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Abstract

The study is aimed to perform dynamic modeling of a part feeder powered by piezoelectric actuation. This part feeder consists mainly
of a horizontal platform vibrated by a pair of parallel piezoelectric bimorph beams. Owing to intermittent impacts with the platform, the
transported part on the platform is able to march forward from one end to another. Dynamic modeling of the feeder is accomplished by
essentially using the Rayleigh–Ritz decomposition method. The process of modeling first incorporates material properties and constitu-
tive equations of the piezoelectric materials, and then captures the complex dynamics of the parallel-beam piezo-feeder by three
low-order assumed-modes in the transverse direction of the vibrating beams. Applying Lagrange’s equations on the kinetic and strain
energies formulated in terms of generalized coordinates associated with the first three modes, the system dynamics is then represented
by three coupled discrete equations of motion. Based on these equations, motions of the platform can be obtained. With platform motion
in hand, the intermittent impacts between the parts and the platform are modeled, rendering the marching speed of the part. Numerical
simulations are conducted along with the experiments. The closeness found between the theoretical predicted transporting speed of the
part and the experimental counterparts verify the effectiveness of the models established.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Piezoelectric part feeders in varied structures are often
used nowadays to transport small parts such as screws,
nuts and IC components along a manufacture line in
many automatic factories, especially those in semi-con-
ductor industry. These piezoelectric feeders own merits
of low cost, simple structure and free of electromagnetic
effects. This study is dedicated to establish a dynamic
model and perform dynamic analysis on the piezoelectric
feeder in a simple form as shown in Fig. 1—a rectangular
platform supported by a pair of parallel bimorph piezo-
electric bimorph beams tilted by some angle. Applying
harmonic voltages on the two piezoelectric beams in a
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synchronous fashion, the platform would be in pure
translational motions in the direction perpendicularly to
the lengths of the piezo-beams. The parts to be trans-
ported on the platform are then moved forward to
another end of the platform by intermittent contacts/col-
lision with the platform.

The modeling of the bimorph piezoelectric beam has
been intensively investigated in the recent years. Some
research works focused on incorporating nonlinear factors
into the lumped model of the beam dynamics [1–3], while
others further developed various control schemes to
achieve precision positioning or reduce structure vibrations
via piezoelectric structures [4–12]. Within these works,
Choi et al. [6–9] proposed control designs for piezoelectric
beams to perform position tracking. The designs were
based on the discrete beam model derived from assumed-
modes. Gosavi and Kelkar [10] constructed the model of

mailto:pchao@mail.nctu.edu.tw


Fig. 1. The physical structure of the piezoelectric feeder.
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a piezo-actuated flexible beam by Lagrangian formulation
for robust control design. Han et al. [11] developed an ana-
lytical model of the laminated composite beam by classical
laminated beam theory and Ritz method. Bailey et al. [12]
designed an active vibration damper for a cantilever beam
by a piezoelectric polymer and distributed-parameter con-
trol theory. Recently, efforts were paid to utilize the tech-
nique of finite elements to model the piezo-structures.
Piefort and Preumont [13] modeled coupled piezoelectrical
systems by finite element formulation. Cappelleri et al. [14]
constructed finite element simulations of the PZT bimorph
actuators with aim for computational inexpensiveness.
Fung et al. [15] and Fung and Chao [16] modeled the
dynamic behavior of the piezoelectric beams by Hamilton’s
principle and the finite elements.

Besides the past studies on the dynamics of piezo-
beams in varied forms, few research works devote effort
on piezoelectric part feeder. Choi and Lee [17] conducted
modal analysis and control of a bowl parts piezo-feeder.
Jiang et al. [18] developed a simulation software for parts
feeding. Doi et al. [19] achieved feedback control of a par-
allel beam parts feeder; however, the main focus was on
the controller development and thus the associated mod-
eling derived only lumped model and the collision
between parts and feeder were not explored. In this study,
the method of Rayleigh–Ritz decomposition featuring
assumed modes [20] is employed herein to predict dynam-
ics of parallel piezoelectric beams, then using basic colli-
sion theory [21] to estimate transporting speed of the
part on the platform. The transporting velocity of the
objective on the feeder platform depends on various
designs of the feeder such as sizes/mass/material proper-
ties of piezoelectric beams and platform, even that the tilt-
ing angle of the two parallel piezo-beams has profound
effects on the transporting velocity. The final goal of the
current study is to establish reliable theoretical models for
designers to predict well about the feeder performance—
the transporting velocity, prior to mass production.
Experiments are conducted to verify the theoretically-pre-
dicted transportation speeds of the part. General closeness
between simulation data and experiment counterparts are
found, which verify the effectiveness of the models
developed.

2. Dynamic modeling

The physical structure of the piezo-feeder as well as deno-
tations of components is shown in Fig. 1. The main compo-
nents include (1) a horizontal platform carrying transported
parts, (2) two parallel bimorph piezoelectric beams, each of
which has leaf spring bolted with a steel plate sandwiched
by piezoelectric patches. With the beams tilted by an angle
a from vertical, the parallel beams would be flexurally
deformed reciprocally with harmonic voltages applied on
piezoelectric patches. The platform is consequently in pure
translational motions perpendicular to the lengths of the
piezo-beams. The assumption of synchronism in planar
movements of two beams regardless of manufacturing toler-
ance is set to initialize the ensuing dynamic modeling. This
assumption keeps the platform in constant horizontal while
vibrating. The dynamics of the beams are analyzed first in the
following subsection to predict platform motion, which is
followed by experimental model verification in Section 2.2.
Subsequently, the impact dynamics of the part to
the platform is analyzed to predict transporting speed in
Section 2.3.
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2.1. Bimorph piezoelectric beams

A simplified model of a piezoelectric bimorph beam is
shown in Fig. 2, one end of which is fixed to baseplate
(ground) while another is in oscillatory vibrations with a
constant angle a to the horizontal. Fig. 2a denotes impor-
tant dimensions and coordinates, where L is the total
length of the piezo-beam; L1 is the length of portion of
the steel plate sandwiched by piezo-patch; x is the axis
along the beam while y captures the transverse deflection
of the beam at given instant; i.e., y = y(x, t). Fig. 2b shows
all forces acting on the beam. In both Fig. 2a,b, the plat-
form and mounting bolts are simplified as point masses
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Fig. 2. (a) The configuration and each component of the simplified model
and (b) acting forces on the piezo-beam.
and located at appropriate positions. The two piezoelectric
patches on the steel plate produce a harmonic bending
moment Mv. The moment results in harmonic motion of
the entire beam, rendering the horizontal platform vibrat-
ing in pure harmonic translational motions with a constant
angle a to the horizontal and then moving the part on the
platform forward by the impacts between the part and plat-
form. The objective of the analysis in this section is to fetch
the harmonic motion of the platform by performing
dynamic modeling of the piezoelectric bimorph beam to
obtain the motion of the beam tip before analyzing the
impact dynamic of the transported part to the platform
in the following section.

The dynamic modeling of the piezoelectric bimorph
beams is carried out via the method of the assumed-mode
accompanied with the technique of Rayleigh–Ritz decom-
position [20] and linear constitutive physical laws of the
piezoelectric materials. It is first assumed the piezo-beams
are primarily in flexural motion, with negligible axial
motion. Based on the method of the assumed-mode, the
flexural motions of the beam y(x, t) as defined in Fig. 2
can be approximated by

yðx; tÞ ¼
Xn

i¼1

/iðxÞqiðtÞ; ð1Þ

where /i(x) is the assumed-mode shape function, qi(t) is the
generalized temporal modal coordinate, and n is the num-
ber of modes. The associated boundary conditions of the
beam are

yðx; tÞ ¼ 0; x ¼ 0 and y0ðx; tÞ ¼ 0; x ¼ 0; ð2aÞ
to reflect the fixed end at the bottom, while

y0ðx; tÞ ¼ 0; x ¼ L and y000ðx; tÞ ¼ 0; x ¼ L ð2bÞ
to realize the condition of the fixed tilt angle a and free
shear force at the other end, respectively. This non-zero
fixed angle of a in fact makes possible horizontal, pure
translational motions of the platform. It should be noted
at this point that since the piezoelectric beam of feeder is
not only fixed to ground but also connected to the horizon-
tal platform with a fixed tilt angle, the ensuing modeling
process is unique and different from those for piezoelectric
cantilever beams, which were well done in many past works
[6–10]. Satisfying the four boundary conditions in Eq. (2),
the trail functions for applying the assumed-mode method
are set as the mode shapes, which are

/iðxÞ ¼ ðsin bix� sinh bixÞ þ aiðcos bix� cosh bixÞ;
i ¼ 1; 2; . . . ; ð3Þ

where

ai ¼
ðcos biL� cosh biLÞ
ðsin biLþ sinh biLÞ

and the values of bi’s can be easily calculated by tanbiL +
tanhbiL = 0. Note that one can follow a standard proce-
dure of solving vibration of a beam [20] to obtain the mode
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shapes in Eq. (3). With calculated bi’s the first three mode
shapes of /i(x) are depicted in Fig. 3, which would be uti-
lized later in this study. The kinetic energy of the system
can then be expressed as

T ðtÞ ¼ 1

2

Z L1

0

mbðxÞ _y2ðx; tÞdxþ 1

2

Z x2

x1

mpðxÞ _y2ðx; tÞdx

þ 1

2
m1 _y2ðL1; tÞ þ

1

2

Z L

L1

msðxÞ _y2ðx; tÞdx

þ 1

2
m2 þ

M
2

� �
_y2ðL; tÞ; ð4Þ

where mb(x), mp(x) and ms(x), respectively, denote the
masses of steel beam, piezoceramic and leaf spring, while
m1 and m2 are the mass of mounting bolts and M is the
mass of the horizontal platform. It can be seen from the
term of M/2 in Eq. (4) that the total mass of the platform
is evenly distributed at two beam tips. Incorporating Eq.
(1) into Eq. (4) yields

T ðtÞ ¼ 1

2

Xn

i¼1

Xn

j¼1

mij _qiðtÞ _qjðtÞ; ð5Þ

where

mij ¼mji ¼
Z L1

0

mbðxÞ/iðxÞ/jðxÞdx

þ
Z x2

x1

mpðxÞ/iðxÞ/jðxÞdxþm1/iðL1Þ/jðL1Þ

þ
Z L

L1

msðxÞ/iðxÞ/jðxÞdxþ m2þ
M
2

� �
/iðLÞ/jðLÞ;

i; j¼ 1; . . . ;n: ð6Þ

Assuming small deflections of the piezo-beams and the
constant cross section along the length, the bending mo-
ment induced is

Momðx; tÞ ¼ EbIbðxÞo2yðx; tÞ
ox2

; ð7Þ
Fig. 3. The first three assumed-modes of the piezo-beam.
where Eb and Ib are Young’s modulus and moment of iner-
tia of the steel beam, respectively. The strain energy of steel
beam is

V bðtÞ ¼
1

2

Z
V

rbeb dV ; ð8Þ

where rb and eb are stress and strain of the beam, respec-
tively, and they are functions of axial position x only.
The stress can be expressed in terms of the bending mo-
ment as

rbðx; tÞ ¼ �
Mom � yðx; tÞ

IðxÞ : ð9Þ

Incorporating Eqs. (7) and (9) into Eq. (8), and using
Hooke’s law (rb = Ebeb) yield

V bðtÞ ¼
1

2

Z L1

0

EbIbðxÞ
o

2yðx; tÞ
ox2

� �2

dx; ð10Þ

where Ib ¼
bbh3

b

12
with bb and hb being width and thickness

the steel beam, respectively. Consider the linear constitu-
tive equations for piezoelectric materials in the form of

r11 ¼ cDd11 � h31D; ð11Þ
E3 ¼ �h31d11 þ b33D; ð12Þ

where r11 and d11 are the stress and strain in the axial
direction of piezoelectric elements; E3 is the applied elec-
tric field and D is the electric displacement which is posi-
tive when the electric field and the polarization are in the
same direction. cD, h31 and b33 are the elastic stiffness for
constant electric displacement, the piezoelectric strain
constant and dielectric constant, respectively. The strain
energy of the two piezoelectric patches in the bimorph
structure is then

V pðtÞ ¼
1

2

Z
V L

ðr11d11 þ DE3ÞdV þ 1

2

Z
V R

ðr11d11 þ DE3ÞdV ;

ð13Þ

where VL and VR are individual volumes of the two piezo-
patches at right and left sides of the steel plate, respectively.
Substituting Eqs. (11) and (12) into Eq. (13) and also incor-
porating Eqs. (7) and (9), Vp(t) arrive at

V pðtÞ ¼
Z x2

x1

E2
pIp

cD

o
2yðx; tÞ
ox2

� �2

dx� Ap

Z x2

x1

h2
31D2

cD
dx

þ Ap

Z x2

x1

b33D2 dx; ð14Þ

where Ip ¼
bph3

p

12
þ Apd2

bp with Ep, bp, hp and Ip being the
Young’s modulus, width, thickness and the moment of
inertia of the piezo-patch, respectively, and finally dbp is
the distance between the neutral axes of the steel and the
piezo-patches. On the other hand, the strain energy of the
leaf spring is

V sðtÞ ¼
1

2

Z L

L1

EsI sðxÞ
o2yðx; tÞ

ox2

� �2

dx: ð15Þ
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The total strain energy of the entire beam system including
the masses of platform and mounting bolts can be obtained
as

V ðtÞ ¼ 1

2

Z L1

0

EbIbðxÞ
o2yðx; tÞ

ox2

� �2

dxþ
Z x2

x1
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ox2
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dx
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dxþAp
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dxþm1g cosa �L1
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2

 !

þ m2þ
M
2

� �
g cosa �L ðy 0ðL; tÞÞ2

2

 !
: ð16Þ

Substituting Eq. (1) into Eq. (16), the total strain energy
V(t) can further be expressed as

V ðtÞ ¼ 1

2

Xn

i¼1

Xn
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where

kij ¼ kji ¼
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i; j ¼ 1; . . . ; n: ð18Þ

With mass and stiffness matrices derived as in Eqs. (6) and
(18), respectively. The external work done by the applied
voltage and gravity is derived next, which is started with
expressing the work as

W ¼ MvðtÞ � ½y0ðx2; tÞ � y 0ðx1; tÞ� þ m1g sin a � yðL1; tÞ

þ m2 þ
M
2

� �
g sin a � yðL2; tÞ; ð19Þ

where Mv(t) is the bending moment generated by the piez-
oceramic bimorph patches due to the application of har-
monic voltage ~V ðtÞ. In fact,

MvðtÞ ¼ �2epEphpbp

hp þ hb

2

� �
¼ c � ~V ðtÞ; ð20Þ

where ep is the induced strain in the piezoceramic patches,
which is arisen from application of the input voltage. The
proportionality of ep to applied voltage ~V ðtÞ in fact makes
possible the expression of MvðtÞ ¼ c � eV ðtÞ in the second
line of Eq. (20), where c is a constant and can be seen as
the generated bending moment per voltage. The work in
Eq. (19) can further be expressed in terms of generalized
coordinates of the assumed modes in Eq. (1) as

W ¼
Xn

i¼1

MvðtÞ � ½/0iðx2Þ �/0iðx1Þ�qiðtÞ þ
X3

i¼1

m1g sina �/iðL1ÞqiðtÞ

þ
Xn

i¼1

m2 þ
M
2

� �
g sina �/iðLÞqiðtÞ: ð21Þ

With the kinetic/potential energies and work obtained, the
Lagrangian can be formulated by summing Eqs. (4), (17)
and (21), which is prepared for further derivation of system
equations of motion, yielding

L̂¼ T � V þW ¼ 1

2

Xn

i¼1

Xn

j¼1

mij _qiðtÞ _qjðtÞ �
1
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Using Lagrange’s equations

d

dt
oL̂

o _qiðtÞ

� �
� oL̂

oqiðtÞ
¼ 0; i ¼ 1; . . . ; n; ð23Þ

one can derive the discrete equations of motion for the sys-
tem asXn

j¼1

mij€qjðtÞþ
Xn

j¼1

kijqjðtÞþ
Xn

j¼1

m1gcosa �L1/
0
iðL1Þ/0jðL1ÞqjðtÞ

þ
X3

j¼1

m2þ
M
2

� �
gcosa �L/0iðLÞ/

0
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¼MvðtÞ � ½/0iðx2Þ�/0iðx1Þ�þm1gsina �/iðL1Þ

þ m2þ
M
2

� �
gsina �/iðLÞ: ð24Þ

Note that an additional Lagrange’s equation governing the
electric displacement D other than those in Eq. (23) is not
considered herein since it leads to no mechanical dynamic
equation due to the fact that the piezoelectric effects are al-
ready incorporated in mechanical work in Eq. (21) through
the moment Mv(t). To re-arrange Eq. (24) into standard
forms of dynamic equations, define

Mij ¼ mij; and ð25Þ
Kij ¼ kij þ m1g cos a � L1/

0
iðL1Þ/0jðL1Þ

þ m2 þ
M
2

� �
g cos a � L/0iðLÞ/

0
jðLÞ;

i; j ¼ 1; . . . ; n; ð26Þ



Table 1
Material properties and dimensions of the piezoelectric feeder

Piezo-patches Steel plate Leaf spring

Total length l (mm) 19 38.9 26
Width b (mm) 13 16 16
Thickness h (mm) 1 2.3 1
Young’s modulus

E (1010N/m2)
6.0 20.7 9.56

Density q (kg/m3) 7500 7800 2250
Tilt Angle a (�) 15
Elastic stiffness cD (1010N/m2) 4.22 N/A N/A
Piezoelectric strain constant

d31 (10�10m/V)
�2.7 N/A N/A

Piezoelectric stress constant
h31 (108N/Coulomb)

4.39 N/A N/A

Dielectric impermeability
b33 (106Vm/Coulomb)

6.393 N/A N/A
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as symmetric mass coefficient and stiffness coefficient matri-
ces, respectively. Assuming further the material damping of
the system as the Rayleigh damping, the damping matrix
can be expressed as a linear combination of the mass and
stiffness matrices of the form

Cij ¼ âMij þ b̂Kij; i; j ¼ 1; . . . ; n: ð27Þ
where â and b̂ are to be determined for different material
and/or experiments. With the assumed MvðtÞ ¼ c � eV ðtÞ in
Eq. (20), one can cast the external force, RHS of Eq.
(28), into the form

F i � eV ðtÞ ¼ MvðtÞ � ½/0iðx2Þ � /0iðx1Þ� þ m1g sin a � /iðL1Þ

þ m2 þ
M
2

� �
g sin a � /iðLÞ ð28Þ

with the coefficient Fi as

F i ¼ c � ½/0iðx2Þ � /0iðx1Þ�

þ m1g sin a � /iðL1Þ þ m2 þM=2ð Þg sin a � /iðLÞ
VoltðtÞ : ð29Þ

Finally, the decomposed equations of motion for analysis
can be expressed as

Mij€qjðtÞ þ Cij _qjðtÞ þ KijqjðtÞ ¼ F i � eV ðtÞ; i; j ¼ 1; . . . ; n:

ð30Þ
where {Mij, Cij, Kij} are given by Eqs. (6),(18),(25),(27) and
(26) and Fi is given by Eq. (29). With the discrete model in
Eq. (30) via the Rayleigh–Ritz decomposition method, the
solutions of generalized coordinates qj(t)’s can be easily ob-
tained. One can subsequently utilize the original assumed
expression of y(x, t) in Eq. (1) with the assumed-modes in
Eq. (3) to derive the flexural motion of piezoelectric bimo-
rph beam, further rendering the translational motions of
the platform—the same as that of the beam tip.
2.2. Experimental verification of the predicted beam

dynamics

Experiments are conducted to obtain practical fre-
quency response of the piezoelectric feeder. The results
are compared with those theoreticals predicted by the
dynamic model established in the last subsection. The crit-
ical dimensions and material properties of the feeder are
listed in Table 1. In addition, the masses of the platform
M, and top/lower mounting bolt assemblies, m1 and m2

(as shown in Fig. 1) are calibrated, resulting in M =
0.1057 kg, m1 = 0.0046 kg and m2 = 0.0038 kg, respec-
tively. The experiment system is set up as shown in
Fig. 4a, where the inter-relation between the feeder and
equipments is illustrated. The dynamic signal analyzer pro-
vides swept-sine input voltages to the piezoelectric patches,
ranging from 10 Hz to 1 kHz—the upper operation limit.
The input voltage is powered by an amplifier before it is
sent to the piezo-patches. With the top platform of the fee-
der in harmonic translational motions and the part under
transporting, a laser displacement sensor is utilized to mea-
sure the horizontal displacement of the feeder. Measure-
ments are taken and feedbacked to the dynamic signal
analyzer. Calculated by the analyzer, the gain and phase
of the frequency response from the applied voltage to the
horizontal displacement of the platform can be obtained,
which are shown in Fig. 4b, along with the theoretical
response. As to the numerical simulated responses, they
are obtained based on the derived discrete version of the
mathematical model in Eq. (30) with the practical parame-
ters in Table 1 employed. Considering the first three modes;
i.e., n = 1, . . ., 3 and assuming â ¼ 0:05 and b̂ ¼ 6� 10�5

for the Rayleigh damping Cij’s defined in Eq. (27), the gain
and phase of frequency responses are calculated and also
shown in Fig. 4b. Note that due to the non-zero tilting angle
of the piezo-beam to the vertical, the transverse flexural direc-
tion of the piezo-beam is not in horizontal. Therefore, the
theoretically-calculated gain shown in Fig. 4b is multiplied
by the cosine of the tilting angle of the piezo-beam to reflect
actual beam tip flexural motion before plotted in Fig. 4b.

It is seen from Fig. 4b that a resonance occurs around
330 Hz, and most importantly, the closeness between the
theoretical predicted response and experimental counter-
part is clearly present, verifying the effectiveness of the
dynamic model established in the previous subsection.
Note that the closeness validates that even though the hys-
teresis effects of the piezo-actuation are not considered by
the theoretical model (30), the vibration of the piezo-beam
in amplitude can be predicted accurately since the hystere-
sis induces primarily only the phase shift (time delay) of the
piezo-beam response. Therefore, the transported part speed
could consequently be accurately estimated. It is also
observed from Fig. 4b that the feeder owns fairly flat gain
response before the resonance of 330 Hz. This dynamic
characteristic allows the piezo-feeder to be usually designed
to be operated before or close to the resonance frequency
to have fast part-transporting speeds. Finally, Fig. 4c pre-
sents the corresponding time-domain experimental and the-
oretically displacements of the platform in the horizontal
direction with input voltage of 150 V and frequency of



Fig. 4. Experimental verification of platform dynamics; (a) the experiment system for system identification; (b) frequency response of the theoretical and
realistic models in horizontal displacement of the vibrating platform; and (c) time-domain horizontal displacement of the platform by experiment and
numerical simulation. The input voltage is 150 V in frequency of 250 Hz.
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250 Hz. It is seen from this figure that satisfactory correla-
tion between experimentals and theoreticals is clearly pres-
ent, showing the effectiveness of the established dynamic
model in Eq. (30) for predicting dynamics of the platform.

2.3. The impact dynamics of the parts

The interactive dynamics between the transported part
and the vibratory platform is explored in this section to
find the transporting speed of the part subjected to some
harmonic voltage applied. Consider first a horizontal plat-
form supported by a pair of tilted parallel bimorph piezo-
electric beams as shown in Fig. 5, where the platform is
excited to undergo oscillatory pure translational motions
along Y-direction—the motions between solid-lined and
dashed-lined positions. These oscillations of the platform
in Y-direction first bring the transported part upward along
the Y-direction as the platform in uprising, and then
allow the part in free falling as the platform is descending.
While the platform changing its oscillatory direction from
descending to ascending, the transported part has intermit-
tent impacts with the platform until the platform brings the
part upward again. In summary, the interactive dynamics
between the transported part and the platform can be



Fig. 5. Parts in transportation on the platform.

Fig. 4 (continued )
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divided into three stages: (1) part arising with the platform;
(2) part free falling; and (3) part impacting the platform.
This series of interactive three-stage dynamics is repeated
between platform oscillation cycles, moving the part from
one end to another end of the platform. To predict the
transporting speed of the part, the following dynamic anal-
ysis is conducted. Assuming first the input voltage to the
bimorph piezo-beam is in a harmonic form eV ðtÞ ¼
�V sinð2pf � tÞ, where f is the oscillation frequency in Hz
and �V is the magnitude of the input voltage. The motion
of the beam tip in the Y-direction is then also in a harmonic
form of

yðL2; tÞ ¼ A sinð2pf � tÞ; ð31Þ
where A is the amplitude of the beam tip response, which
can be derived by solving Eqs. (29) and (30). Note that A

is also amplitude of platform oscillation. With A solved,
the horizontal and vertical motions of the platform, equal
to that of the beam tip, can be expressed by

dpl;hðtÞ ¼ yðL2; tÞ cos a ¼ A sinð2pftÞ cos a; ð32Þ
dpl;vðtÞ ¼ yðL2; tÞ sin a ¼ A cosð2pftÞ sin a; ð33Þ
where dpl,h(t) and dpl,v(t) denote the horizontal/vertical dis-
placements of the platform, respectively; and a is the tilt
angle of the piezo-beams. The horizontal and vertical
velocities of the platform are then

vpl;hðtÞ ¼ _yðL2; tÞ cos a ¼ 2pfA cosð2pf � tÞ � cos a; ð34Þ
vpl;vðtÞ ¼ _yðL2; tÞ sin a ¼ 2pfA cosð2pf � tÞ � sin a; ð35Þ

where vpl,h(t) and vpl,v(t) denote horizontal/vertical veloci-
ties of the platform, respectively. With the motion of plat-
form in hand, the three stages of impact dynamics for the
transported part are exploited next.

2.3.1. Part arising with platform

In this stage, the transported part sticks to the platform;
therefore, the displacement/velocity of the part are same as
the platform. The displacement/speed of the part can be
captured by motion of the platform as follows:

dpa;hðtiÞ ¼ dpl;hðtiÞ; ð36Þ
dpa;vðtiÞ ¼ dpl;vðtiÞ; ð37Þ
vpa;hðtiÞ ¼ vpl;hðtiÞ; ð38Þ
vpa;vðtiÞ ¼ vpl;vðtiÞ; ð39Þ

where ti denotes the arbitrary time instant when the part
arises with the platform; dpa,h(ti), dpa,v(ti), vpa,h (ti) and
vpa,v(ti) denote the horizontal/vertical displacements and
speeds of the transported part, respectively.

2.3.2. Part freely falling (separated from platform)

As the part is lifted by the platform toward the highest
horizontal position, the vertical motion of the platform
decelerates to zero. The vertical acceleration of the platform
in this period can be easily be derived from Eq. (33) or (35)
as

apl;vðtÞ ¼ �ð2pf Þ2 � A sinð2pf � tÞ � sin a: ð40Þ
It stands a chance that before the platform reaches the
highest horizontal position, the acceleration of the plat-
form falls below the gravity; that is,

apl;vðtÞ < �g: ð41Þ
The above condition gives the moment when the transported
part is separated from the oscillating platform and then expe-
riencing free-falling motion. If the condition are not satisfied,
the part sticks to the platform all the time, rendering no part
transportation. The vertical position and speed of the part
after separation are, respectively, as follows:

dpa;vðtiÞ ¼ dpa;vðti�1Þ þ vpa;vðti�1Þ � ðti � ti�1Þ

� 1

2
g � ðti � ti�1Þ2; ð42Þ

vpa;vðtiÞ ¼ vpa;vðti�1Þ � gðti � ti�1Þ; ð43Þ

where {ti, ti�1} are two arbitrary time instants during part
free-falling. As to the horizontal motion of the part, it is a
constant motion after the separation. In the other words,
the horizontal speed of the part maintains the last speed
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as separated from the platform; therefore, the horizontal
position and speed of the part after separation are, respec-
tively, as follows:

dpa;hðtiÞ ¼ dpa;hðti�1Þ þ vpa;hðti�1Þ � ðti � ti�1Þ; ð44Þ
vpa;hðtiÞ ¼ vpa;hðti�1Þ: ð45Þ
2.3.3. Part impacting the platform

As the platform decelerates its vertical motion to com-
plete almost an oscillation cycle, the free-falling part with
a constant downward acceleration of gravity is bound to
impact the platform. Assuming negligible horizontal fric-
tion between the part and platform, it can be deducted that
with the platform kept in horizontal, the impact only
affects the vertical motions of the part before and after
the impact; i.e., the horizontal part-transporting speed
are the same around the impact instant. Based on the
aforementioned, the basic theory of one-dimensional colli-
sion [21] with coefficient of restitution e being employed to
characterize the impact dynamics of the transported part,
which asserts the principle

ðv01 � v02Þ ¼ �e � ðv1 � v2Þ; ð46Þ
where v01 and v02 are the velocities of the colliding objectives
after impacting, and v1 and v2 are the velocities of the ob-
jects before impacting. Applying principle (48) and conser-
vation of momentum, the after-impact vertical velocities of
the part and the platform can be derived, respectively, as

v0pa;vðtiÞ ¼
ðmpa � eMÞ � vpa;vðtiÞ þMð1þ eÞ � vpl;vðtiÞ

ðmpa þMÞ ; ð47Þ

v0pl;vðtiÞ ¼
mpað1þ eÞ � vpa;vðtiÞ þ ðM � empaÞ � vpl;vðtiÞ

ðmpa þMÞ ; ð48Þ

where mpa and M denote the masses of the parts and the
platform; vpa,v(ti) and vpl,v(ti) are the velocities of the part
and the platform before impact, respectively; v0pa;vðtiÞ and
v0pl;vðtiÞ represent the ones after impact. Assuming mass of
the platform is much larger than that of the transported
part; i.e., M� mpa, the after-impact velocities of the plat-
form and transported part in Eqs. (47) and (48) can be well
approximated by

v0pa;vðtiÞ ¼ �e � vpa;vðtiÞ þ ð1þ eÞ � vpl;vðtiÞ; ð49Þ
v0pl;vðtiÞ ¼ vpl;vðtiÞ: ð50Þ

Eq. (50) indicates that the motion of the platform is unaf-
fected by the part impact. This justifies the dynamic mod-
eling of the piezo-beam in Section 2.1 to leave out the
dynamic influence from part impacting. On the other hand,
as the friction is neglected in horizontal, the horizontal
velocity of the part is the same before and after the impact,
that is,

vpa;hðtiÞ ¼ vpa;hðti�1Þ: ð51Þ
With the dynamic modeling accomplished for the piezo-

beams and transported part in Section 2, simulations are
conducted in the following steps to predict the part-trans-
portation speed. Suppose first the part and the platform
are both initially still. In the first stage the input voltage
of eV ¼ �V sinð2pf � tÞ is applied to the piezo-patches of
the platform to raise the part up until the downward accel-
eration of the platform exceeds gravity. After this happens,
in the second stage, the part is separated from the platform
and in free falling. As the downward speed of the platform
further decelerates, the parts will impact intermittently with
the platform in the third stage until the part sticks with the
platform again. Then the simulation repeats itself from the
first stage until the designated end of simulation period. In
this way of simulation, the motions of the part and plat-
form are solved, and finally the average transport velocity
of the part on the piezo-feeder can be computed by

�vt ¼
R TþDT

T vpa;hðtÞdt
DT

; ð52Þ

where T and DT are initial time and period of simulation,
respectively.
3. Numerical simulation and experiment verification

Experiments are conducted to verify the effectiveness of
the previously-established mathematical models for pre-
dicting the transporting velocity of the part. The practical
part feeder and the experiment system for measuring
part-transporting speed are shown in Fig. 6. The signal
generator is used to generate sinusoidal input signals,
which are amplified by a power amplifier to vibrate the
piezo-feeder. A laser displacement sensor (MT250) is used
to measure the horizontal/vertical motions of the vibratory
platform for dynamic verification. Due to the fact that the
part in transportation is in high-frequency up-and-down
motions and its size is usually small, it is highly difficult
to keep pointing the laser beam of the non-contact dis-
placement sensor right at the transported part for measur-
ing part displacement. To overcome the difficulty, a CCD
camera is instead utilized to record the part-transportation
motion for the purpose of estimating transporting speed.
The dimensions and material properties of the piezo-feeder
are shown as in Table 1. The input frequency range is usu-
ally 60–300 Hz to be below and close to the resonance of
330 Hz, as found in Fig. 4b. The feeder is operated under
the resonance frequency of 330 Hz to avoid structural
break-down. The test part to be transported is a small
screw weighted 1 g; i.e., mpa = 0.001 kg. The coefficient of
restitution for collision is identified as e � 0.3 based on a
simple drop test.

Setting the input voltage as 230 V and 150 V in the same
frequency of 250 Hz, theoretical responses of the platform
and part are computed based on the discrete dynamic Eq.
(30) featuring the first three modes. Figs. 7 and 8 show
the resulted time responses, respectively, for cases of
230 V and 150 V, respectively. Fig. 7a presents the simu-
lated displacements of the platform and part over two
oscillating cycles of the platform. In this figure, the critical



Fig. 6. Experiment system for measuring motions of the platform and the transported part.
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times denotes when the part is separated from the platform
and when collisions occur. It is seen from this figure that
the part is separated from the oscillating platform around
0.4 ms before the platform reaches its highest position.
The separation timing is in fact right at the moment the
gravity is equal to the vertical acceleration of the platform,
as evident from Fig. 7b. It is also seen from Fig. 7a that
after the part is separated from the platform, the part falls
freely until it collides with the platform around 3.1 ms.
With several collisions, the part sticks with the platform
again after approximately 3.7 ms, then starting another
round of stiction with the platform, separation and colli-
sions. As to the horizontal displacement of the transported
part—the transportation distance of the part, it can be
deducted that the part moves horizontally with the plat-
form in the period of stiction, while it undergoes horizontal
motion in a contact velocity in periods of free-falling and
collisions. Therefore, the horizontal displacement of the
transported part can be easily obtained and depicted in
Fig. 7d, where between the separation and the last collision
the part displacement conforms to a constant velocity hor-
izontal motion, while between the last collision and separa-
tion the horizontal displacement of the part is the same as
that of the platform, as shown in Fig. 7e. Finally, the trans-
ported velocity of the part is obtained by differentiating the
previously-computed horizontal displacement of the part in
Fig. 7d. The results are shown in Fig. 7e. Making use of the
results in Fig. 7e, where it is seen that it can be computed
that the averaged transporting speed is 34 mm/s. For
another case with less input voltage of 150 V, the previous
analysis/computation are conducted again to observe the
effects of level of input voltage on the transportation speed.
The same computations as those for input voltage of 230 V
are carried out to present the results in Fig. 8a–e. A scrupu-
lous comparison between Figs. 7 and 8 reveals that the
smaller input voltage of 150 V leads to a longer period of
part stiction to the platform (as shown in Fig. 8a), and
results in slower averaged transportation speed of
6.85 mm/s (as shown in Fig. 8e). Therefore, a general rule
of maximizing the part traveling speed is to increase the
input voltage for a shorter period of part stiction to the
platform.

In order to verify the effectiveness of the theoretical
models established previously for platform vibration and
part transportation, theoretical transportation motions of
the part over the full length of the platform are next com-
puted, along with one single run of experimental displace-
ments of the transported part measured by a CCD camera.
The results are shown in Fig. 9a, where the solid curve rep-
resents theoretical predictions, while the asterisks denote
the measured traveling distances of the transported part
by a CCD camera. Also shown in this figure are the
traveling times of the part over the total length of the plat-
form—5.01 and 4.96 s from experiments and theoretical
predictions, respectively. Note that the solid curve is in fact
combination of thousand of cycles of horizontal part dis-
placements shown in Fig. 8d that lasts 0.008 s. It can be
generally seen from Fig. 9a that the closeness between the
theoreticals and experimentals are clearly present, showing
the effectiveness of the theoretical models established in this
study.

It should be noted at this point that the measured trav-
eling motion of the part in fact varies from run to run, pos-
sibly due to the facts that the transported screw is not a
point mass as assumed and the existence of friction in hor-
izontal direction that was not considered. For further con-
firmation on prediction accuracy in part-transporting
speed, one hundred runs of part traveling for the total plat-
form length of 34 mm are conducted with the CCD camera
to record the total traveling time. Fig. 9b depicts the



Fig. 7. Simulated responses of the platform and part subjected to input voltage of 230 V in frequency of 250 Hz: (a) vertical displacement of the platform
and part; (b) vertical acceleration of the platform; (c) horizontal displacement of the platform; (d) horizontal displacement of the transported part; and (e)
transportation speed of the part.
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Fig. 8. Simulated responses of the platform and part subjected to input voltage of 150 V in frequency of 250 Hz: (a) vertical displacement of the platform
and part; (b) vertical acceleration of the platform; (c) horizontal displacement of the platform; (d) horizontal displacement of the transported part; and (e)
transportation speed of the part.
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Fig. 9. Traveling history of the transported part subjected to input voltage of 150 V in frequency of 250 Hz: (a) time history of part traveling distance for a
particular run—horizontal displacement over the length of the platform, 34 mm; (b) distribution of experimental traveling times over the total length of
the platform, 34 mm.
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distribution of the recorded traveling times for 100 runs in
a bar chart. It can be seen from this chart that the distribu-
tion of the measured traveling time centers around the the-
oretically-predicted traveling time, 4.96 s, as shown in
Fig. 9a, within an acceptable range, demonstrating the
effectiveness of the theoretical model. Furthermore, the
theoretically-predicted traveling speed of 6.85 mm/s as
shown in Fig. 9a is also close to 7.0 mm/s, the experimental
averaged traveling speed herein in Fig. 9b over 100 runs of
transportation.

4. Conclusions

A thorough modeling of the piezoelectric part feeder
with the aim on predicting part-transporting speed is
accomplished in this study. It starts with an establishment
of the dynamic equations of motion of the piezo-beams in
the piezo-feeder via the Rayleigh–Ritz method and is then
followed by the modeling on the impact dynamics between
the platform and transported part, which is accomplished
via basic collision theory. The validity of the established
models is further ensured by experiments. The closeness
shown between the theoretically-predicted dynamics of
the feeder/part and those experimental counterparts finally
confirm the success of the modelings. Based on the analyt-
ical and experimental results obtained, the following con-
clusions can be drawn.

(1) The first three assumed-modes proposed in Eq. (3)
are capable of predicting the realistic dynamics of a
flexurally-vibrated piezoelectric beam, as evident
from the experimental results in Fig. 4b and c.
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(2) The basic collision theory is pertinent to be employed
to predict the impact dynamics between the platform
and transported part, leading to well-predicted part-
transporting speeds as evident from Fig. 9a and b.

(3) It is theoretically predicted and experimentally con-
firmed that the transported part experiences three
stages of different types of motions: (1) part arising
with the platform; (2) part free falling; and (3) part
impacting the platform. This series of interactive
three-stage dynamics is repeated between platform
oscillation cycles, moving the part from one end to
another of the platform. The transported part moves
horizontally with the platform in the period of arising
with the platform, while it undergoes horizontal
motion in a contact velocity in periods of free-falling
and collisions.

(4) A few general rules for control strategy have been
distilled:
i. Based on experimental operation, the feeder should

be operated under the resonance frequency of
330 Hz to avoid structural break-down.

ii. A basic rule of maximizing the part traveling speed
is to increase the input voltage for a shorter period
of part stiction to the platform.

Although the part-traveling speeds theoretically pre-
dicted in this study anticipate well about the realistics, a
broader distribution range of experimental part-traveling
speeds as compared to the theoreticals is present, as shown
in Fig. 9b. This might be due to the facts that (1) the trans-
ported part is not a point mass and (2) the ignorance on the
impact friction between the part and platform. To further
improve modeling, the part needs to be assumed as a rigid
body and one needs to investigate the dynamic effects of
the impact friction on the part-transporting speed in the
future.
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