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Abstract—The classification of protein structures is essential
for their function determination in bioinformatics. At present, a
reasonably high rate of prediction accuracy has been achieved
in classifying proteins into four classes in the SCOP database
according to their primary amino acid sequences. However, for
further classification into fine-grained folding categories, espe-
cially when the number of possible folding patterns as those
defined in the SCOP database is large, it is still quite a challenge.
In our previous work, we have proposed a two-level classification
strategy called hierarchical learning architecture (HLA) using
neural networks and two indirect coding features to differentiate
proteins according to their classes and folding patterns, which
achieved an accuracy rate of 65.5%. In this paper, we use a
combinatorial fusion technique to facilitate feature selection
and combination for improving predictive accuracy in protein
structure classification. When applying various criteria in com-
binatorial fusion to the protein fold prediction approach using
neural networks with HLA and the radial basis function network
(RBFN), the resulting classification has an overall prediction
accuracy rate of 87% for four classes and 69.6% for 27 folding
categories. These rates are significantly higher than the accuracy
rate of 56.5% previously obtained by Ding and Dubchak. Our
results demonstrate that data fusion is a viable method for feature
selection and combination in the prediction and classification of
protein structure.

Index Terms—Combinatorial fusion analysis (CFA), data fu-
sion, diversity rank/score graph, hierarchical learning architecture
(HLA), neural network (NN), protein structure prediction, radical
basis function network (RBFN), rank/score functions.
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I. INTRODUCTION

HIGH-TECHNOLOGY large-scale sequencing projects
have produced a massive number of proteins with puta-

tive amino acid sequences but much less is known in terms of
their 3-D structure. Several popular structure databases, such
as the Structural Classification of Proteins (SCOP) [1] and the
Class, Architecture, Topology, and Homologous superfamily
(CATH) [2], contribute only no more than 32 000 entries in
the Protein Data Bank (PDB) (SCOP release version 1.65 [3]:
20619 PDB entries, PDB: 31 217 entries on 7 June 2005).
This number constitutes only about 20% of collections in the
Swiss-Port (Swiss-Port release version 47.2: 184 304 entries
on 7 June 2005). Physically, x-ray diffraction or NMR is used
to determine the 3-D structure for a protein. However, each
has its limitation [4]. As such, extracting structural informa-
tion from the sequence databases becomes an important and
complementary alternative, especially for swiftly determining
protein functions or discovering new compounds for medical
or therapeutic purposes.

The classification of protein structures has, more recently,
been facilitated with some computer-aided algorithms. Previous
research [4], [5] have shown that an accuracy rate of 70%–80%
has been achieved to classify most of proteins into four classes
according to their amino acid sequence information (i.e., all-
alpha , all-beta , alpha/beta and alpha beta

) [6]. In summary, these four classes contain 82.5% folding
patterns, 84.7% superfamilies and 88.1% families in the SCOP
database (SCOP release version 1.65 [3]). However, less optimal
results are obtained if a more complicated category is used such
as the one with protein folding patterns in [7].

In [7], Ding and Dubchak proposed a taxonmetric approach
for protein folding classification (into 27 folding patterns)
beyond four simple classes with a neural network (NN) and
support vector machine (SVM) [8]. Their approach attempts
to predict the 3-D structure of a protein from its primary
amino acid sequence under the assumption that only limited
folding patterns are formed in most of these four protein
classes and can be used as template. They predicted protein
folds according to six single-parameter features C, S, H, P, V,
and Z (see Section II-B for details) first, then a combinatorial
multiple-parameter features were formed and checked for their
prediction accuracy in protein folding classification. They then
demonstrated that one multiple-parameter feature CSHP had
the highest overall prediction accuracy rate at 56.5% by SVM.

In Huang et al. [9], extra features were defined. We pro-
posed two additional indirect coding features B and SB (see Sec-
tions II-B and II-C for detail) to correlate neighboring di-peptide
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pairs with protein structure classification. In addition to NN
and SVM, we also constructed a new computational architec-
ture called hierarchical learning architecture (HLA). In HLA,
which was the first two-level classification strategy, a protein
is classified into one of four classes at first, and then further
classified into a folding structure (into one of 27 folding pat-
terns). We combined the six single-parameter features proposed
by Ding and Dubchak [7] and the outcomes of our two indi-
rect coding features to form two new multiple-parameter fea-
tures CSHPVZ B and CSHPVZ B SB. With the latter
features, Huang et al. [9] improved the prediction accuracy rate
by 9%, compared with the result from Ding and Dubchak [7].

In this paper, we apply the technique of data fusion [10]–[14],
in particular the combinatorial fusion analysis described in Hsu
et al. [13], to perform better protein structure classification and
better feature selection and combination. Using data fusion, re-
sults from various features are combined to obtain predictions
with higher accuracy rate. In addition, the notion of diversity
rank/score function is used to select the most suitable features
for combination. We start with eight features, six from Ding and
Dubchak (C, CS, CSH, CSHP, CSHPV, and CSHPVZ) [7] and
two from our previous work (CSHPVZ B and CSHPVZ
B SB) [9] to assign protein class and folding pattern. Then,
some explicit rules from data fusion in information retrieval
(IR) and virtual screening (VS) (see [10]–[14]) are used to-
gether with a special diversity rank/score graph to choose the
best discriminating features for further combination. It has been
demonstrated in IR and VS that using a combination of dis-
tinctive features may result in higher prediction accuracy rate
than using single features. The proposed rules for proper feature
selection are to reduce the complexity at the beginning. Then,
we systematically choose the best discriminating features ac-
cording to the diversity (see Section II-F for detail) of these fea-
tures, which is represented in a diversity rank/score graph. Our
experimental results achieve an overall prediction accuracy rate
at 87% for predicting protein classes and 69.6% for predicting
protein folding patterns which are higher than the previous work
at 83.6% and 65.5% by Huang et al. [9], respectively.

Section II of this paper introduces the protein data sets, the
features, and the computational architecture used in this paper.
Section II also describes the method of data fusion, the rules,
and the diversity rank/score graph used to enhance the process
of feature selection and combination. Experimental results are
included in Section III, while discussions and conclusion are
given in Section IV.

II. MATERIALS AND METHODS

A. Protein Data Sets

We use the data sets from Ding and Dubchak [7] which were
originated from the SCOP database for training and testing.
Training data set is selected from the database built for the pre-
diction of 128 folding patterns in the SCOP database [15]. It
is ensured that any pair of two proteins in the training set is
less than 35% identical in any aligned subsequence longer than
80 residues. The independent testing set is selected from the
PDB-40D set [1], [6], [15], [16]. Moreover, all proteins in the
testing set are less than 40% identical to each other. No protein

in the testing set is more than 35% identical to any protein in the
training set. The total number of proteins is 698 with 313 and
385 for training and testing, respectively. These proteins will
be divided into four classes and 27 folding patterns all together
according to their structures. Table I shows the number of pro-
teins in different classes and folding patterns used for training
and testing in this paper.

B. Features

Features extraction from the data is critical for meaningful re-
sults before these features can be subjected to machine learning
techniques. Different features may result in different classifi-
cations. Two major approaches including direct and indirect
coding have been used to extract features from the data. The di-
rect one contains a vector for each peptide residue in the chain
that characterizes the position, sequence length and so on. In in-
direct coding, the vector is assigned for each sequence which
is position and length independent [9]. Ding and Dubchak [7]
proposed six direct coding features for protein structure classi-
fication. These single-parameter features are global descriptions
of a peptide chain representing the proteins. These features are
based on physical, chemical and structural properties of the con-
stituent amino acids.

The proposed six single-parameter features are amino acid
composition (C), predicted secondary structure (S), hydropho-
bicity (H), normalized van der Waals volume (V), polarity (P),
and polarizability (Z). The proposed five multiple-parameter
features, CS, CSH, CSHP, CSHPV, and CSHPVZ were con-
structed to classify protein folding patterns. Ding and Dubchak
[7] finally determined one multiple-parameter feature CSHP
with the highest overall accuracy rate for protein structure pre-
diction with SVM. The above 11 single and multiple-parameter
features all emphasize more on the global properties and struc-
tures of amino acid sequences than on the local interactions
among neighboring peptides.

In Huang et al. [9], we used the N-gram concept while ex-
tracting features from the amino acid sequence of proteins. Two
other indirect coding features, generated from the bigram (B)
and the spaced-bigram coding (SB) scheme, respectively, were
proposed. These features reflect the local interactions among
neighboring peptides within the 3-D structure of a protein.
We combined the six single-parameter features proposed by
Ding and Dubchak [7] and the outcomes of our two indirect
coding features to form two new multiple-parameter features
CSHPVZ B and CSHPVZ B SB’. We showed that using
the feature CSHPVZ B SB together with NN outperformed
all single- or multiple-parameter features used by Ding and
Dubchak [7] in terms of prediction accuracy rate for protein
structure classification.

In this paper, we start with eight features, C, CS, CSH, CSHP,
CSHPV, CSHPVZ, CSHPVZ B, and CSHPVZ B SB
to assign protein classes or folding patterns. Then, we use the
method of data fusion for feature selection and combination in
order to improve classification accuracy.

C. The HLA Computational Architecture

The NNs have been commonly used in many machine
learning and data mining applications, such as input–output
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TABLE I
THE VARIETY IN PROTEIN STRUCTURES FOR TRAINING AND TESTING

mapping and bioinformatics [17], [18]. We use NN as a multi-
class classifier to build HLA for the purpose of protein structure
prediction. The multilayer perceptron (MLP) and the radial
basis function network (RBFN) are two popular NN models.
The RBFN is a three-layer network with Gaussian function that
is suitable to be a classifier [19] since the weights of RBFN
are measured and adjusted according to the distance of data.
The RBFN is constructed as a kind of hybrid NN network that
combines the self-organized-map (SOM) and the back-prop-
agation (BP) [9]. It was shown [9] that the overall prediction
accuracy rate for protein structure classification using RBFN is
better than that using MLP. Therefore, we adopted the RBFN
model in this paper where one hidden layer and nodes will
be generated automatically. The hidden layer nodes show the
coordinate of training sample clusters.

The HLA framework, proposed in Huang et al. [9] consists
of a two-level procedure. In the first level, a protein is classified
into one of four classes by a multiclass classifier (classifier 1 in
Fig. 1). Then, in the second level, it is further classified into one
of folding patterns by the corresponding multiclass classifier
( , , and is equal to 6, 9, 9 and 3 in classifier 1, 2, 3,
and 4 respectively in Fig. 1).

In Huang et al. [9], it has been shown that the HLA frame-
work is an effective learning structure which reduces the number

of classifiers, avoids the voting scheme, and directly indicates
the reliability or confidence of the result predicted. Our current
study incorporates data fusion in HLA for the testing data set, as
shown in Fig. 1. For the training data set, HLA is used without
data fusion. To predict which of four classes a protein belongs
to with HLA, we use eight individual features to assign class
to each protein in the testing data set at first. Then, we use the
technique of data fusion to select the best feature and to combine
results for the protein class discrimination. Finally, the protein
class is predicted with the combined feature. For protein folding
patterns associated with each protein class, the eight individual
features are used once more to assign protein folding patterns to
each protein in the class. Similarly, data fusion is applied again
for feature selection and combination in order to improve the
prediction of protein folding patterns.

D. Data Fusion and The Diversity Rank/Score Graph

The approach we take to properly select and combine features
in protein structure classification is analogous to those used in
information retrieval [10], [11], [14], [20], [21], pattern recog-
nition [22], molecular similarity searching and structure-based
screening [12], [23], and microarray gene expression analysis
[24]–[26]. In addition, we adopt some of the notations and ter-
minologies from [11]–[13]. Moreover, each feature is viewed as
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Fig. 1. The architecture of HLA using data fusion.

a scoring system containing a score function and a rank
function on the set of classes.

Our previous work in information retrieval, molecular
similarity searching, structure-based virtual screening and
microarray gene expression study have demonstrated the
following:

Remark 1: For a set of multiple scoring systems, each with
a score function and a rank function, we have: (a) the combi-
nation of multiple scoring systems would improve the predic-
tion accuracy only if: (1) each of the systems has a relatively
high performance, and (2) the individual systems are distinctive
(or diversified), and (b) rank combination performs better than
score combination under certain conditions.

Given a protein sequence and for each feature , let
be a function that assign a real number to the class (or folding
pattern) in the set of all classes (or folding patterns)

. We view the function as the score func-
tion from to (the set of real numbers) with respect to the
feature . When treating as an array of real numbers,
it would lead to a rank function after sorting the
array into descending order and assigning a rank to each of their
classes (folding patterns). The resulting rank function is
a function from to .

In order to properly compare and correctly combine score
functions from multiple features, the function values have
to be normalized. The normalization we used is the trans-
formation from : , to : ,

where , x in D and
in and in .

Suppose we have features (i.e., scoring functions).
There are combinatorially combinations for all
individual features with rank or score
functions. The total number of combinations to be consid-
ered for predicting protein class and protein folding pattern
are and respectively in the
HLA architecture. These numbers can become huge when the
number of features is large. Moreover, we have to evaluate
the predictive power of each combination across all proteins.
Because of this complexity, the current paper would start with
combining only two features which still retain fairly good
prediction power. Combination of more than two features will
be considered in our future work.

E. Methods of Combination and Feature Selection

Suppose features , , are given with score
function and rank function , there are several different
ways of combination. Among others, there are score combina-
tion, rank combination, voting, linear average combination
and weighted combination [10]–[12], [14], [20]–[27]. Voting
is computationally simple and better than simple linear combi-
nations when applied to the situation with large number of fea-
tures. However, a better alternative is to reduce the number of
features to a smaller number and then these features are com-
bined. In this paper, we reduce the set of features to those which
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Fig. 2. The diversity rank/score graph for each pair of features from {E,F,G,H} for classifying protein classes.

perform relatively well and then use the diversity rank/score
function to decide whether to combine by rank or by score. For
the features , rank functions , and score functions ,
we have the score function and of the rank combination
and score combination respectively defined as

and

As we did before, and are then sorted into as-
cending and descending order to obtain the rank function of
the rank combination and the score combination ,
respectively.

In this paper, we use the rules (a)(1), (a)(2), and (b) stated
in Remark 1 as our guiding principle to select features and to
decide on the method of combination. We started with eight
features and, in each case, use rule (a)(1) to reduce the number of
features to four. A diversity function between features

and is then computed using the concept of the rank/score
function defined by Hsu et al. [10], [11], [13].

F. The Rank/Score Function and The Diversity
Rank/Score Graph

Given a protein sequence and for each feature , we have
the score function and rank function . Both and
are functions from to [0,1] and respectively, where
the set of classes. As in other application domains [10]–[13], we
explore the scoring (and ranking) characteristics of feature by
calculating the rank/score function, : as follows:

We note that the set is different from the set which is the
set of classes (or fold patterns). The set is used as the index set
for the rank function value and is indeed the cardinality
of . The rank/score function so defined signifies the scoring
(or ranking) behavior of the feature and is independent of the
classes (or folding patterns) under consideration.

For protein in and the pair of fea-
tures and , the diversity score function is de-
fined as: , where is in

and is the number of classes (or folding pat-
terns). When there are features selected (in this paper,

), there are (in this paper, this number is
6) diversity score functions. If we let vary and fix the fea-
ture pair , then is the diversity score function

from to . Sorting
into descending order would lead to the diversity rank func-
tion . Consequently, the diversity rank/score func-
tion is defined as

where is in

We note that the set is different from the set which is
the protein set considered. The set is used as the index set
for the diversity rank function value and is indeed the
cardinality of . The diversity rank/score function
so defined exhibits the diversity trend of the feature pair
across the whole spectrum of input set of proteins and is inde-
pendent of the specific protein under study.

For two features and , the graph of the diversity
rank/score function is called the diversity rank/score
graph (or diversity graph in short). Our current study aims
to examine all the diversity rank/score graphs to
see which pair of features would give the highest diversity
measurement. Following rules (a)(2) and (b) in Remark 1, the
rank combination of these two features is then calculated to
give the final rank function and to choose the class (or folding
pattern).

III. RESULTS

The technique of combinatorial fusion (see [13]) is used for
protein structure classification on a testing data set with NN
using RBFN under the HLA architecture. Initially, we use eight
features, C (reworded as A), CS (as B), CSH (as C), CSHP (as
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(a)

(b)

Fig. 3. The diversity rank/score graph for each pair of features in {B,F,G,H} for classifying protein folding patterns in class1; in {G,H} for classifying protein
folding patterns in class2; in {B,D,G,H} for classifying protein folding patterns in class3; and in {G,H} for classifying protein folding patterns in class4. (a) Class
1. (b) Class 2.

D), CSHPV (as E), CSHPVZ (as F), CSHPVZ B (as G), and
CSHPVZ B SB (as H), to assign protein classes for all pro-
teins tested. Following the rule (a)(1) in Section II-D, we select
four features E, F, G, and H, for further fusion (or combina-
tion) because of their higher accuracy rate than others as demon-
strated in [9]. With the help of rule (a)(1), we can reduce
combinations to combinations. Following the rules (a)(2)
and (b) in Section II-D, we shall use the rank combination of the
features to predict the protein class.

As stated in Section II-F, the diversity of any two of features
E, F, G, and H can be calculated for all proteins tested and fea-
tures E and H are found to have the highest diversity, as shown
in Fig. 2, among all six feature combinations. In con-
junction with (b) in Remark 1, we use the rank combination
of features E and H to predict protein classes for all proteins
tested. After the protein classes for all proteins tested have been
predicted and categorized, the prediction of protein folding pat-
terns follows in the HLA architecture. We use the same rules
and a diversity graph to choose the best combined two features
in each class for the purpose. Accordingly, we choose a rank
combination of features BG, GH, DH, and GH to predict protein

folding patterns in classes 1, 2, 3, and 4, respectively. The diver-
sity graph to pick the pair of features (B,G), (G,H), (D,H) and
(G,H) for combination and to predict folding patterns in class
1, 2, 3, and 4 are depicted in Fig. 3(a), (b), (c), and (d), respec-
tively. In Fig. 3(b) and (d), only the pair of features (G, H) is
selected since its accuracy rate is more higher than others. It
implies that the features G and H are more suitable than others
for classifying proteins, which belong to class 2 or class 4, into
folding patterns.

We use the standard percentage accuracy rate [7], [9], [28]
to evaluate our work. , where is the number
of testing proteins in the th class or folding pattern and is the
number of proteins being correctly predicted in the th class or
folding pattern. The overall prediction accuracy rate is given
by , where , where is the total
number of proteins tested, and is the number of classes or
folding patterns. We compare the overall prediction accuracy
rates for protein classes in our previous [9] and current work.
These are shown in Table II. The current overall prediction ac-
curacy rate is 87%, 3.4% higher than that of our previous work.
Table III shows that for prediction of folding pattern, our current
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(c)

(d)

Fig. 3. (Continued.) The diversity rank/score graph for each pair of features in {B,F,G,H} for classifying protein folding patterns in class1; in {G,H} for classifying
protein folding patterns in class2; in {B,D,G,H} for classifying protein folding patterns in class3; and in {G,H} for classifying protein folding patterns in class4.
(c) Class 3. (d) Class 4.

TABLE II
THE COMPARISONS OF OVERALL PREDICTION ACCURACY RATES Q FOR PROTEIN CLASSES

work has an overall prediction accuracy rate of 69.6%, which is
13.1% higher than that of Ding and Dubchak [7], 4.1% higher
than that of our previous work.

We summarize the comparisons of prediction accuracy rates
of our previous work [9] and our current work in Fig. 4. Our

results give prediction accuracy rates ( 80%) in 3 classes, espe-
cially in class with accuracy rate reaches 97.2%, all higher
than what we achieved previously, shown in Fig. 4(a). For protein
folding patterns prediction, the current work gives prediction ac-
curacy rates ( 80%) in 9 folding patterns, more than what in our
previous work, 7, as shown in Fig. 4(b). Also, the current work

outperforms our previous work in ten folding patterns, especially
( 30% improvement) in folding patterns: (4-helical up-and-
down bundle), (viral coat and capsid proteins), (SH3-like
barrel), (flavodoxin-like) and (P-loop containing
nucleotide). Our previous work has slightly better results only in
5 folding patterns [especially in fold (globin-like)]. Overall,
there is an improvement with our current method using the HLA
framework and data fusion techniques. In summary, the current
method has achieved an accuracy rate of 69.6% for folding pat-
tern classification, which is a significant improvement over the
result of Ding and Dubchak ([7], 2001) of 56.5%.
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TABLE III
THE COMPARISONS OF OVERALL PREDICTION ACCURACY RATES Q FOR PROTEIN FOLDING PATTERNS

Fig. 4. The comparisons of prediction accuracy ratesQ of our previous work (Huang et al. [9]) (in white) and the current work (in black) (a) for 4 protein classes
and (b) for 27 protein folding patterns.

IV. CONCLUSION AND FUTURE WORK

Methods of combining multiple classification systems or
multiple scoring systems have been used in a variety of ap-
plications domains including information retrieval, pattern
recognition, microarray gene expression analysis, and molec-
ular similarity searching [10], [14], [20]–[27]. More recently,
criteria to select the classification systems or scoring systems
for combination and to decide ways to combine these systems
have been discussed and studied [11]–[14], [27]. It has been

demonstrated in Combinatorial Fusion Analysis (see [13] and
its references) that (a) the combination of multiple systems (or
features) would improve the performance only if (1) each of the
individual systems (features or functions) has a relatively high
performance, and (2) each individual systems are distinctive
(or different), and (b) combination by rank outperform combi-
nation by score under certain conditions.

In this paper, we have applied the concept of Combinatorial
Fusion (see Remark 1) to improve accuracy in protein struc-
ture prediction. In particular, we have successfully improved the
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overall predictive accuracy rate of 87% for the second struc-
ture (the four classes) and 69.8% for the folding patterns (the
27 folding categories). We improve previous results by Huang
et al. [9] (65.5% for folding structure) and Ding and Dubchak
[7] (56.5% for folding structure) by incorporating the method of
combinatorial fusion in their approach using NN with the RBFN
using the HLA.

One of the novelties of our current work is the notion of a di-
versity rank/score function between a pair of features

and (Figs. 2 and 3). This function characterizes the diver-
sity of ranking (or scoring) behavior between features and
across the whole spectrum of all protein sequences under con-
sideration. This parameter is then used to select appropriate and
diverse features for combination. The current work is the first of
a series of on-going projects towards the protein structure pre-
diction problem using HLA, NN-RBFN, and combination fu-
sion analysis. Following the current work, we have observed the
following.

The method of combinatorial fusion we used in this paper is
computational efficient, able to adapt to different situations and
approaches, and scalable to a large number of classes (or folding
patterns) and a large number of proteins.

In this paper, we considered only combination of a pair of
two features in order to improve the performance. It may be
possible to achieve better results with combination of more than
two features. However, it is indicated in criteria (a)(1) and (2)
that each of these three or more features would have relatively
high performance and individual features should be different.
As such, the diversity between three or more features should be
defined. This will be studied in a latter work.

Although it has been shown (e.g., [31]) that combining mul-
tiple predictors or servers improves fold recognition, we note
here that combining all the features or multiple scoring sys-
tems together may not guarantee optimal performance (see [12]
and [13]).

We used rank combination due to criterion (b) which was
demonstrated to be better under certain conditions analytically
and by simulation in Hsu and Taksa [11]. We observed that
score combination does have its merit when the two features
combined are similar and homogeneous with respect to their
scoring functions, rank function, or rank/score function. We de-
cided to use the rank combination because the pair of features
to be combined satisfies criteria (a)(1) and (a)(2) and these two
items are precisely the conditions stipulated in [11], [12], [14],
[25], and [26].

In our feature selection process, we selected top four per-
formers out of the original eight features. The ideal case is to
select those features which perform much better than the others.
That means there is a big difference on the performance between
those selected and those not selected.

Our current work represents the first of a series of investiga-
tions on the protein structure prediction problem using HLA and
combinatorial fusion. It has generated several issues and topics
worthy of further study. We summarize some of them here.

Our diversity rank/score function A,B for the feature pair
A,B with respect to protein is defined using the variation

of the rank/score functions between A and B. As indicated in
[11], [13], and [14], variation of the rank functions or the score

function between A and B can be used also to define the diversity
score function. We will explore these two other options in a latter
work.

The effectiveness of our fusion of multiple features is limited
by the set of eight original chosen features. It might be worth-
while to study the content of original set of features. For ex-
ample, we would like to explore the diversity among the original
features such as local versus global, physical versus chemical,
and bigram versus trigram scheme.

Related to observation (D) above, one might ask if it is better
to expand the scope and the number of features. In this paper,
we started with eight features and four are selected using the
CFA criteria. In a separate paper [30], eleven features are col-
lected and three features are selected according to the criteria
(a)(1) and (a)(2) in Remark 1. We have obtained a slightly better
overall accuracy rate of 87.8% for four classes and 70.9% for 27
folding categories.

Our results improve previous results by Huang et al. [9] and
Ding and Dubchak [7] which used NN with radial basis function
in an HLA. Work has been performed to improve those results
which used other machine learning technique such as kernel
method, SVM and genetic algorithm. For example, Yu et al.
[29] has obtained good accuracy rate using SVM with -pep-
tide coding schemes and jury voting. Ongoing work has been
performed to improve these results using our combinatorial fu-
sion approach. These results will be reported in the future.

Due to its importance, protein structure prediction and clas-
sification has been studied extensively in the past decade. In
particular, protein structure classification using databases of
proteins with known structures have been studied (See [32] and
[33] and their references). As stated before, our work does not
use or rely on any databases of known structures
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