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Abstract. Alignment of optomechanical components is important when
designing and manufacturing optical systems. This study used an optical
fiber as a case study to develop an alignment method. The core diameter
of a single-mode fiber is about 9 �m, and any slight misalignment or
deformation of the optical mechanism will cause significant optical losses
in connections. Previous studies have shown that the currently used
alignment methods are not efficient, and the precise position for the con-
nection is not easy to locate. This study proposes a two-stage method to
overcome these problems. In the first stage, the Nelder-Mead simplex
method is used to move quickly to the optimum solution. In the second
stage, a numerical optimization method is used to improve the accuracy.
This study compares different numerical optimization method that can be
used to find the ideal connection position. It can be concluded that the
most stable method for the search direction is the steepest-descent
method, because the light intensity distribution is similar to a Gaussian
one, and the most efficient method for the step-size determination is
polynomial interpolation. Therefore, the second stage uses the steepest-
descent method with polynomial interpolation. © 2007 Society of Photo-Optical
Instrumentation Engineers. �DOI: 10.1117/1.2744345�

Subject terms: optical fiber; active alignment; optimization.
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Introduction

iber optic communications with low losses and broadband
haracteristics developed quickly after low-loss fibers were
nvented in 1970. Because of their high capacity, high
ransmission rate, and immunity to electromagnetic inter-
erence, optical fibers have been steadily replacing copper
ire as a means of signal transmission in recent years.
Like other communication media, optical fibers do not

ave infinite length. Fibers need to be aligned and con-
ected to each other when constructing a network. Both
assive and active methods are used to align fibers. The
assive methods use optical connectors or mechanisms to
lign and connect fibers. However, the core diameter of a
ingle-mode fiber is only about 9 �m. Any slight misalign-
ent or deformation of the connecting mechanism will

ause significant optical losses across the connection.
herefore, the design of the passive component is ex-

remely important, and high manufacturing precision is
ecessary for making the components.

On the other hand, an active method will actively search
or the optimum position with the least transmission loss,
nd then connect fibers in this position. It can ensure that a
eliable connection of the two connecting fibers is
chieved, but the time required to search for the optimum
osition will increase the time required for component
anufacture. It will become impractical if the required
091-3286/2007/$25.00 © 2007 SPIE
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search time becomes too great. Therefore, the main objec-
tive in the active alignment method is to find the optimum
connection position efficiently. These methods mentioned
in the literature can be divided into non-gradient-based
methods and direction search methods, which are described
in the next section.

The distribution of light intensity in an optical fiber is
similar to a Gaussian distribution. However, on the fiber
end face it is not exactly Gaussian, because of end cutting
and polishing. As a result there are many local light inten-
sity maxima on the end face, and avoiding such traps is a
requirement on optical fiber alignment methodologies if
significant optical losses across connections are to be
avoided. For this purpose, CCD cameras are used to do a
rough alignment, during which the fibers will be moved
quickly to a position near the optimum. Then, accurate
alignment methods are used. The CCDs will reduce the
search time, but they will increase the cost of the alignment
equipment, and the hardware and software are not easy to
implement. This additional equipment will also increase the
complexity and failure probability of the alignment device.

Therefore, the two major purposes of this study were to
avoid the local maximum trap and to increase the search
efficiency. A two-stage optimization strategy is proposed to
achieve these requirements. The first stage is to use the
Nelder-Mead simplex method instead of using expensive
CCD cameras or other rough alignment methods. Then, the
steepest-descent method with polynomial interpolation is

used for accurate searching in the second stage. Compared
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o the traditional optimization methodologies, the two-stage
ethod can reduce the search by about 50%

Preliminary Details
he optical fiber alignment problem is a typical optimiza-

ion problem. It requires adjusting and finding the connec-
ion position with the maximum light intensity �the mini-
um optical power loss�. Therefore, the objective function

s the light intensity, i.e., the optical power, and the design
ariables are the coordinates of the connection position.
here is no constraint in the optical fiber alignment prob-

em, except for the bound on the coordinate values.
In 2001, Tang et al.1 used the hill-climbing method to

olve the alignment problem. Mizukami et al.2 simulated
he alignment process with the Hamiltonian algorithm
quations, and solved the equations to find the position with
aximum light intensity. Chen and Chang3 used a prede-

ermined search direction, and used Swarm’s method4 and
he quadratic estimation method5 to find the step size. In
002, Siao and Li6 used the Gaussian function7 to estimate
he light intensity in the search direction. In the following
ear, Zhang and Shi8 used Matlab/Simulink to execute the
amiltonian algorithm to find the optimum connection po-

ition. Sung and Huang9 used the steepest-descent method10

o calculate the search direction, and used the golden-
ection search10 to find the step size. They also used the
oordinate search method11 and the pattern search method12

o search directly for the optimum connection position in
he design space. In 2004, Zhang and Shi13 used the sim-
lex method to solve the alignment problem, while Sung
nd Chiu used the genetic algorithm14 to find the global
ptimum connection position, and also used the hill-
limbing method1 to improve the solution found with the
enetic algorithm.

The coordinate search method, pattern search method,
implex method, and genetic algorithm search directly for
he optimum solution in the design space, and are non-
radient-based methods. They do not calculate the search
irection, and their efficiency will be poor if the design
pace is large. If one uses another solution methodology,
amely numerical optimization theory, optimization be-
omes an interactive process. The search direction and the
tep size along the direction are two key variables during
ach iteration.10 The hill-climbing method used in the men-
ioned literature does not calculate the search direction. The
ptimum solution is searched for in predetermined direc-
ions. Typically, the directions along the X and Y axes will
e used repeatedly. The efficiency is limited because these
xes need not be the direction of maximum increase in light
ntensity.

On the other hand, Swann’s method, the quadratic esti-
ation method, the Gaussian-function estimation, and the

olden-section method described in the literature are used
nly to calculate the step size without a direction search
ethod, as in the case of the steepest-descent method. Few

irection search methods are used for the alignment
roblem.

In order to avoid local maxima and to reduce costs, vari-
us methodologies are used instead of the expensive hard-
are mentioned to accomplish the rough alignment. These
ethodologies can be implemented with software program-

ing, and do not need to add to costs. Pham and
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Castellani15 simulated the searching process by moving on
the light intensity surface to avoid the local maxima, and
solved the problem with a gradient-based method. Tseng et
al.16 used a novel simplex method to avoid a local maxi-
mum trap, and the two-stage genetic algorithm proposed by
Sung and Chiu also has potential for avoiding such traps.

Though non-gradient-based methods may be less effi-
cient than gradient-based methods, they can be used to
avoid the local maxima. Therefore, a two-stage method is
required to avoid the local maxima and to increase the
search efficiency.

3 Two-Stage Method
The standard optimization model is formulated as finding
the solution with a minimum objective function value. This
formulation can also consider the problem of maximizing
the objective function value, on multiplying the objective
function by minus one. Therefore, the standard optimiza-
tion model can be defined as

minimize − f�X� , �1�

where f�X� is the measured optical power �dBm�, X is the
position vector, and the position coordinates are the design
variables. The vector X can be represented as

X = �x1,x2� , �2�

where x1 and x2 are the x and y coordinate values of the
connection position on the end face. This study uses planar
coordinates as an example; the three-dimensional case can
be treated by a similar method. There is no constraint in the
alignment problem. The first stage in the two-stage method
is the rough alignment. It can move the solution to the
optimum point quickly, and it also helps to avoid the local
optima. Then, the second stage uses refined searching
methods to find the optimum solution accurately. The de-
tailed process is explained in the following.

3.1 First Stage: Rough Alignment
The Nelder-Mead simplex method17 is used as the first
stage of the two-stage method. At the beginning, three
points, Xh, Xg, and Xl, are selected to form a triangle, and
their objective-function values are fh, fg, and f l, where fh
� fg� f l. The midpoint of the edge XgXl is denoted as Xc.
In the search process the new point �solution� is calculated
by

Xn1 = Xh + �1 + ���Xc − Xh� , �3�

where � is an index. The value �=1 is used first, and a new
point Xn1 is obtained. Its function value is fn1. Another new
point will be obtained from the following conditions:

1. If f l� fn1� fg, then �=1 and Xn2=Xh+2�Xc−Xh�.
2. If fn1� f l, then �=2 and Xn2=Xh+3�Xc−Xh�.
3. If fn1� fh, then �=−0.5 and Xn2=Xh+0.5�Xc−Xh�.
4. If fg� fn1� fh, then �=0.5 and Xn2=Xh+1.5�Xc

−Xh�.

The objective-function values at Xh, Xg, Xl, Xn1, and
Xn2 are compared, and the smallest three points are selected

to form the new triangle. The vertices of the new triangle
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re sorted and update as Xh, Xg, and Xl. New points will
ontinue to be found until the objective-function values sat-
sfy a predetermined criterion, i.e., when the point is close
o the maximum light intensity.

.2 Second Stage: Accurate Searching Methods
any numerical optimization methods can find an accurate

olution, but the Nelder-Mead simplex method cannot do
o because of the long edges of the triangles. Therefore, a
ifferent numerical optimization method is used to improve
he accuracy in the second stage.

The optimization methods used to solve unconstrained
ptimization problems can be divided into indirect and di-
ect methods. Indirect methods are analytic methods. They
atisfy the necessary condition first and then check the suf-
cient condition. The necessary condition of an uncon-
trained optimization problem requires the gradient vector
omponents of the objective function to be zero, and the
ufficient condition requires the Hessian matrix of the ob-
ective function to be positive. Indirect methods can find
he exact global optimum solution, but these methods re-
uire an explicit function relating the objective function
nd the design variables. Unfortunately, it is difficult to
efine an explicit function of the light intensity on the fiber
nd-face, because for that the light intensity has to be de-
ected at every position. Therefore, indirect methods cannot
e used to solve the alignment problem, whereas direct
ethods can.
Direct methods are also called numerical methods, and

hey solve an optimization problem by searching. The
earch utilizes the search direction as well as the step size,
nd the process can be described by the following equation:

�k+1� = X�k� + ��k�d�k�, k = 0,1,2, . . . , �4�

here the superscript is the iteration number, � is the step
ize �scalar�, and d is the search direction in vector form.
he whole solution process is shown in Fig. 1. At the be-
inning, an initial position X�0� should be selected. There
re many methods for determining the search direction d�k�,
uch as the steepest-descent method, the conjugate-gradient

Fig. 1 The solution process for the direct method.
ethod, the Davidon-Fletcher-Powell �DFP� method, and
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the Broyden-Fletcher-Goldfarb-Shanno �BFGS� Method.7

Before moving along in the search direction, the conver-
gence condition of the process should be checked. The
common convergence condition is that the norm value of
the search direction is less than a predetermined small
value:

�d�k�� � � , �5�

where � is a small number, called the convergence condi-
tion. It is similar to the necessary condition of indirect
methods, but the norm is seldom zero when using numeri-
cal methods. Therefore, a predetermined small value is
used instead of zero. Another common convergence condi-
tion requires checking the difference of the objective func-
tion values between two solutions. The solution process
will stop if the difference is less than a predetermined small
value. This means it is no longer efficient to continue the
solution process, because the improvement in the objective
function is marginal.

The step size in the search direction has to be calculated
if the solution process is to continue. This process is also
called a one-dimensional search because it searches for the
optimum solution along a path in the predetermined search
direction d�k�. Hence, the problem becomes a one-
dimensional problem for determining the step size, no mat-
ter how many dimensions the problem has. There are also
many methods for one-dimensional search, as described in
the mentioned literature, the most popular being the equal-
interval search, the golden-section search, and polynomial
interpolation. After determining the search direction and the
step size, the position can be updated, and the process can
continue to the next iteration.

3.2.1 Search direction
Yu et al.18 used the steepest-descent method to decide on
the search direction. It can be calculated as follows:

d�k� = − c�k� = − � � f�X�
�x1

� f�X�
�x2

¯

� f�X�
�xn

�T

, �6�

where c is the gradient vector of the objective function, and
this direction will cause the maximum increase on the ob-
jective function. The steepest-descent Method uses the sim-
plest approach to decide on the search direction, but it is
not efficient in general, because the search directions of two
successive iterations are orthogonal to each other. There-
fore, many methods have been proposed to modify the
search direction of the steepest-descent method, the
conjugate-gradient method10 being one of them. The
conjugate-gradient method adds information about the pre-
vious direction to the current direction to improve the effi-
ciency. It can be expressed as

d�k� = − c�k� + 	�k�d�k−1�, k = 1,2,3, . . . , �7�

where

	�k� = � �c�k��
�c�k−1��

�2

, k = 1,2,3, . . . . �8�

Other methods use the Hessian matrix to improve the

search direction. The Hessian matrix is the first derivative

June 2007/Vol. 46�6�3

s of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



o
w
a
d
t
s
s
a

H
s

d

w
T

d

w
A
t
d

3
A
s
m
s
A
c
T
m
e
n
l

t
u
j
o

Lin, Yu, and Liu: Novel optomechanical alignment method…

O

Download
f the gradient vector, i.e., its rate of variation. The search
ill be more efficient if not only the gradient vector, but

lso, its the Hessian matrix is used to decide on the search
irection. Unfortunately, for some applications, calculating
he Hessian matrix may be tedious or even impossible, and
ometimes the Hessian matrix will be singular. Therefore,
ome methods overcome these drawbacks by generating an
pproximation for the Hessian matrix and its inverse.

The DFP method10 uses an approximate inverse of the
essian matrix to determine the search direction. The

earch direction can be expressed as

�k� = − A�k�c�k�, �9�

here A is the approximate inverse of the Hessian matrix.10

he search direction of the BFGS method10 is given by

�k� = − �HA
�k��−1c�k�, �10�

here HA is an approximate Hessian matrix.10 The matrix
of the DFP method or HA of the BFGS method is set to

he identity matrix in the first iteration, and will be updated
uring the solution process.

.2.2 Step-size determination
fter the search direction has been determined, the step

ize along the path in that direction has to be found. As
entioned before, the problem becomes a one-dimensional

earch process to find ��k� after a transformation by Eq. �4�.
simplified sketch is shown in Fig. 2. The solid line indi-

ates the function f��� transformed from f�X� by Eq. �4�.
he step size can be determined by finding an �* that mini-
izes f���. The methods discussed in this study are the

qual-interval search, the golden-section search, and poly-
omial interpolation.10 A comparison of these methods is
isted in Table 1.

As the name implies, the equal-interval Search evaluates
he solutions at the same distance in the search direction
ntil it finds the step size. The interval 
 between two ad-
acent search points determines the accuracy and efficiency

*

Fig. 2 Step-size determination.
f finding the optimum point � . The golden-section Search
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evaluates the solutions with an increased distance until it
finds the optimum interval. The increase ratio is 1.618 �the
golden ratio�, i.e., the distance between the n’th and n+1st
solutions is 1.618 times the distance between n−1st and
n’th solutions, as shown in Table 1. The efficiency of the
golden-section search will be better than that of the equal-
interval search because of the increased distance and the
characteristics of the golden ratio.

Polynomial interpolation likewise evaluates the solu-
tions with an increased distance until it finds the optimum
interval. The increase ratio is also 1.618, i.e., the same as in
the golden-section search. After finding the optimum inter-
val, a quadratic function, as shown in Table 1, is used to
approximate the objective function within it.

The experimental results are discussed in the next
section.

4 Results and Discussion
Before discussing the results, the experiment setup is intro-
duced as shown in Fig. 3. The six stepping motors are used
to achieve the translation along and rotation about the X, Y,
and Z axes. The upper fiber is connected to the optical
source, and the lower fiber is connected to the optical de-
tector. The piezoelectric stage is used to adjust the X, and Y
positions accurately.

Table 1 Comparisons.

Method Formulation

Equal-interval search �i= i
, i=1,2,3, . . .

Golden-section search
�i= �

j=0

i


�1.618�j, i=1,2,3, . . .

Polynomial interpolation a2= 1 ��i+1−�i	 f��i+1�− f��i−1���i+1

−�i−1 − f��i�− f��i−1���i−�i−1


a1= f��i�− f��i−1���i−�i−1 −a2��i+�i−1�

�*=−1 �2a2a1
Fig. 3 The experimental setup.
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The real light intensity detected by the equipment is
lotted in Fig. 4�a�, while Fig. 4�b� shows the light intensity
ontours. The central circles represent the light intensity in
he fiber with a 9-�m diameter; there are many local op-
ima in the outer region because of interference. The light
ntensity will be multiplied by minus one later because the
tandard optimization problem is formulated as finding the
inimum objective-function values.
Before starting to search for the optimum connection

osition, the fibers will first be aligned roughly. The rough
lignment may be on any side, at any distance from the
ptimum connection position. The starting alignment posi-
ion may be not in the fiber region, i.e., the central circles in
ig. 4�b�; sometimes it is outside the fiber region as in Fig.
. If the initial connection position is far from the optimum,
he search process may be easily trapped by a local opti-
um, and will therefore be inefficient. Therefore, this study

ses a two-stage method to align fibers. In the first stage,
he Nelder-Mead simplex method is used to avoid a local
ptimum while moving to the global optimum connection
osition quickly along the long edge of the triangle. In the
econd stage, the direction search method and the one-

Fig. 4 Distribution of light intensity: �a� plot, �b� contours.
imensional search method are used to obtain an accurate
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result. However, there are many methods for either of these
searches. This study uses four direction search methods and
three one-dimensional search methods to solve the align-
ment problem, and also compares their efficiencies. The
best one will be used in the second stage.

4.1 Nelder-Mead Simplex Method
The results of the Nelder-Mead simplex method are shown
in Table 2, while the search path is shown in Fig. 5. The
optical power is −16.12 dBm, and the search process costs
only 74.1 s. The solution moves close to the optimum so-
lution quickly. As shown in Fig. 5, the edge lengths of the
triangles are large, and this is why the Nelder-Mead sim-
plex method can move to the optimum solution quickly and
avoid the local optima.

4.2 Search Direction Determination
Methods to determine the search direction can be classified
into the gradient-based �first-order differentiation� and
Hessian-based �second-order differentiation� methods.10

Because these methods are sensitive to different initial con-
ditions, cases with different initial points were used to find
a stable method. Within the region shown in Fig. 4�b�, case
I uses �X ,Y�= �8,10� as the starting point, and case II uses
�X ,Y�= �10,8�. The results are shown in Table 3. The
“Function calls” column gives the number of objective-
function calculations, and these usually cost most of the
time involved in the solution process. In this study it means
the detector fiber has to move to the determined point, mea-
sure the light intensity, and return the value to the program.
Thus, the number of function calls and iterations, instead of
the total search time, can be used to evaluate the efficiency
of the methods.

The iteration number of the conjugate-gradient method

Fig. 5 Search path of the Nelder-Mead simplex method.
is the same as for the steepest-descent method in case II,
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ut these numbers are very different in case I. In case I, the
earch direction of the steepest-descent Method in the first
teration points nearly to the optimum solution, as shown in
ig. 6�a�, while the norm value for iteration 1 is larger than
or iteration 0, as shown in Table 4. Therefore, 	�1� 	Eq.
8�
 is large and the effect of the last search direction is also
arge when using the conjugate-gradient method. It is obvi-
us that the second search direction of the steepest-descent
ethod is orthogonal to the first directional,7 and it is close

o the optimum solution. However, the second search direc-
ion of the conjugate-gradient method will not point to the
ptimum solution because of the 	�1� effect, as shown in
ig. 6�a� and 6�c�. In case II, the initial point of iteration 1

s close to the optimum solution and the norm value is
mall, as shown in Table 4. Therefore, 	�1� is small, and the
onjugate-gradient method is similar to the steepest-descent
ethod, as shown in Fig. 6�b� and 6�d�.
Although the number of function calls for the DFP and

FGS methods is smaller than for the steepest-descent
ethod, their iteration number is larger in case I. The

earch directions of the DFP and BFGS methods will be
odified far from the optimum point by the approximate

nverse Hessian matrix and the approximate Hessian ma-

Table 2 Results of the Nelder-Mead simplex method.

teration Points �X ,Y�
Optical power

�dBm�
Time
�s�

�6, 15� �6.72, 14.81�
�6.19, 14.29�

−25.65 74.1

�6.72, 14.81� �6.19, 14.29�
�6.91, 14.09�

−22.46

�6.19, 14.29� �6.22, 12.95�
�6.91, 14.09�

−22.46

�6.22, 12.95� �6.91, 14.09�
�6.93, 12.76�

−20.11

�6.91, 14.09� �8.32, 14.38�
�6.93, 12.76�

−20.11

�8.32, 14.38� �6.93, 12.76�
�8.35, 13.04�

−18.13

�6.93, 12.76� �6.96, 11.43�
�8.35, 13.04�

−18.13

�6.96, 11.43� �8.35, 13.04�
�8.37, 11.71�

−17.17

�8.35, 13.04� �9.77, 13.33�
�8.37, 11.71�

−17.17

0 �9.77, 13.33� �8.37, 11.71�
�9.79, 11.99�

−16.56

1 �8.37, 11.71� �8.4, 10.38�
�9.79, 11.99�

−16.56

2 �8.4, 10.38� �9.79, 11.99�
�9.82, 10.66�

−16.12
rix. This is because the light intensity distribution is simi-
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lar to a Gaussian distribution. If the light intensity distribu-
tion is exactly Gaussian, the gradient vector will point to
the optimum position. Therefore, any modification of the
gradient vector will reduce the search efficiency.

From Table 3, it is obvious that the search process has
only a small number of iterations, but its number of func-
tion calls is large, meaning that most function calls happen
in the one-dimensional search. Thus, enhancing the effi-
ciency of the one-dimensional search will be helpful for
enhancing the efficiency of the entire optimization process.

In conclusion, the steepest-descent method needs more
function calls during the search process, but it is more
stable for the optical fiber alignment, and the Hessian cal-
culations are not required. Therefore, it is used in the fol-
lowing experiments.

4.3 Step-Size Determination
After the search direction has been determined, the step
size in this direction has to be calculated. The discussion of
the one-dimensional search �the step-size determination� in
Sec. 3.2.2 leads us to set the initial point at �X ,Y�
= �6,15�. Only one initial point is used, because the effects
of different initial points have already been discussed in
Sec. 4.2. The steepest-descent method is used as a datum in
this section because it is the most stable method. The actual

Table 3 Cases of direction-searching methods.

Class Method
Function

calls
Iteration
number

Optical power
�dBm�

�a� Data of case I

Gradient-based Steepest
descent

505 4 −16.10

Conjugate
gradient

1045 1 −16.10

Hessian-based DFP 504 5 −16.10

BFGS 398 5 −16.10

�b� Data of case II

Gradient-based Steepest
descent

324 3 −16.10

Conjugate
gradient

324 3 −16.10

Hessian-based DFP 276 3 −16.10

BFGS 276 3 −16.10

Table 4 Objective-function norms of conjugate-gradient method.

Case �c�0�� �c�1�� 	�1�

I 0.044 0.073 2.705

II 0.076 0.007 0.008
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ime required for this process is used to evaluate the one-
imensional search methods, because the search time is
pent not only on receiving the light signal, but also on
oving the fiber to the optimum points. The results of the

teepest-descent method with the equal-interval search, the
olden-section search, and polynomial interpolation are
hown in Table 5. It is obvious that polynomial interpola-
ion is the most efficient method. It saves about half the
earch time during the process of finding the step size.

Fig. 6 Search paths of solution methods: �a� ste
method in case II, �c� conjugate-gradient metho

Table 5 Results of steepest-descent m

Method Iteration Point

Equal-interval search 1 �6,

2 �8.45

3 �10.21

Golden-section search 1 �6,

2 �8.69

3 �10.12

Polynomial interpolation 1 �6,

2 �7.57,

3 �10.13
ptical Engineering 065004-
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4.4 Full Search Process

After discussing the characteristics of the individual pro-
cesses, the selected methods can be combined to perform
the full search process. The results of the first stage are
shown in Table 6�a� and Fig. 7. There are eight triangles in
the first stage. The edge length of the first triangle is
0.74 �m, and it is a realized value. The trajectory is a little
different from the previous experiment because of the error

descent method in case I, �b� steepest-descent
se I, �d� conjugate-gradient method in case II.

with one-dimensional search methods.

Optical power
�dBm� Function calls

Time
�s�

−26.02 55 180.1

−17.08 31

−16.07 Convergence

−26.02 47 156.6

−16.17 23

� −16.07 Convergence

−26.02 23 84.7

−17.80 8

� −16.07 Convergence
epest-
d in ca
ethod

�X ,Y�

15�

, 10�

, 11.1�

15�

, 9.96�

, 10.96

15�

10.62�

, 11.44
June 2007/Vol. 46�6�7

s of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



i
t
o
i
i
s

I

I

Lin, Yu, and Liu: Novel optomechanical alignment method…

O

Download
nherent in the equipment. The solution is moved very close
o the optimum solution. The point with the minimum
bjective-function value in the first stage is used as the
nitial point of the second stage, and the results are shown
n Table 6�b�. There is only one iteration in the second
tage, and its step size is 1.87 �m.

Table 6 Results of the two-stage strategy.

�a� Results of the first stage

teration Points �X ,Y� Time �s�

1 �6, 15� �6.72, 14.81� �6.19, 14.29� 30.9

2 �6.72, 14.81� �6.19, 14.29� �6.91, 14.09�

3 �6.19, 14.29� �6.91, 14.09� �6.22, 12.95�

4 �6.91, 14.09� �6.22, 12.95� �6.93, 12.76�

5 �6.22, 12.95� �5.91, 10.38� �6.93, 12.76�

6 �5.91, 10.38� �6.93, 12.76� �6.63, 10.19�

7 �6.93, 12.76� �8.52, 13.66� �6.63, 10.19�

8 �8.52, 13.66� �6.63, 10.19� �8.21,
11.09�

�b� Results of the second stage

teration Point �X ,Y� Optical
power �dBm�

Time �s�

1 �8.21,11.09� −16.80 26.4

2 �9.87, 10.23� −16.07
Fig. 7 Search path of the two-stage strategy with 
=0.008.
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The full search process requires approximately 57 s to
find the optimum point, and the optimum optical power is
−16.07 dBm. Comparing these results with those of the
Nelder-Mead simplex method shown in Table 2, we see that
the two-stage method can save about 23% of the time, and
has a higher accuracy. Compared to the steepest-descent
method with polynomial interpolation as shown in Table 5,
it can reduce the search time by 32%. Therefore, the pro-
posed two-stage method fully overcomes the previous dis-
advantages.

5 Conclusions
The optical fiber alignment problem is a typical uncon-
strained optimization problem. This study uses different op-
timization methodologies—the steepest-descent method,
the conjugate-gradient method, the DFP method, and the
BFGS method—for the direction search to find the opti-
mum position, and compares them for efficiency and sta-
bility. This study also uses the steepest-descent method
with the equal-interval search, the golden-section search,
and polynomial interpolation to compare the efficiencies.
Based on the experimental results, this study presents a
two-stage method to find the optimum position. The first
stage uses the Nelder-Mead simplex method, and the sec-
ond stage uses the steepest-descent method with polyno-
mial interpolation. The following conclusions can be
drawn:

1. The number of iterations when using the steepest de-
scent method is small because the light intensity dis-
tribution is similar to a Gaussian distribution.

2. The steepest-descent Method is better for the align-
ment problem because the number of iterations is
small and any modification to the search direction
will let the search process stray far from the optimum
point.

3. A good one-dimensional search method is important
during optimization because the number of iterations
of the search process is small, and most function calls
occur in the one-dimensional search.

4. Polynomial interpolation is better than other methods
because it can find the optimum step size more
quickly.

5. The Nelder-Mead simplex method used in the two-
stage method can get close to the optimum position
quickly because it does not calculate the search direc-
tion or the step size.

6. The two-stage method is more efficient than using
only the steepest-descent method with polynomial in-
terpolation.

7. The method proposed in this study is not only suit-
able for optical fiber alignment; the manufacture of
optical components, such as the transmitter, receiver,
and waveguide module, can use this method to mini-
mize the optical loss.
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