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ON WEAK RESIDUAL ERROR ESTIMATION*

JINN-LIANG LIU

Abstract, A general framework for weak residual error estimators applying to various types of boundary value
problems in connection with finite element and finite volume approximations is developed. Basic ideas commonly
shared by various applications in error estimation and adaptive computation are presented and illustrated. Some
numerical results are given to show the effectiveness and efficiency of the estimators.
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1. Introduction. Adaptivity is a trend in contemporary computational science. The re-
markable advances in adaptive methodology for finite element applications since the pioneer
work by Babuka and Rheinboldt [7] have had a profound impact on practical, large-scale
computations.

There are four types of adaptivity which can be identified by the letters r (relocating
nodes), h (mesh size h refinement), p (spectral order p increment), and hp (both h refinement
and p increment). All adaptive methods require more or less a posteriori information about the
computed solution for optimizing overall computational efforts in the sense that the methods
deliver a given level of accuracy with a minimum of degrees of freedom. In essence, the a
posteriori error estimation can be regarded as the heart of the adaptive mechanism. In the
development of a posteriori error estimators, three main approaches may be distinguished
[22], [29], namely, those based on residual, postprocessing, or interpolation techniques. Our
estimators here follow the first approach.

In the first approach it has become practically standard to specify the interior residuals
in terms of the governing differential equation and to measure the boundary residuals by the
jumps in the normal derivatives on the interfaces between elements; see [3], [4], [6], [7],
[8], 11 ], 19]. The various error estimators then differ essentially in the way the jumps are
handled. In contrast, we consider here error equations (or inequalities) in which the right
side is a residual of the computed solution in weak form. It appears to be natural to call the
resulting error estimates weak residual estimators. A special case,of the estimators seems to
be first proposed by Adjerid and Flaherty in 1]. The weak residual error estimators tend to
be more widely applicable since, in many applications, the governing equation may not be
available in differential form. In recent years, there has been growing evidence, in theory as
well as in application, showing the promise of the use of weak residual estimators; see [1],
[2], [9], [21], [25].

This paper attempts to give an overall view of the weak residual error estimation in con-
nection with the adaptive process, different numerical methods, and various types ofboundary
value problems. The numerical schemes of particular interest belong to two families of widely
used methodsnthe finite element method (FEM) and the finite volume method (FVM). All
estimators presented here can be extracted to two basic components which are weak residuals
and complementary finite element (FE) spaces. Two types of complementary spaces can be
classified. One is the conforming type which together with the original FE space preserves
the continuity across adjacent FEs. This in turn corresponds to an elementwise error esti-
mation using error residuals only interior to elements. The estimators used in [1], [2], [9],
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1250 JINN-LIANG LIU

[25] are of this type. The other is the nonconforming type which instead uses both interior
and boundary residuals for each element. It is shown in [21 that the nonconforming type is
independent of the FE order used for the computed solution, whereas the conforming type
considers more closely the effect of the order of the FEs 1 ], [8]. While this study is not com-
prehensive, we do illustrate the two components in error estimation and the adaptive process
by four model problems; namely, we consider elliptic boundary value problems, parametrized
nonlinear equations, symmetric hyperbolic equations, and variational inequalities.

In 2, the error estimators are derived in a general framework by means of abstract varia-
tional formulations. Definitions, notation, and basic ideas are then introduced along the course
ofthe derivation. Although the estimators are not restricted to any particular type of adaptivity,
we also discuss briefly a standard h-refinement strategy in two space dimensions. In 3, the
four model problems and the two numerical methods are specifically used to demonstrate how
they can be cast into the general framework. Finally, in 4, numerical results are given with
respect to each subsection in 3 to show the effectiveness and efficiency of the estimators.

2. Background and basic ideas. The aim of this paper is to offer, to the extent possible,
a global view of the use of weak residual error estimators. It is instructive to summarize some
fundamental features which constitute various adaptive methods for various model problems
considered herein.

2.1. Abstract variational problems. Let f2 be a bounded region in the plane with a
Lipschitz boundary Of2 Of2z U 0"2N and Hk (f2) and H (1-’), I" C 0, be the usual Sobolev
spaces equipped with the norms II" Ilk and]. Ir, r, respectively. Let H(f2) C Lz(f2) be a
Sobolev space equipped with the norm ]1. ]]. For simplicity, we assume that all functions
in H() satisfy a homogeneous Dirichlet boundary condition on O f2z, if any. Let K be
a closed convex subset of H(f2). Let F H() --+ R be a continuous linear form. Let
B(., .) H(S2) x H(S2) --+ R be a bilinear form such that there exist two positive constants
/3, 6 and a nonnegative constant o for which

(2.1)

(2.2)
B(u, v) < fl]]ul] ]]vll, u, v E H(f2),

(u, u) >_ allull2- llullg, u e

We shall consider a class of very general problems in an abstract variational setting: Find
u E K such that

(2.3) B(u, v) F(v) > B(u,u) F(u) ’v K.

Depending on the definition of the closed convex set K and the properties of the bilinear
form B, the abstract variational problem (2.3) can give various equivalent formulations of
problems which will be exemplified in 3. Discussions of well-posedness of the problem
(2.3), in some selective settings, can be found, e.g., in [13], [18].

2.2. FE spaces. To discretize (2.3), we introduce S a finite-dimensional subspace of
H() characterized by a mesh size h and associated with a regular, but not necessarily quasi-
uniform, triangulation 7- on S2. To approximate K, we construct a closed convex subset Ks
of S. The approximate problem of (2.3) is then to find Us 6 Ks such that

(2.4) B(us,

Our objective is to present various error formulations on which various a posteriori error
estimators assessing the exact error between the solutions u and us of (2.3) and (2.4), respec-
tively, are based. All estimators can be extracted to two basic components--weak residuals
and complementary FE spaces. We first discuss the complementary spaces.
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ON WEAK RESIDUAL ERROR ESTIMATION 1251

For the sake ofefficiency, the estimators will be based on local computations. We introduce
some local function spaces that we will require. Associated with T, let S be another larger
FE subspace of H(f2), i.e., S C . Let H(r) denote the restriction of H() to r 6 7-
and HT-(S2) l-IeT- H(r) denote the space of piecewise H(f2) functions. For instance, if
H (S2) H (f2), then HT- (f2) will be the space ofpiecewise H functions. For v, w in HT- (f2),
we define the broken L2 inner product and norm by (v, w) YeT-(v, w), Ilvll (v, v),
analogously, the broken H(f2) norm, Ilvl[ 2 Yv7 Ilvll(. Note that H(f2) C HT-(f2) C

L2() and the above definitions reduce to the usual ones whenever v, w are in H(f2). Let
be split into two subspaces S S, S C) S {0}. Let S denote the restriction of S to
r 6 T and let Sr 1--It,7- s. We shall consider in particular the splitting

(2.5) 7- S S, S fq S- {0}, Sr 7 0.

The spaces S and $7- are spaces of piecewise polynomials locally defined in each element
r in 7-. Note the inclusions C 7 C HT-(f2) and S C Sr. The error estimators given
in 3 will be calculated in the complementary space S-. We assume that the bilinear form
B can define an inner product B(., .) on 7 and with it the energy norm Iwl 2 B(w, w).
All error estimators below are measured in this norm, although, in theory, they are not strictly
restricted to this norm.

2.3. Abstract variational error formulation. Let e u Us denote the exact error of
the approximate solution us. We now derive a general formulation for the exact error in terms
of the approximate solution. Substituting u e + us into problem (2.3), we have

B(e, v) F(v) + B(us, v)

> B(e, e) + B(e, us) + B(us, e) + B(us, Us) F(e) F(us) Vv K.

Note that the bilinear form B can be nonsymmetric. By rearranging terms in the above
inequality, we can rewrite this as

B(e, v Us) [F(v
> B(e, e) [F(e) B(us, e)] Vv6 K.

The left-hand side of the inequality clearly suggests that we can define the following new
closed convex subset by translating the original convex set K with respect to the computed
solution us"

K’-- K- Us C H(f2).

Moreover, by virtue of the boundedness of the bilinear form B and the linear functional F on
H(f2), the Riesz representation theorem shows that there exists a unique linear functional G
on H(f2) defined by

(2.6) G(w) F(w) B(us, w) ’w H(S2).

We call G a weak residual in contrast to the usual formulation in which the residual is in terms
of the governing differential equation used by many authors [8], [11], [19].

The error estimation is then based on the following new variational (error) problem:
Determine e 6 K such that

(2.7) B(e, w) G(w) > B(e, e) G(e)

The reason we use the weak residual form G instead of the governing equation is twofold.
First, since us is itself an approximate solution, its second derivative, for second-order partial
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1252 JINN-LIANG LIU

5 8 4 13

0 7 16 18 11 2

FIG. 2.1. 1-irregular mesh refinement.

differential equations (PDEs), in the sense of distribution will further incur error. Second,
for many applications, the governing differential equation may not be available, i.e., only
the integral form is available. For such cases, the formulation of error problems like (2.7) is
certainly more general.

2.4. A mesh refinement strategy. There are many refinement strategies proposed in
the literature. The error estimators presented here are not restricted to any particular adaptive
refinement. In fact, it has been shown in [21 that there is no order restriction for the FE spaces
used in the approximate solution or in the error estimation; that is, the error estimators can be
used in connection with any one of the h-, p-, or hp-versions of the FEM. In the numerical
experiments, to test our error estimators (see 4), we use in particular the so-called 1-irregular
mesh refinement strategy first proposed in [7] and later detailed in 14]. Since the refinement
scheme has been extended to include adaptive finite volume computations, we briefly discuss
its basic features.

Recall that a node is called regular if it constitutes a vertex for each of the neighboring
elements; otherwise it is irregular. Figure 2.1 shows a particular 1-irregular mesh where
irregular nodes marked by are all of index-1 irregularity, that is, the maximum number of
irregular nodes on an element side is one. In implementation, no degrees of freedom will be
associated with these irregular nodes. Hence, supports of the shape functions defining a basis
for an FE space change adaptively with mesh refinements; for example, the shaded subdomains
f26, f217, and f2el are the supports of the shape functions corresponding, respectively, to the
regular nodes 6, 17, and 21 in Fig. 2.1. The FE spaces so constructed preserve the conformality
required by the standard FE approximation provided that some special element constraint
methods are used to invoke continuity across interelement boundaries of elements of different
size and with shape functions of differing polynomial degree [14].

For finite volume approximation, control volumes have to adapt accordingly to their
dual elements. Let/ denote the dual mesh for 7-. Note that the FVM requires a control
volume for each regular node where degrees of freedom are defined. Thus, in particular, 23
control volumes in the dual mesh of Fig. 2.1 are constructed and shown, by dotted lines, in
Fig. 2.2. Notice that the pattern of the boundaries of control volumes appearing in elements
may differ element by element. This plays an essential role in the implementation since most
computations, approximations, as well as error estimations, are to be performed elementwise
before the assembling process.

3. Model problems and numerical methods. We now apply the general formulations
and the basic ideas discussed above to four model problems in connection with FEM and
FVM.
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ON WEAK RESIDUAL ERROR ESTIMATION 1253

5 8 4 13 22 3
0

o .21
20i

9. o i o i o : .12
6 14 10

o o o
15 19 17:

+, I,

0 7 16 18 11 2

FIG. 2.2. Adaptive control volumes.

Since the a posteriori error estimation is the heart of a complete selfadaptive mechanism,
we stress particularly various error equations or inequalities on which the error estimators are
based. Some rigorous theories of the estimators can be found in [2], [21 ].

We first note that if the closed convex set K in (2.3) is itself the Sobolev space H(f2),
then the inequality (2.3) reduces to a variational equation. In 3.1-3.3, 3.5 we will address
this equality form.

3.1. Elliptic boundary value problems. Consider the boundary value problem

Lu :-- -V. (aCx)VuCx)) + bCx)uCx) fCx) in

(3.1) Ou
u--0 on O’D, a(X)-’--g(x) on O"N.

The associated variational problem is to find u H(2) such that

(3.2) BCu, v) (f, v) + (g, V)Oau ’V’V H(f2),

where

H(fl) {u e HI() u 0 on OD},

B(u, v) "= f(aVuVv + buy)dx,

(f v)"= fa fv dx, {g, V}aau "= f gv ds.
"U

To begin with and to avoid technical details, we always assume the unique solvability of
the variational problems considered here and below. Note that we do not assume the coefficient
function b(x) in (3.1) to be strictly positive in S2, hence the error estimators to be given apply
to indefinite problems as well [21 ].

Corresponding to (2.4) and (2.7), the approximation and error problems for (3.2) are to
determine Us 6 S and e 6 H (f2) such that

(3.3) B(Us, V) Cf, v) + (g, v}OaN ’V’V e S

and

(3.4) BCe, v) -BCus, v) + (f, v) + (g, V}Oau YV HCf2),

D
ow

nl
oa

de
d 

04
/2

8/
14

 to
 1

40
.1

13
.3

8.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



1254 JINN-LIANG LIU

respectively, where the computed FE solution Us can only be assessed a posteriori, i.e., after
its availability.

Since the space H() is still infinite dimensional and the discretization of (3.4) in the
original FE space S only produces trivial estimated errors, (3.4) has to be solved in a larger
space S. However, this would cause the error calculation to be impractically expensive since
(3.4) will result in a larger system of equations than that of (3.3). Hence, the use of the
complementary subspaces appears to be natural. Nevertheless, if the subspace is chosen to
be Sc, the error calculation may involve a global solution to a system of equations. We are
therefore led to consider the complementary subspaces S- C HT-(S’2) and, consequently, to
solve the following reduced problem: Determine 6 S(ri), in each element "gi IT, such
that

(3.5) B(g, v) -B(u,, v) + (f, v) + (g, V)Oau YV Sr(ri).

Note that if S- C H(), a conforming subspace, the unique solvability of (3.5) can be
ensured as that of (3.3) and only the interior residual in each element will be used. On the
other hand, if S- C HT-(S2) but not in H(2), a nonconforming subspace, then (3.5) results
in a nonconforming solution scheme [13] and the estimation will include both interior and
boundary residuals for each element. With some moderate assumptions on the bilinear form
and the complementary spaces (sufficiently large), it is shown in [21 that the unique solvability
for such problems still holds.

As noted already, the error residuals can be expressed in either differential or weak
form. We briefly describe thedifferences between these two approaches. For more detailed
theoretical investigation we refer the reader to 11 ], [21 ].

Let E be the collection of curves which forms an edge of an element r in T. The set of
edges may be decomposed as the union of two disjoint sets E EB U EI, where EB is the set
of edges on O and E1 is the set of edges in the interior of . For each edge e in E, we define
a normal direction n ne. More specifically, n is the usual outward normal when e 6 E
while, for e 6 EI, its choice is arbitrary. Let tin, ’out be two elements sharing an edge e in Ez
and suppose that the normal n is outward from tin. Then, for x on e, the jump and the average
of v on e are defined, respectively, by

1
[V]J(X) )(X)]out- )(X)ll-in and [VJA(X {)(X)l-gou + )(X)lz’in },

Substitute u e + us into (3.1) and multiply by a test function v; then we obtain, in each
element r,

(3.6) (Le, v)r -(Lus, v)r + (f, v)r,

where Lus is defined in the sense of distributions. Now integration by parts of the left term in
(3.6) yields

(3.7) (ge, v)r B(e, v) a-n, v + a--n v
Er Er

and after summing (3.6) over all elements, we find that

(3.8) B(e, v) (f Lus, v) + g -a-n V + a--n v
ON J E1

This is the standard formulation for estimating errors used by many authors [7], [8], 11 ], 19].
On the other hand, if the term (Lus, v) in (3.6) is rewritten as in (3.7), then in each element
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ON WEAK RESIDUAL ERROR ESTIMATION 1255

r, we obtain

B(e, v)r a_-SS v -B(u, v)r + (f, v)r.

Hence a summation over all elements leads to

B e, v a -n V
F,

a -n j
[V]A) -B(us, v) + (f, v),

E1

which gives (3.4) with more general test functions v E HT-(f2) if the exact solution u is in
H2(2).

It is necessary to reuse the differential operator L when the estimators are calculated based
on (3.8). In contrast, in terms of (3.4), the same bilinear formulation (3.2) can be used in both
approximation and error estimation. This is certainly preferable, from the user’s viewpoint, in
adaptive implementation. Moreover, the formal approach can only utilize the complementary
spaces S- in a nonconforming setting while the weak residual approach may be used in either
a conforming or a nonconforming setting. Finally, in 11 ], the following saturation condition
is introduced for the spaces used in the error analysis:

(3.9) Ilu ulll + [ Ou-ul I _< p(h)211u ull2,h/2 a
On J

where u is the approximated solution (for analytical purposes only) sought in the larger spaces. It is assumed that limh-0 p 0; that is, has higher order than S. On the other hand, in
weak form, the saturation condition is as follows:

Ilu-ullpllu-u,ll, 05p<l.

Thus the condition (3.10) is somewhat weaker than (3.9) since it allows the FE orders of S
and to be equal (see, e.g., [21] and Example 4.2 below). The introduction of the jumps in
the normal derivative of the computed solutions at interelement boundaries actually forces p
to become larger and hence deteriorates the quality of the error estimator [21]. Almost all
differential-type residual error estimators [3], [4], [7], [8], 11 ], 19] require some compatibility
conditions or auxiliary local problems to overcome this intrinsic difficulty simply because the
distribution andjump terms are included in the residual, i.e., the right-hand side of (3.8). These
conditions or problems are somewhat ad hoc depending strongly on the model problem under
consideration; see the above references. The complementary spaces are essential for both
differential and weak residual approaches. With the weak residual form, one can concentrate
primarily on the construction of the shape functions of Sr, which can still handlejumps across
element boundaries (with a nonconforming setting), if they are dominant errors.

The norm II1111; --: Oi, for each element z’i E ’, is called the error indicator of the
element which assesses the quality of the approximate solution us in this element and indicates
whether the element needs to be refined, derefined, or unchanged. Summing over all elements,
the error estimator for Us can be defined by

II1111 Y]i

The error estimator can serve as one ofthe major stopping criteria for an entire adaptive process.
The quality of a proposed error estimator is usually tested by various model problems to which
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1256 JINN-LIANG LIU

the exact solutions are explicitly known. A computable effectivity index

0=

is usually introduced to quantify the quality of the estimator and, consequently, the quality of
the approximate solution.

3.2. Parametrized nonlinear equations. Stationary problems for many scientific and
engineering problems are modeled by a parameter-dependent equation

(3.11) F(u,)) =0,

where u is a state variable, 2 is a d-dimensional parameter vector, and F denotes some
differential operator on a suitable state space. Typically, the solution set M F-1 (0) turns
out to be a differentiable submanifold M of dimension d of the product X of the state space
and the parameter space. This can be ensured, for instance, when F is a Fredholm map of
index d on X [23].

All standard discretizations of a parametrized boundary value problem (3.11) leave the
parameter vector untouched and hence approximate the equations by some finite-dimensional
system Fs(us, ) 0. Hence, under suitable conditions, we may expect the solution set

Ms F-I (0) to be a d-dimensional submanifold of some discretization space Xs. Frequently,
Xs can be embedded in X and then the discretization error represents some measure of the
distance between M and Ms in X.

Our goal now is to estimate the discretization error. There are two major issues for the error
estimation of Ms. The first issue is efficiency. It is intrinsically more expensive for nonlinear
parametrized problems than it is for linear problems. The second issue is consistency. It is
well known [23] that the parameter dependence causes the discretization error to become a
local concept which depends on the choice of the local coordinate system on the manifold. For
instance, in the continuation method, we must often fix a local coordinate system for calculating
several points on the manifold and then change the coordinate system as needed, and so on.
However, for error estimation, the coordinate system is usually fixed, [23], throughout the
entire manifold and hence is not applicable near any foldpoint with respect to the parameter
space. The main way to resolve these difficulties is to use linearization and a local coordinate
system.

At any x0 (u0,)0) 6 M, we define a local coordinate system that satisfies the following
conditions:

(3.12) X=WT, dimT=d, WkerDF(xo)={O}.

it is shown in [25] that the constrained linearized (infinite-dimensional) problem

(3.13) F(Xs) + DF(Xs)CO O, rc (CO) O,

for (3.11) has a unique solution co x0 Xs 6 W which is the exact error of the approximate
solution xs (Us,)s). Here 7r 6 L(X) is a natural projection of X onto T along W. The FE
approximation of (3.11) is of interest here. We consider, in particular, the following mildly
nonlinear problem: Find (u, .) 6 H (f2) x A such that

(3.14) (F(u,)), v) := j [a(k, )Vu Vv + g(u, ), )v] d 0 Yv 6 H0(fl),

where F X H (S2) x A --+ Y H-1 (f2) and the coefficient functions a and g are given
so that the problem is well posed.
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ON WEAK RESIDUAL ERROR ESTIMATION 1257

Apparently, the nonlinear problem (3.14) does not fit into the general variational for-
mulation given in the previous section. However, its weak residual form can be cast in the
framework of the variational error setting.

In weak form (3.13) requires the deterrnination of (w,/x) E Hd x A such that

(3.5)
(3.16)

B(w, v) + C(#, v) -(F(us, ‘ks), v) Yv e H (f2),

rr(w, t) =0,

where

B(w, v) := Ja(.a(‘ks, )Vw Vv + gu(us, ‘ks, )wv) d,

c(.. .) .= .)v., v, + (gz(Us, ,ks, ) #)v) d.

At any computed point (us, ‘ks) e Ms, our a posteriori error estimates thus require the
determination of (t,/2) 6 Sr(ri) x A such that

(3.17) B(t, v) + C@, v) -(F(us, ‘ks), v) Yv S("ci)
(3. 8) zr(, ) =0.

The choice of the local coordinate system at any point x0 on .M is arbitrary as long as it
satisfies the conditions in (3.12). By definition, the local coordinate system (3.12) and hence
the constraint 7r(co,/x) 0 can change from point to point on the solution manifold. We
choose T kerDF(xo) in particular. The constraint (3.18) is then equivalent to (t,/2) 6

Ws Xs C) W which is orthogonal to the d-dimensional subspace T kerDFs(xs) of Xs
corresponding to the tangent space of Ms at the computed point Xs. If A is one dimensional and
a standard continuation process is used, then a normalized tangent vector is usually available
at each computed point. Analogously, in the multiparameter case, if a triangulation of Ms is
computedby the method of [24], then again orthonormal bases ofthe tangent space are available
at the computed points on the manifold. This uniform treatment of the a posteriori error
estimation along the computed manifold Ms avoids aforementioned difficulties. Moreover,
the introduction ofthe linear, local, solution scheme ensures that the method is computationally
relatively inexpensive.

An a posteriori error estimation has been developed for strongly nonlinear equations with
a scalar parameter in [27]. There the asymptotic exactness of a residual estimator was proved
under suitable hypotheses. Tsuchiya’s approach requires one to fix the local coordinate system
in two stages. In the first stage before the turning point, the system is defined by the natural
parameter. In the second stage when the continuation process is near and after the turning
point, the system is then rotated by 90 degrees thus allowing a more elaborate error estimate
near the turning point. In the sense of the definition of the local coordinate system, this is a
special case of our approach. Moreover, Tsuchiya’s approach requires a global solution to the
linearized residual equations for error estimation.

3.3. Symmetric hyperbolic equations. In the theory of PDEs there is a fundamental
distinction between those of elliptic, hyperbolic, and parabolic types. The theory of symmetric
positive differential equations developed by Friedrichs 17] is known for its unified treatment,
analytically as well as numerically, for PDEs that change type within the domain of interest
such as the Tricomi problem and forward-backward heat equations. In the development
of the error estimator for the Friedrichs system, we use in particular the FEM proposed by
Lesaint [20].
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An unknown p-dimensional vector-valued function defined on f2 is given by u
(u l, u2 Up) r. Let f (fl, f2 fp) T be a given p-dimensional vector-valued function
defined on f2. Let the operators L and M be defined by and consider the following systems:

2 Ou
(3.19) Lu(x) :-- E Ai(x)-ff-- + Ao(x)II f(x) for x

i=1

(3.20) Mu(x) := (#(x) (x))u(x) 0 for x

where/3 Y=I ni Ai, the ni’s being the components ofthe outer normal on 0f2. The matrices
Ai, 1, 2, are symmetric, Lipschitz continuous in x (xl, x2) for x f. The coefficients
of the matrix A0 (x) of L (RP) are bounded in f2. The matrix/z(x) of L(Rp) is defined for
x a so that the boundary condition (3.20) is admissible and the operator L is positive in
the sense of Friedrichs 17]; i.e.,

(i) #(x) +/z* (x) is positive semidefinite on 0f2,

(ii) Ker(/z -/3) @ Ker(/z ,+/3) Rp on 0f2, and

(iii) A0 + a -’=l oai >_Co1 Yx6,

where/z* and A are adjoint matrices of/z and A0, respectively, co is a positive constant, and
I is the identity matrix.

The adjoint operators L* and M* of L and M are defined, respectively, by

(3.21)

(3.22)

2 0 ,L*v(x) "= -/.= xi (Ai(x)v(x)) at- Ao(x)v(x) Vx

M*v(x) := (/z*(x) +/3(x))v(x) ’v’x 6

Let (q, g) := fa q(x). g(x) dx and (q, g) "= f0a q" gds, where q.g =1 qigi. One
variational formulation of (3.19) and (3.20) is to find u 6 (H (f2))p such that

1
(3.23) B(u, v) (Lu, v) + (u, L’v) + (/zu, v) (f, v) Vv 6 (HI())p.

For any given approximate solution u, 6 (S)p C (H (f2))p of (3.23), again analogous to
(2.7), the error estimator (3.23) can then be calculated by solving the reduced error problem:
Determine 6 (S-)p such that

(3.24) B(fi, v) (f, v) B(u, v) Vv (Sr)p.

Since the boundary conditions (3.20) and (3.22) for test and trial functions u and v,
respectively, are different, this would make it impossible to show the coercivity in a simple
manner if the adjoint operator L* were not included in (3.23). With the formulation of (3.23)
and Friedrichs’s identities 17], the coercivity is guaranteed in [20] but only in the lower-order
norm, i.e., II0, instead of the general Grding-type inequality (2.2).

3.4. Variational inequalities. In the previous subsections, in terms of abstract settings,
the closed convex set K is the Sobolev H (S2) itself. This in turn leads to variational equations
for the preceding model problems. In this subsection, we deal with variational inequalities
formulated in the general form (2.3) where now the K is indeed a closed convex subset of
H(). As we would in a typical problem, we shall now also consider the abstract minimization
problem: Find u 6 K such that

(3.25) J (u) inf J (v),
vEK
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ON WEAK RESIDUAL ERROR ESTIMATION 1259

where the functional J H(f2) --+ R is defined by

1
J(v) - (v, v) F(v),

provided that the bilinear form B(., .) is symmetric and H(f2)-elliptic, i.e., ot 0 in (2.2).
Corresponding to (2.4), (3.25) reduces to the finite-dimensional approximate problem

(3.26) J(us) inf J(vs),
Vs Ks

which, under suitable conditions on the approximate convex set K [16], [18] can be solved
by mathematical programming subject to a finite number of constraints induced by Ks.

Clearly, the variational error problem (2.7) suggests the needed formulation for error
estimation; that is, determine Y 6 K such that

(3.27) B(, w)- G(w) > B(, )- G(,) Vw K.,
where K is a complementary closed convex set of Sr under similar conditions as those of
Ks. Inequality (2.7) also suggests that a new functional can be defined in terms of the weak
residual G, namely,

1
E(W) - B(w, w) a(w).

Consequently, we have the following reduced minimization problem: Determine 6 K such
that

(3.28) E(g) inf E(w).
weKc

3.K The finite vlume element method. There are many variants of FVMs. We con-
sider specifically the finite volume element method (FVEM). As noted in [12], the FVEM
was developed as an attempt to use FE ideas to create a more systematic finite volume (FV)
methodology. The basic idea is to approximate the discrete fluxes needed in FV by replacing
the unknown PDE solution by,an FE approximation. It turns out that the approximate solution
by FVEM is in fact sought in a standard FE trial function space whereas the corresponding
test function space consists of volumewise constant step functions (zero-order polynomials).
In [10], Bank and Rose termed the FVEM the box method and showed that, under reasonable
hypotheses, the solution ub generated by the FVEM is of comparable accuracy to the solution
u generated by the standard Galerkin procedure using piecewise linear FEs. More precisely,
the a priori errors of ub and u are of the same order in the energy norm.

As far as a posteriori error estimation is concerned, there are surprisingly fewer results
available for the FVMs than for their FE counterparts. From the above observations and by
the actual implementation features of the FVEM, we can see that FEMs and FVMs do have
many important similarities in error estimation and the adaptive, process.

First of all, the FVEM solution ub is itself an element ofthe standard FE space S associated
with the regular mesh 7-. Therefore, it is perfectly all right to replace u by u in (2.6) so that
the weak residual G is now in terms of the FV solution ub. Second, since the solution ub was
computed with degrees of freedom defined at the nodal points of elements instead of volumes,
it is quite reasonable to do the error estimation on an element-by-element basis. Third, most
computations in practice are customarily carried out elementwise, including control volumes
which are constructed according to their dual elements; see, e.g., [10], [12]. Finally, it is
interesting to explore how the well-established adaptive features of FE technology can be
utilized in FV computations. In short, it is plausible to develop error estimators for the FVEM
elementwise instead of volumewise.
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1260 JINN-LIANG LIU

We consider again the selfadjoint elliptic boundary value problem (3.1). For the FV
element approximation of (3.1), we follow, the formulation proposed in [10] which is in a
more general setting than that in [12]. The FVEM (or the box method) for (3.1) is defined as
follows: Find ub 6 S such that

(3.29)

where

?(u, ) + (b, ) (L ) w e P0(t),

OUb[1 (Ub, f) Z a f; ds,
biE bi Oil

and P0 (/3) denotes the space of discontinuous piecewise constants with respect to the control
volumes (or boxes), whose elements are zero on 0f2z). Note that to avoid a nondiagonal (and
generally nonsymmetric) matrix, b is used instead of Ub in the second term on the left-hand
side of (3.29); see [10]. Here, the tb is defined as a volumewise constant and has the same
values as Ub at vertices of T.

From the above observation, we see that the error estimator of the FV solution Ub is
proposed by determining Y 6 S-(ri) such that

(3.30) B(Y, v) --B(Ub, v) q- (f, v) + (g, V)Oau ’V 6 (’gi),

where the bilinear form B is defined exactly as in (3.5).
The FV solution Ub is obtained quite differently in the sense of the abstract setting (2.4).

Nevertheless, the error estimation based on (3.30) is still in the unifying theme presented
so far. Note also that there is no direct link between (3.29) and (3.30). It is precisely our
intention to use the weak residual error estimation. Otherwise, if the boundary integrals
/} were used in (3.30), we would then be forced to perform the estimation volumewise.
However, the theoretical investigation of the estimators would certainly involve the a priori
results concerning ub and yet remains open. Equation (3.30) is in exactly the same form as
(3.5). As a result, the error indicators and estimators can be calculated in exactly the same
way as those of the FEM. Further, the remarks made in 3.1 apply here.

4. Numerical examples. The numerical examples presented in this section correspond
with those of the previous subsections. Some examples were also considered in the places
cited. Although we intend to stress the performance (the effectivity index) of the respective
error estimators, some adaptive computational results are also presented.

There are two different types of the complementary spaces. The conforming shape func-
tions of S- vanish on boundaries of elements; consequently, the error indicators ignore in-
terelementjumps in fluxes. The shape functions for the nonconforming case arediscontinuous
across element boundaries and hence the error indicators will include both the interior errors
and the jumps in, of course, weak form.

Although most applications require only the use of conforming shape functions 1], [9],
[25], there are some cases in which this approach would fail (see Example 4.1) if the FE order
of S were not properly considered [1], [8]. We shall illustrate both conforming (Examples
4.2, 4.3) and nonconforming (Examples 4.1, 4.4, 4.5) error calculations. General algorithms
in implementing these error estimators, for equality-type problems, are detailed in [21 ], [25].
We shall present an algorithm for the variational inequalities in Example 4.4.

Example 4.1. Following 15] we consider Laplace’s equation on an L-shaped domain:

Au=0 in f2 (-1,1) x (-1,1)\(0,1) x (-1,0),
(4.1) Ou

u =0 on0f2D, =g on0f2N,
On
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ON WEAK RESIDUAL ERROR ESTIMATION 1261

where OD {(X, y) X E [0, 1], y 0}tO {(X, y) X 0, y E [--1, 0]}, O’N O"\O’D
and g is defined so that, in polar coordinates, the exact solution u becomes u r2/3 sin and
hence has a point singularity at the origin.

For our computations, bilinear elements are used to define S. Hence, by the nature of
the problem, the computed solution us is a harmonic function in each element and therefore
satisfies (4.1) on each element. This means that the errors occur purely on the edges of
elements; that is, the complementary space S- has to be nonconforming. For this, we construct
four edge midpoint basis functions defined, on the reference element z* {(, r/) I[ _<
1, Irl _< 1}, by

(4.2)
lilt (, r]) (1 2)(1 r/)/2,

3(, r/) (1 2)(1 -t- r/)/2,

2(, 7) (1 q- )(1 72)/2,
4(, r/) (1 )(1 r/2)/2.

For the p-version FEM, this type of construction for the complementary spaces can be
readily extended to high-order shape functions. For instance, given basis functions defining
S on each element, one can simply add one or more shape functions to the element by higher-
order side mode or internal mode or both (see [26]) for S. In essence, this corresponds to a
hierarchical basis method [2].

Of course, the conforming-type shape functions can still be used for this kind of problem
provided that the original space S is chosen so that the effects of the boundary residuals are
negligible. In [8] it was shown that for linear elliptic problems the discretization error of odd-
order FE solutions is mainly due to the jumps, while that of even-order approximations occurs
principally in the interior of the elements, allowing the jumps across element boundaries to be
neglected. In line with this, eight-node biquadratic FEs were used in for the approximation
while two fifth-degree polynomials were introduced for the error estimation in weak residual
form.

Figure 4.1 is a given initial mesh on the domain. The adaptive computation shown in
Fig. 4.2 is very similar to those using the code FEARS (finite element adaptive research
solver); see, e.g., [6]. Our approach however is much simpler in terms of implementing the
error indicators. Depending on the model problem, the location of singularity, the quantity
of interest (displacement, stress, etc.), and the spectral order of the FE, different extraction
expressions for an auxiliary problem associated with the model problem should be chosen
accordingly for Babugka-Miller indicators; see [6] for more details. Our error indicators are not
confined by the above effects; namely, ours do not depend on singularity and spectral order and
there are no auxiliary problems. In fact, based on the ideas in the present paper, we are able to
develop a very general and robust code which we call AdaptC++. So far, we have successfully
tested our code for linear elasticity problems, mixed-type problems, flows in porous media,
obstacle problems, Navier-Stokes equations, and semiconductor device simulation with FE,
FV, and least-squares FE methods. Among other things, one of its advantageous features is
the simplicity in implementing the error indicators which disregard input model problems and
see only a very general setting of linear and bilinear forms and boundary conditions. From the
user’s viewpoint, use of the code is even simpler partly due to the refinement scheme and the
object-oriented programming language. All numerical data presented in this section except
that in Example 4.2 were produced by AdaptC++.

Tables 4.1 and 4.2 show that adaptive computations are clearly superior to uniform mesh
reductions. For instance, if a tolerance is set to 3% ofthe relative error (r.e. Illelll the uniform
approach requires over 10 times the degrees of freedom (DOF) of the adaptive approach.
Also, the effectivity indices 0 show reliable error estimators for both uniform and adaptive
approximations.
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-o.5;

-I -0.5 0 0.5 1

FIG. 4.1. Initial meshfor Example 4.1.

o.

-o 5

-i -0.5 0.5 1

FIG. 4.2. Adaptive final mesh (FEM)for Example 4.1.

TABLE 4.1
Example 4.1 using uniform meshes (FEM).

DOF Illelll r.e. 0
8 -0.284368 0.210 0.732
21 0.196695 0.145 0.801
65 0.128699 0.095 0.821
225 0.082777 0.061 0.830
833 0.052781 0.039 0.835
3201 0.033493 0.025 0.837

Example 4.2. The discussions in 3.2 are illustrated by the nonlinear boundary value
problem

-Au=leu, u=u(x,y) (x,y) 6 f2=(O, 1) x(O, 1),
(4.3)

u=O on o’3.

The weak formulation of (4.3) is given as

(4.4) (F(u,X), v).= f.(.xux -’-blyl)y -)eUv)dxdy =0 Vv e H(fl)

and we assume that ) e R1, which means that the solutions of (4.4) form a one-dimensional
manifold M.
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ON WEAK RESIDUAL ERROR ESTIMATION 1263

TABLE 4.2
Example 4.1 using adaptive meshes (FEM).

DOF
8
21
34
53
78
119
301
469
765
1024
1847

Illelll r.e. 0
0.284368 0.210 0.732
0.196695 0.145 0.801
0.135229 0.100 0.849
0.096849 0.071 0.869
0.072604 0.053 0.877
0.054446 0.040 0.905
0.031254 0.023 0.945
0.024136 0.017 0.957
0.018578 0.013 0.966
0.010675 0.011 0.973
0.011501 0.009 0.980

We use a uniform mesh, T, of 16 biquadratic elements on f2. For the computation of
the one-dimensional solution manifold Ms of the discretized problem, a continuation process
(PITCON [23]) is applied starting from (u, ;s) (0, 0), and our aim is to determine a
posteriori estimates of the error between M and Ms at all computed solutions (Us, ,ks) Ms.

In line with (3.15) and (3.16), the linearized problem at (Us,)s) Ms is to determine
(w,/z) H (f2) x A such that

(4.5) fo [11)x13x -1
I- Wyl)y )seU"wv + eU#v] dx dy

fa(UhxVx + blhyl)y- )seU"v)dxdy Yv 6 Hd(f2),

(4.6) ((w, tz), ts) =0.

As noted, the ts are chosen as normalized tangent vectors on Ms at (us,)s). Such tangent
vectors are available at each step of the continuation process and hence the equation (4.6)
involves little additional computational cost.

For local solutions each one, Z" ]", of the 16 elements of f2 is divided into m
(k + 1)2 biquadratic subelements with k 1, 4. That means that on each subelement, rij,

16, j 1 m, a bubble-shaped function l[rij (X, y) is constructed via the mapping
of the shape function

1/t(, 1]) (1 2)(1 1]
2

defined on the reference element. We thus have S(ri) span{Ttij}jm=l C H(ri) for each

element ri 6 7" and hence S- C Hd (f2) is a conforming FE subspace. The more subelements
are used, the more accurate auxiliary condition (4.6) becomes and a better quality estimator
can be obtained.

The resulting error estimates are shown in.Table 4.3, where IwL denotes the computed
error norms for the two cases of k. The computations are very cost-effectiv since each local
problem involves only a fixed number of degrees of freedom depending on the value of k. The
table also shows that, as expected, the estimated errors vary smoothly along the solution path
Ms and show no sudden increases near the limit point ) 6.804524. As mentioned earlier,
if the natural coordinate system induced by the parameter space A is chosen, then we expect
the resulting error estimates Itbl to become unduly large near the limit point. This is indeed
the case as the last column of Table 4.3 shows. At the same time, it should be noted that the
computational cost of the two approaches is practically identical.
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TABLE 4.3
Example 4.2 using uniform meshes.

9 IIIwl III IIIw4111 II1111
5.907655
6.193552
6.434373
6.620862
6.745397
6.804524
6.800451
6.740221
6.633252
6.489009
6.328924

0.017914
0.018368
0.019144
0.020640
0.023317
0.027539
0.033461
0.041066
0.050283
0.061065
0.072480

0.019054
0.019562
0.020404
0.021986
0.024787
0.029185
0.035345
0.043255
0.052838
0.064041
0.075894

0.022905
0.024439
0.027792
0.041992
0.159595
0.176171
0.086353
0.069906
0.065171
0.065099
0.067672

Example 4.3. For mixed-type PDEs, we consider the forward-backward heat equation

(4.7) xt(x, t) xx(X, t) f(x, t) V(x, t) f2 (-1, 1) x (0, 1.),

b(_+l,t)--0 Yt 6[0,1],
(4.8) 4) (x, 0) 0 Yx 6 [0, 1],

b(x, 1)=0 Yx 6[-1,0].

Note that the equation changes type as x changes sign in f2. There have been a number of
papers addressing this kind of mixed-type heat equation; for further references see [5], [28].

For our computations, the exact solution b is chosen as

q(x, t) (x2 1)tz[(t 1)2 -4x2] Vx > O, [0, 1],

4)(x, t) (x2 1)(t2 -4x2)(t 1)2 ’x < 0, [0, 1].

Denote the boundary Of by 11 U... U 176,

171 {(x, t) x 6 [-1, 0], 0},

172 {(x, t) "x -1, 6 [0, 1]},

173 {(x, t)’x [-1, 0], 1},

174 {(x, t)’x [0, 1], 1},
175={(x,t)’x=l, t6[0,1]},

176 {(X, t) x 6 [0, 1], 0}.

By a change of dependent variables,

II. (Ul)-- ( e-O’lt )bl 2 e-O.ltx
(4.7) can then be expressed in symmetric positive form

(4.9) Lu Alllx q-- Aztlt -t-- A0u f,

with boundary condition

(4.10) Mu "= (/z fl)u 0 (x, t) 6 0f2,
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TABLE 4.4
Example 4.3: Boundary matrices.

F1 0

o)1-’3 0

1"4
X 0

1"6
X 0

(; o)
x 0

-x, 0)0 0

Oot
-x 0)0 0

0 0

0

x 0

TABLE 4.5
Example 4.3 using adaptive meshes.

DOF Illelll r.e. 0
20 1.310 0.804 1.035
72 0.344 0.211 0.985
156 0.155 0.096 0.972
272 0.087 0.054 0.966
420 0.056 0.034 0.963
600 0.039 0.024 0.961
812 0.029 0.017 0.961

where

() ()() (e-O’ltf )-x -1 x Ao= O.Ix x f=A -1 0 A 0 0 1 0

/x,/3, and M are given in Table 4.4. It can be readily shown that the system (4.9), (4.10) is
symmetric positive.

The adjoint operator L* of L is defined by

L*v:=( ))Vx-( )vt+(O’lX+lx O1)v.
Now, the weak formulation corresponding to (3.23) for (4.7), (4.8) is complete.

For FE approximation of (3.23), a uniform mesh is introduced on f2 and bilinear elements
are used. On the other hand, the bubble-shaped functions

(4.11) !/r(:, r/) :(1 :2)(1/4 :Z)r/(1 -/72)(1/4 r]2)

are used to define (Sr)2. The effectivity of error estimates using (3.24) is shown in Table 4.5.
In view of error equations (3.5) and (3.24), the calculation of error indicators for the

present example proceeds in a similar way as that of Example 4.1 except that we now have, in
each element, a 2 x 2 system induced by (3.24) and by the complementary functions (4.11) for
the vector-valued functions. However, by the nature of symmetric positive linear differential
equations, the bilinear form associated with the system is coercive only in the L2 norm instead
of in the usual H norm for elliptic problems. Hence, there is no equivalence of the energy
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TABIF 4.6
Example 4.4 using adaptive meshes.

DoF Illelll e. 0
32 0.0223 ’0.1930 0.890
92 0.0117 0.1015 0.956
345 0.0053 0.0462 0.958
1489 0.0024 0.0211 0.980
5156 0.0012 0.0108 0.986
6833 0.0011 0.0096 0.987

norm found in elliptic problems. Our numerical experience has shown that the quadratic order
of the complementary basis functions used as in Example 4.1 gives rather pessimistic error
estimates. The only remedy to this difficulty seems to be to use higher order (Sr)2, e.g.,
(4.11). Note that this will not cause more computational cost, in fact, the cost is almost the
same as when lower orders are used. Apparently, the a posteriori error analysis for mixed-type
PDEs remains largely to be further investigated.

Example 4.4. Our error estimators for variational inequalities (2.3) are tested by the model
problem given in [4] with the convex set K {v(x, y) H (f2) v(x, y) > 0 and v(x, y)
g(x, y) on 0f2}, where fa (0, 7) x (0, 1) and g is chosen so that we have the exact solution

0, if (X -[- 1)2 ..[_ y2 >_ 2,

u 1 1 1
ln{ (x + 1)2 or 22] otherwise.[(x + 1)2 + y2]

2 2
The bilinear and linear forms are defined by

B(u, v) := f Vu Vv dxdy, F(v) := f v dxdy.

ALGORITHM.
1. Given an initial mesh fah on
2. Construct a convex set Ks with linear shape functions on f2h.
3. Use the Gauss-Seidel-SOR method 18] with the relaxation parameter and the rela-

tive error chosen to be 1.2 and 10-6, respectively, to obtain an approximate solution
us Ks of the minimization problem (3.26).

4. Construct the complementary convex set Kc "= {w S- C HT-(f2)and w >-Us},
where S- is defined via (4.2).

5. In each element ri, use the method in Step 3 to solve the reduced problem (3.28) for
Y 6 Kc’, which involves only four equations with four unknowns, and then calculate
the error indicator ?]i for that element. Calculate the error estimator for Us. If r.e.
> 0.01 then refine all elements with Oi _> 0.1tlmax, t]max max/r]i and go back to
Step 2, otherwise stop.

The numerical results are shown in Table 4.6.
Example 4.5. To compare FV and FE computations, we consider again the L-shaped

problem (4.1).
For any particular (1-irregular) mesh, e.g., Fig. 4.3, on f2, the FV element approximation

of (4.1) is to find ut, 6 S such that

Out,
ds O,

bB b

where the FE space S is defined as in Example 4.1. Note that the test functions defined on the
volumes bi B are equal to one.
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-i -0.5 0 0.5 1

FIG. 4.3. Adaptivefinal mesh (FVEM)for Example 4.5.

TABLE 4.7
Example 4.5 using uniform meshes (FVEM).

DOF Illelll r.e. 0
8 0.293127 0.217 0.748
21 0.199400 0.147 0.795
65 0.130269 0.096 0.817
225 0.083735 0.062 0.827
833 0.053375 0.039 0.832

TABLE 4.8
Example 4.5 using adaptive meshes (FVEM).

DOF Illelll r.e. 0
8 0.293127 0.217 0.748
21 0.199400 0.147 0.795
34 0.136928 0.101 0.852
53 0.098177 0.072 0.874
78 0.073441 0.054 0.884
119 0.055017 0.041 0.910
188 0.041540 0.031 0.930
301 0.031497 0.023 0.947
459 0.024512 0.018 0.960
749 0.018927 0.014 0.965
1188 0.014646 0.011 0.973
1801 0.011699 0.009 0.979

Corresponding to Tables 4.1 and 4.2, the data of the FV computations are shown in Tables
4.7 and 4.8, respectively. The final adaptive mesh is shown in Fig. 4.3.

Acknowledgment. The author would like to express his gratitude to the referees for many
valuable comments on the paper.
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