Results show a larger value
of � for the EC condition. In parentheses we report the standard
deviation. The symbol H indicates a healthy individual, BP the
individual with back pain, and D the subjects with mental
depression.

�

Id EO EC

H1 1.730 �0.010� 1.800 �0.010�
H2 1.740 �0.012� 1.770 �0.013�
BP 1.595 �0.005� 1.746 �0.018�
D1 1.748 �0.013� 1.787 �0.014�
D2 1.960 �0.023� 1.974 �0.024�

TABLE II. This table shows a sample of the results of the analy-
sis of Ref. �45� on healthy individuals in the EO �left side of the
table� and EC �right side of the table� conditions. The parameter �
has been obtained according to Eq. �14�. Results show a larger
value of � for the EC condition.

�

EO EC

1.261 1.888

1.242 1.931

1.294 1.898

1.278 1.877
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VI. SHORT REVIEW OF THE CM EFFECT

The authors of Refs. �23,52� have developed a linear re-
sponse theory that applies to non-Poisson renewal systems.
The form of this linear response theory is given by

��t� � ��S�t�	 = ��
0

t

dt���t,t���P�t�� , �15�

where �S�t� denotes the signal produced by the system of
interest, ��t , t�� is the linear response function, and �P�t� is
the external perturbation. In the case of the human brain the
signal �S�t� is a global property emerging from the synchro-
nization of different brain areas, roughly corresponding to
the superposition of the signals detected by the electrodes
fixed on the patient’s scalp. In the absence of perturbation
this global signal is characterized by the non-Poisson re-
newal events revealed by the method described in Sec. IV. To
transform these data into �S�t�, we assign alternate signs to
the quiescent time regions between two consecutive events.
The complexity of this signal is denoted by means of the
power index �S�2, emerging from the analysis of Sec. IV.

If the perturbation function �p�t� is harmonic the system
does not respond �23�. This is a clear sign of complexity,
insofar as a non-Poisson renewal signal cannot be interpreted
as the superposition of infinitely many independent pro-
cesses. The individual constituents of a set of neurons re-
sponsible for any cognitive action are expected to be strictly
cooperating with all the others’ constituents. As a conse-
quence, a harmonic perturbation triggers a cascade of differ-
ent time scales, thereby violating the prescriptions of ordi-
nary stochastic resonance processes �23,53�. Thus, we are led
to make the conjecture that the transmission of information
from the perturbing signal to the human brain is determined
by the interaction between the renewal events of the perturb-
ing signal and the renewal events of the perturbed system. If
the perturbing signal does not have any renewal events, as in
the case of a harmonic perturbation, there is no response to a
weak perturbation.

More recently the authors of Refs. �20,21� have proved
that this conjecture is correct, and that in the case where �P�t�
is a signal derived from another non-Poisson renewal system
with index �P�2, the system responds, and the intensity of
the response is maximum when we use the matching condi-
tion �S=�P �20�. The authors of Refs. �20,21� have denoted
this effect with the name of complexity matching �CM�, and
they proved that when �P��S the perturbed system inherits
the perturbation power index. In Sec. V we have proved that
music composition is actually a complex signal with �P�2.
Thus, the existence of the CM effect leads us to conjecture
that the reason why the brain is sensitive to music lies on the
fact that both the brain and music are non-Poisson renewal
systems living in the nonergodic region.

VII. CONCLUDING REMARKS

The literature on complexity is wide, and there are many
different proposals to account for complex processes. All
these proposals share only one essential property, this being
the departure from the canonical exponential distribution of
ordinary statistical physics. The authors of Ref. �41� have
pointed out that this departure can be realized by means of
quite different physical processes, either nonhomogeneous
Poisson processes or homogeneous non-Poisson processes.
The different physical origin of these two processes is re-
vealed by the AE.

According to the authors of Refs. �54,55� there exists a
close connection between self-organized criticality �6�, su-
perstatistics �56�, and nonextensive thermodynamics �57�.
This analysis coincides with the critical view illustrated by
Jensen �58�. It is very attractive to conjecture that the brain
operates at or near a self-organized critical state �55,59�. This
corresponds to the recent observation �43,60� that neuron
synchronization is a sort of phase transition involving a close
cooperation among the elementary constituents of the neuron
set. However, in our opinion, the main limits of these inter-
esting theories is that they do not pay attention to the impor-
tant role of renewal events, whose objective existence is
made compelling by the results of the AE, in both the case of
blinking quantum dots �41� and of neuron synchronization
�43�.
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FIG. 3. The SP of MST topological changes obtained from the
music composition. The curve is fitted using a stretched exponential
of the form of Eq. �6�, with �=0.430 and �=0.600 �ta=100�.
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FIG. 4. The AE on the time series of Fig. 3. The aging effect is
compatible with the renewal assumption. �ta=100�.
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We think that, although these properties have been over-
looked by the majority of the researchers working in the field
of complexity, they deserve more attention, and we hope that
this paper may serve the important purpose of raising the
interest of the investigators in this direction.

If the importance of these non-Poisson renewal events is
not recognized, the results of the analysis of this paper on
both EEG data and music composition, which are based on a
solid method of statistical analysis �41�, are incomprehen-
sible. If, on the contrary, we accept the leading idea that
complexity rests on the close cooperation of elementary
components losing their own identity at the moment of the
onset of synchronization, then the fact that both music com-
position and the human brain are non-Poisson renewal pro-
cesses becomes a natural way of explaining why music ex-
erts its influence on the brain.

This conclusion is so important as to deserve further re-
marks. First of all, a more appropriate term to denote the
music composition analyzed in this paper would be complex
sound. In fact, the main purpose of the music composition
utilized in this work is to affect brain complexity rather than
generate emotional and/or aesthetic responses, per se. Thus,
to make the composition of these complex sounds more flex-
ible and more suitable to the purpose of realizing an efficient
transport of information from acoustic excitation to the hu-
man brain, thanks to the CM effect �20,21�, we have to focus
on the realization of a given �P more than on aesthetic pur-
poses. On the basis of the CM effect �20,21� the network of
EEG electrodes is expected to inherit the same �P as that of
the acoustic excitation if �P��S, where �S denotes the
brain complexity index. We plan to design a real experiment
based on recording EEG data from a subject listening to
music with an exponent �P. We plan also to observe whether
the exponent of the EEG changes if the listener hears songs
with different exponents. All of this requires much more
work, and the solution of technical as well as conceptual
problems. However, we are convinced that the results of this
paper are important enough as to trigger further research
work for the realization of this important experiment.
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APPENDIX

Let us address the problem of establishing the SP �SP�t�
corresponding to a set of sequences ��t� prepared at t=0. It is
evident that

�SP�t� = �
n=0

� �
0

t

dt��n�t����t − t��exp�− rn� . �A1�

To explain Eq. �A1�, let us notice that �SP�t� is the probabil-
ity that the physical generator does not produce any further
event, after the initial preparation event, until time t. In the
natural time scale the probability density of not producing an
event is exp�−rn�. To evaluate �SP�t�, we have to multiply
exp�−rn� by �n�t�� and by ��t− t��. This is because
exp�−rn� indicates that until time t the physical generator
acts n times, thereby making n drawings from the distribu-
tion density ��	�. Note that ��t� is also called subordinating
function �32�. This function is the probability distribution
density affording information on the time distance between
two consecutive actions of the physical generator, not neces-
sarily producing events. With no drawing �n=0�, we get
�SP�t�=��t�, where ��t� is the SP corresponding to ��t�,
namely, the probability that the physical generator does not
act until time t. With n drawings we fill a time interval of
length 	1+	2+ ¯ +	n= t�� t. The factor ��t− t�� ensures
that no drawing occurs in between t� and t. The function
�n�t�� denotes the probability that n drawings from the dis-
tribution ��	� occurred, the last of which occurred exactly at
time t�. Due to the renewal nature of this process we have

�n�t� = �n−1�t� � �1�t� , �A2�

where � indicates time convolution and �1�t�=��t�.
The Laplace transform of �SP�t�, �̂SP�u�, is expressed as

a function of the Laplace transform of ��t�, �̂�u�, as follows:

�̂SP�u� =
1

�1 − �̂�u�exp�− r��

1

u
�1 − �̂�u�� . �A3�

To obtain the previous expression, still no hypothesis on the
form of ��	� has been done. If ��	� is an exponential, the
subordination exerts no physical effect on the SP, as its form
remains exponential. Let us see the case of nonexponential
subordination function. With straightforward algebra, and as-
suming r
1, Eq. �A3� becomes

�̂SP�u� =
1

u + r�̂�u�
, �̂�u� =

u�̂�u�

1 − �̂�u�
, �A4�

that is, the Laplace transform of

d

dt
�SP�t� = − r�

0

t

�SP�t − t����t��dt�, �A5�

and ��t�� is a memory kernel. Note that the assumption r

1 is not necessary to generate the time convoluted struc-
ture of Eq. �A5�. It is essentially required to make the natural
time n compatible with a continuous time representation,
thereby yielding for the survival probability in the natural
time scale the exponential form exp�−rn�. An even greater
consequence of r
1 is that, as we shall see hereby, this
condition makes very extended the stretched exponential
regime.
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In the case where the memory kernel ��t� is a delta of
Dirac, Eq. �A5� makes �SP�t� become an ordinary exponen-
tial. To generate a stretched exponential we must make a
proper choice of the memory kernel ��t�, and consequently,
of the subordination function. Let us assign to the memory
kernel in the Laplace space the following form:

�̂�u� = ��u + 
�2−�, � � �
�2 − ��T�−1�−1, �A6�

and let us assume the parameter � to be smaller than 2. With
this choice the SP becomes, in the Laplace domain,

�̂SP�u� =
1

u + ���u + 
�1−� , �A7�

with

� � � − 1, � � ��r�1/�. �A8�

If 
=0, we recognize in Eq. �A7� the well known Laplace
transform of a ML function of order � �see Eq. �3��. For �
=1, the ML function becomes an exponential.

Note that the parameter 
 has the important role, as in
Ref. �32�, of taking into account that we are working with
systems of finite, rather than infinite size. Consequently, we
must assign to 
 a finite value. Thus, let us assume that 

�0 and that 

�
1. Note that �
1 is generated by r

1. The condition 
�� is made necessary by the request
that the truncation of the fat tail of the subordinating function
leaves some sign of the system complexity. However, this
condition implies a departure from the pure ML relaxation
function, and the form of �SP on the time scale at which we
observe the histogram and SP. In the short-time regime �

u
1 it is impossible to neglect the first term in the de-
nominator of Eq. �A7�, and therefore, considering that 


u,

�̂SP�u� =
1

u + ��u1−� , �A9�

which is the Laplace transform of a stretched exponential.
On the contrary, if the condition 

u
� applies, the first
term in the denominator of Eq. �A7� can be neglected, and
the expression for the SP reads

�̂SP�u� =
1

��u1−� , �A10�

which, thanks to the Tauberian theorem, is the Laplace trans-
form of an inverse power law SP. In this condition, the fat

ML function tail becomes visible. If 
��, namely, 
 is
moderately smaller than �, Eq. �A7� shows that the inverse
power law never appears.

Let us now find analytically the form of the subordination
function ��t�. If we adopt the expression for the memory
kernel of Eq. �A6�, we obtain

�̂�u� =
�̂�u�

u + �̂�u�
=

1

1 +
u

�̂�u�

=
1

1 +
u

��u + 
�2−�

.

�A11�

Again, two regimes clearly appear depending on the param-
eters involved in Eq. �A11�: if 

u
1, then Eq. �A11�
becomes

�̂�u� � 1 −
1

�
u�−1, �A12�

that is, the Laplace transform of an inverse power law distri-
bution density. If we explore the regime u�
, Eq. �A11�
reads

�̂�u� �
1

1 +
u

�
2−�

, �A13�

that is, the Laplace transform of an exponential distribution
density, implying that the subordination function ��t� is an
inverse power law, truncated exponentially in the long time
limit.

In conclusion, in the case of systems of finite size the fat
tail of the subordination function is truncated. In the case
where r is not very small, and consequently, � is only mod-
erately small, the stretched exponential regime is not very
extended and the adoption of a truncated subordination func-
tion generates a �SP�t�, with a distinct inverse power law
tail. If r
1, and consequently, the stretched exponential re-
gime is very extended, a truncated subordination function
may have the effect of canceling the inverse power law tail
of the SP, and the stretched exponential remains the only sign
of complexity. However, the subordination function has an
inverse power law nature, and its power index � is derived
from � through Eq. �A8�, thereby yielding Eq. �4�.
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