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Abstract

The coupled axial–torsional vibration of thin-walled Z-section beam induced by the boundary conditions is investigated. The value of

the warping function is not zero at centroid for Z-section beam. If the axial displacement of the pin end is restrained at the centroid of the

Z-section for thin-walled Z-section beam, the axial vibration and torsional vibration may be coupled. The governing equations for linear

axial and torsional vibration of a thin-walled Z-section beam are derived by the d’Alembert principle and the virtual work principle. The

bending vibration is uncoupled from axial and torsional vibrations and is not dealt with in this paper. For harmonic vibration,

the general solution of these equations with undetermined constant coefficients may be obtained. Substituting the general solution

into the displacement and force boundary conditions, a set of homogeneous equations can be obtained. The natural frequencies and the

coefficients of the general solution may be obtained by solving the homogeneous equations using the bisection method.

Numerical examples are studied to verify the accuracy of the proposed method and to investigate the effect of boundary conditions

and the value of warping function at centroid on the coupled axial and torsional natural frequency of Z-section beam.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Beams of thin-walled open cross-section are widely used
in structure design. The vibration characteristics are of
fundamental importance in the design of thin-walled
structures. In general, the shear center and the centroid
of cross-section for monosymmetric and asymmetric thin-
walled beams are not coincident. Thus, the bending and
torsional vibrations are coupled. The doubly coupled
bending–torsional vibrations of monosymmetric beams
and the triply coupled bending–bending–torsional vibra-
tion of asymmetric beam have been investigated by several
authors [1–13]. In the literature, the axial vibration is
considered to be uncoupled from the bending and torsional
vibrations and can be analyzed independently. However,
this consideration may be incorrect for Z-section beam,
e front matter r 2007 Elsevier Ltd. All rights reserved.
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which shear center and the centroid are coincident and the
value of the warping function is not zero at centroid. It is
well known that for a beam with warping DOF considered,
a given external axial load, when referred to loading point,
can be replaced by an axial force and a bimoment equal to
the product of the external axial load and the value of the
warping function at the loaded point [14]. Thus, if the axial
displacement of the pin end is restrained at the centroid of
the Z-section, the bending and torsional vibrations are
uncoupled, but the axial vibration and the torsional
vibration may be coupled. To the authors’ knowledge,
the coupled axial vibration and the torsional vibration
induced by the boundary conditions has not been reported
in the literature. The object of this paper is to investigate
the coupled axial and the torsional vibration of thin-walled
Z-section beam induced by the boundary conditions.
Because the bending vibration is uncoupled from the axial
and torsional vibrations and can be analyzed indepen-
dently, the bending vibration is not dealt with here.
However, it should be noted that in the great majority of
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cases, the minor axis bending vibration mode is the
fundamental one. The kinematics of the Vlasov thin-walled
beam [14] is employed here. The governing differential
equations of motion in free axial and torsional vibration
are derived using the virtual work principle and the
d’Alembert principle. For harmonic vibration, the general
solution of these equations with undetermined constant
coefficients can be easily obtained. Substituting the general
solution into the displacement and force boundary
conditions, a set of homogeneous equations can be
obtained. The natural frequencies and the coefficients of
the general solution can be obtained by solving the
homogeneous equations numerically. Here the bisection
method is used.

Numerical examples are studied to verify the accuracy of
the proposed method and to investigate the effect of
boundary conditions and the value of warping function at
centroid on the coupled axial and torsional natural
frequency of Z-section beam.

2. Formulation

2.1. Kinematics of beam member

A straight uniform beam member of length L with
Z-section shown in Fig. 1 is considered. The centroid axis
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Fig. 1. Z-section beam and coordinate systems.
and the shear center axis of the beam are coincident. The
x-axis are chosen to coincide with the centroid axis of
the undeformed beam, and the y- and z-axis are chosen to
be the principal centroidal axes of the cross-section in the
undeformed state. Based on the Vlasov thin-walled beam
theory [14], it is assumed that the cross-section of the beam
does not deform in its own plane, and the out-of-plane
warping of the cross-section is the product of the twist rate
of the beam element and the Saint Venant warping
function for a prismatic thin-walled beam of the same
cross-section. In this study, Prandtl’s membrane analogy
and the Saint Venant torsion theory [15,16] are used to
obtain an approximate Saint Venant warping function for
a prismatic thin-walled beam.
Because the bending vibrations are uncoupled from the

axial and torsional vibrations for Z-section beam, only the
axial displacement and axial rotation are considered here.
Thus, the deformation of the beam can be described by the
displacement along the beam axis and lateral displacements
induced by the rotation about the centroid axis of the
beam. Let Q (Fig. 1) be an arbitrary point in the beam
element, and C be the point corresponding to Q on the
centroid axis. The position vector of point Q in the
undeformed and deformed configurations may be ex-
pressed as

r0 ¼ xex þ yey þ zez (1)

and

r ¼ ðxþ uþ cy;xÞex þ ðy� zyÞey þ ðzþ yyÞez, (2)

where x, y and z are coordinates of point Q in the
underformed state, u ¼ u(x,t) is the axial displacement of
the unwarped cross-section, c ¼ c(y,z) is the Saint
Venant warping function for a prismatic beam of the
same cross-section, y ¼ y(x,t) and y;x ¼ qy=qx are the twist
angle and the twist rate about the shear center axis,
respectively. In this paper, the symbol ( � )0 denotes
ð Þ;x ¼ qð Þ=qx.
Let uc denote the axial displacement of the centroid axis

of the beam. From Eq. (2), uc may be expressed by

uc ¼ ucðx; tÞ ¼ uþ c0y;x, (3)

where c0 ¼ c(0,0) is the value of warping function at the
centroid of the cross-section.
If x, y and z in Eq. (1) are regarded as the Lagrangian

coordinates, the components of the Green strains exx,exy

and exz are given by [17]

�xx ¼
1
2
ðrt
;xr;x � 1Þ; �xy ¼

1
2
rt
;xr;y; �xz ¼

1
2
rt
;xr;z. (4)

In this study only infinitesimal free vibration is
considered. Thus only the linear part of the Green strains
is retained. Substituting Eq. (2) into Eq. (4) and retaining
all terms up to the first order, one may obtain

�xx ¼ u;x þ cy;xx,

�xy ¼
1
2
ðc;y � zÞy;x,

�xz ¼
1
2
ðc;z þ yÞy;x. ð5Þ
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2.2. Equations of motion

The equations of motion for axial and torsional
vibration of beam member are derived by the d’Alembert
principle and the virtual work principle.

Let segment ab denote an arbitrary segment of a beam
member with end sections a and b. The virtual work
principle for segment ab of a linear elastic beam member
may be written as [18]

dW E ¼ dW I , (6)

dW E ¼ ðf duc þmdyþ bdy;xÞ
��xb

xa

¼

Z xb

xa

d

dx
ðf ducÞ þ

d

dx
ðmdyÞ þ

d

dx
ðbdy;xÞ

� �
dx

¼

Z xb

xa

f ;xduc þ f duc;x þ bdy1;xx þm;xdy
�

þðmþ b;xÞdy;x
�
dx, ð7Þ

dW I ¼

Z
V

ðE�xxd�xx þ 4G�xyd�xy þ 4G�xzd�xzÞdV

þ

Z
V

rdrt€rdV , ð8Þ

where dWE and dW1 are the virtual work of the external
forces and the internal stresses, respectively, duc, and dy
and dy,x are the variation of uc in Eq. (3), and the variation
of y and y,x in Eq. (2), respectively, f, m, and b are the
external axial force, twist moment, and bimoment corre-
sponding to duc, dy, and dy,x, respectively, ð Þ

��xb

xa
is the

value of ( ) at section b minus the value of ( ) at section a, xa

and xb are the x1 coordinates of sections a and b at the
undeformed state, dexj (j ¼ x, y, z) are the variation of exj in
Eq. (5), dr is the variation of r given in Eq. (2), €r ¼ q2r=qt2.
E is Young’s modulus, G is the shear modulus, r is the
density, V is the volume of the undeformed beam between
sections a and b. The differential volume dV may be
expressed as dV ¼ dA dx, where dA is the differential
cross-section area of the beam. In this paper, the symbol ð

�
Þ

denotes differentiation with respect to time t.
Substituting Eqs. (2), (3) and (5) into Eq. (8), and usingR
ydA ¼

R
zdA ¼

R
yzdA ¼ 0 and

R
cdA ¼

R
ycdA ¼R

zcdA ¼ 0, one may obtain

dW I ¼

Z xb

xa

½duc;xðEAu;xÞ þ dy;xðGJy;xÞ

þ dy;xxðEIcy;xx � EAc0u;xÞ�dx

þ

Z xb

xa

½ducðrA €uÞ þ dyðrIp
€yÞ

þ dy;xðrIc €y;x � rc0A €uÞ�dx, ð9Þ

where

Ip ¼ Iy þ Iz; Iy ¼

Z
z2 dA; Iz ¼

Z
y2 dA; Ic ¼

Z
c2 dA,

J ¼

Z
A

f½�ðz� zpÞ þ c;y�
2 þ ½ðy� ypÞ þ c;z�

2gdA. ð10Þ
Substituting Eqs. (7) and (9) into Eq. (6), and equating the
terms in both sides of Eq. (6) corresponding to the same
generalized virtual displacements, one may obtain

f ;x ¼ rA €u, (11)

m;x ¼ rIp
€y, (12)

f ¼ EAu;x, (13)

mþ b;x ¼ GJy;x þ rIc €y;x � rAc0 €u, (14)

b ¼ EIcy;xx � EAu;xc0. (15)

Substituting Eqs. (11), (13) and (15) into Eq. (14), one may
obtain

m ¼ GJy;x þ rIc €y;x � EIcy;xxx. (16)

Eqs. (11) and (12) may be regarded as equations of motion
and Eqs. (13), (15) and (16) may be regarded as generalized
constitutive equations. It should be noted that due to the
existence of nonnull warping c0 in Eq. (15), axial extension
couples with torsion. Otherwise, the bimoment will depend
only on the second derivative of twist angle.
Substituting Eqs. (13) and (16) into Eqs. (11) and (12),

respectively, one may obtain

u;xx ¼
r
E
€u, (17)

GJy;xx þ rIc €y;xx � EIcy;xxxx ¼ rIp
€y. (18)

At x ¼ 0 and at x ¼ L, five different boundary condi-
tions called BCI (I ¼ 1–5) are considered here and are
given by

BC1 : ucð0; tÞ ¼ 0; ucðL; tÞ ¼ 0; yð0; tÞ ¼ 0; yðL; tÞ ¼ 0,

bð0; tÞ ¼ 0; bðL; tÞ ¼ 0, ð19Þ

BC2 : ucð0; tÞ ¼ 0; ucðL; tÞ ¼ 0; yð0; tÞ ¼ 0,

y0ð0; tÞ ¼ 0; mðL; tÞ ¼ 0; bðL; tÞ ¼ 0, ð20Þ

BC3 : ucð0; tÞ ¼ 0; ucðL; tÞ ¼ 0; yð0; tÞ ¼ 0,

yðL; tÞ ¼ 0; y0ð0; tÞ ¼ 0; bðL; tÞ ¼ 0, ð21Þ

BC4 : ucð0; tÞ ¼ 0; f ðL; tÞ ¼ 0; yð0; tÞ ¼ 0,

y0ð0; tÞ ¼ 0; mðL; tÞ ¼ 0; bðL; tÞ ¼ 0, ð22Þ

BC5 : ucð0; tÞ ¼ 0; ucðL; tÞ ¼ 0; yð0; tÞ ¼ 0,

y0ð0; tÞ ¼ 0; yðL; tÞ ¼ 0; y0ðL; tÞ ¼ 0, ð23Þ

where uc is defined in Eq. (3), y and y0 are defined in Eq. (2),
f, m and b are given in Eqs. (13), (15) and (16), respectively.
BC1 refers to axial extension and torsion restrained at both
supports, but warping free; BC2 refers to axial extension
restrained at both supports, and torsion and warping
restrained at one support but free at the other support;
BC3 refers to axial extension and torsion restrained at both
supports, and warping restrained at one support but free at
the other support; BC4 refers to axial extension, torsion
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and warping restrained at one support, but free at the other
support; BC5 refers to axial extension, torsion and warping
restrained at both supports.

It can be seen that u ¼ u(x,t) and y ¼ y(x,t) are
uncoupled in Eqs. (17) and (18). However, from Eqs. (3),
(19)–(21), it can be seen that u ¼ u(x,t) and y ¼ y(x,t) may
be coupled.
2.3. Free vibration

The free harmonic axial and torsional vibrations defined
by Eqs. (17) and (18) may be expressed in the form

u ¼ UðxÞeiot, (24)

y ¼ YðxÞeiot, (25)

where i ¼
ffiffiffiffiffiffiffi
�1
p

, o is the natural frequency to be
determined, U(x) and Y(x) are axial and torsional
vibration modes to be determined. Introducing Eqs. (24)
and (25) into Eqs. (17) and (18), one may obtain

U ;xx þ
ro2

E
U ¼ 0, (26)

Y;xxxx �
GJ

EIc
�

ro2

E

� 	
Y;xx �

rIpo2

EIc
Y ¼ 0. (27)

It can be seen that Eqs. (26) and (27) are two uncoupled
linear ordinary differential equations with constant coeffi-
cients. The general solution of Eqs. (26) and (27) may be
expressed as

UðxÞ ¼ C1 sin axþ C2 cos ax, (28)

YðxÞ ¼ C3 sinh bxþ C4 cosh bxþ C5 sin gxþ C6 cos gx,

(29)

a ¼

ffiffiffiffiffiffiffiffiffi
ro2

E

r
, (30)
Table 1

Natural frequencies (rad/s) for the unsymmetric Z-section beam

Mode BC1A BC1A (FEM) BC1B BC2A BC

1 464.31 (AT) 464.31 (AT) 382.63 (T) 170.04 (AT) 1

2 1437.61 (AT) 1437.62 (AT) 1458.26 (T) 876.00 (AT) 8

3 3287.00 (AT) 3287.14 (AT) 3218.94 (T) 2270.50 (AT) 22

4 4631.38 (AT) 4633.92 (AT) 5381.64 (A) 4144.93 (AT) 43

5 6161.02 (AT) 6163.99 (AT) 5621.06 (T) 5227.63 (AT) 53

6 8280.64 (AT) 8286.42 (AT) 8608.86 (T) 7128.37 (AT) 70

7 10660.2 (AT) 10694.0 (AT) 10763.3 (A) 9675.28 (AT) 102

8 11979.6 (AT) 11992.6 (AT) 12119.1 (T) 10989.0 (AT) 107

9 15696.1 (AT) 15812.7 (AT) 16085.5 (T) 13838.8 (AT) 139

10 16092.6 (AT) 16123.6 (AT) 16144.9 (A) 15768.6 (AT) 161
b ¼
1

2
ð

GJ

EIc
�

ro2

E
Þ þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GJ

EIc
�

ro2

E

� 	2

þ
4rIpo2

EIc

s0
@

1
A

1=2

,

g ¼ �
1

2
ð

GJ

EIc
�

ro2

E
Þ þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GJ

EIc
�

ro2

E

� 	2

þ
4rIpo2

EIc

s0
@

1
A

1=2

,

where Ci (i ¼ 1–6) are undetermined coefficients.
From one of the boundary conditions BCI (I ¼ 1–5)

given in Eqs. (19)–(23), and Eqs. (24), (25), (28), and (29),
one may obtain

KðoÞC ¼ 0, (31)

C ¼ fC1;C2;C3;C4;C5;C6g, (32)

where K(o) is a 6� 6 matrix. K(o) denotes matrix K is
function of natural frequency o given in Eq. (24). The
explicit form of K for boundary conditions BCI (I ¼ 1–5) is
given in Appendix A.
For a nontrivial C, the determinant of the matrix K in

Eq. (31) must be equal to zero. The values of o which make
these determinants vanish are called eigenvalues of matrix
K. The bisection method is used here to find the
eigenvalues. Let oi and X denote an eigenvalue and the
corresponding eigenvector of Eq. (31). Substituting C ¼ X

into Eqs. (28) and (29), the mode shape of axial vibration
and torsional vibration corresponding to oi can be
calculated.

3. Numerical examples

To investigate the natural frequency of the axial and
torsional vibration for Z-section beam, several numerical
examples are studied. The geometry and material proper-
ties for the beam of Z-section given in Fig. 1 are as follows:
L ¼ 3m, b ¼ 0.2m, h ¼ 0.3m, tw ¼ tf ¼ 0.01m, f ¼
0.555956 rad, E ¼ 206GPa, n ¼ 0.3, r ¼ 7800 kg/m3. The
section constants are as follows: A ¼ 70� 10�4m2, Iy ¼

1.49844� 10�4m4, Iz ¼ 1.60473� 10�5m4, J ¼ 2.33333�
10�7m4, Ic ¼ 6.86346� 10�7m6, c0 ¼ 85.7143� 10�4m2.
2B BC3A BC3B BC4A (B) BC5A (B)

54.25 (T) 604.96 (AT) 580.65 (T) 154.25 (T) 831.18 (T)

34.24 (T) 1850.62 (AT) 1835.59 (T) 834.24 (T) 2257.46 (T)

53.28 (T) 3725.09 (AT) 3767.73 (T) 2253.28 (T) 4360.21 (T)

26.18 (T) 5179.43 (AT) 5381.64 (A) 2690.82 (A) 5381.64 (A)

81.64 (A) 6451.37 (AT) 6331.90 (T) 4326.18 (T) 7084.90 (T)

06.97 (T) 9327.69 (AT) 9470.74 (T) 7006.97 (T) 10373.1 (T)

34.3 (T) 10667.1 (AT) 10763.3 (A) 8072.47 (A) 10763.3 (A)

63.3 (A) 13153.6 (AT) 13119.9 (T) 10234.3 (T) 14159.4 (T)

43.2 (T) 15732.0 (AT) 16144.9 (A) 13454.1 (A) 16144.9 (A)

44.9 (A) 17438.1 (AT) 17212.7 (T) 13943.2 (T) 18376.6 (T)
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Here, boundary conditions BCI (I ¼ 1–5), defined in
Eqs. (19)–(23) are considered. To investigate the effects of
the value of c0 (Eq. (2)) on the natural frequency of
Θ Θ,xU × 10
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Fig. 2. The first 10 vibration mode shapes for BC1A.
Z-section beam, cases with and without considering the
value of c0 in Eqs. (3) and (15), referred to as case A and
case B, respectively, are considered. For convenience, in
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Fig. 3. The first 10 vibration mode shapes for BC2A.
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this study, BCIX (I ¼ 1–5, X ¼ A, B) is used to denote case
X with boundary condition BCI. It can be seen from
Eqs. (3), (15) and (19)–(23) that the axial vibration and
Θ Θ,xU × 10
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Fig. 4. The first 10 vibration mode shapes for BC3A.
torsional vibration are uncoupled for BCIB (I ¼ 1–5). For
BC4, the twist rate Y,x ¼ 0 at the fixed end and U,x ¼ 0 at
the free end. Thus, it can be seen from Eqs. (3) and (13)
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Fig. 5. The first 10 vibration mode shapes for BC4A.
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Fig. 6. The first 10 vibration mode shapes for BC5A.

H.H. Chen, K.M. Hsiao / Thin-Walled Structures 45 (2007) 573–583 579
that cases A and case B are equivalent for BC4. For BC5,
the twist rate Y,x ¼ 0 at both fixed ends. Thus, it can be
seen from Eq. (3) that cases A and B are equivalent for
BC5.

The lowest 10 natural frequencies of the present study
are shown in Table 1. In Table 1, (A), (T), and (AT)
denotes that the natural frequency corresponds to
uncoupled axial vibration, uncoupled torsional vibration,
and coupled axial–torsional vibration,. As expected, for
BCIA (I ¼ 1–3), the axial vibration and torsional vibration
are coupled; for BCIB (I ¼ 1–5), BC4A and BC5A, the
axial vibration and torsional vibration are uncoupled. The
natural frequencies are identical for BCIA and BCIB
(I ¼ 4, 5) as expected. For BC1B, the analytical solution
for the natural frequency of torsional vibration may be
express by [13]

on ¼ ln

ffiffiffiffi
E

r

s
1þ GJ=l2nEIc

1þ Ip=l
2
nIc

 !1=2

; ln ¼
np
L
; n ¼ 1; 2; 3; . . . .

(33)

The natural frequencies of torsional vibration for BC1B
calculated by Eq. (33) are identical to those given in
Table 1. This example is also studied using the finite
element method for BC1A. The bar element (correspond-
ing to dqc) developed in Appendix B is employed here. The
finite element results given in Table 1 are obtained using 20
elements. It can be seen from Table 1 that the agreement
between the results obtained using Eq. (31) and those
obtained using the finite element method is very good. The
discrepancy between the natural frequencies corresponding
to BCIA and BCIB (I ¼ 1–3) is not negligible. It indicates
that the effects of the value of c0 on the natural frequencies
of the Z-section beam may be not negligible.

Figs. 2–6 present the mode shapes corresponding to the
lowest 10 natural frequencies for BCIA (I ¼ 1–5). The
vibration modes plotted are U, the axial displacement of
the unwarped cross-section, Y twist angle and Y,x, twist
rate of the centroid axis. In order to increase the clarity of
the axial extension curves, the values of U are amplified 10
times in Figs. 2–4. As expected, for BCIA (I ¼ 1–3), the
axial and torsional vibrations are coupled, and for BCIA
(I ¼ 4, 5), the axial and torsional vibrations are uncoupled.

4. Conclusions

In this paper, the correct governing differential equa-
tions for the linear axial and torsional vibration of a
uniform Z-section beam are derived using the d’Alembert
principle and the virtual work principle based on the
Vlasov thin-walled beam theory. The value of warping
function at centroid of Z-section is considered. The
bisection method is used to solve the natural frequency of
axial and torsional vibration.

The results of numerical examples show that if the axial
displacement of the pin end is restrained at the centroid of
Z-section, the effect of the value of warping function at
centroid of Z-section on the natural frequencies of the axial
and torsional vibration for the Z-section beam may be not
negligible. Although only the Z-section beam is studied here,
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it is suggested that the value of warping function should be
considered for the vibration analysis of thin-walled beam if
the axial displacement of the pin end is restrained at a point
with nonzero value of warping function.
Acknowledgments

The authors would like to acknowledge the constructive
and thoughtful comments of the referee.
Appendix A

The matrix K in Eq. (31) for boundary conditions BCI (I ¼ 1–5) may be given by
BC1: uc(0, t) ¼ 0, uc(L, t) ¼ 0, y(0, t) ¼ 0, y(L, t) ¼ 0, b(0, t) ¼ 0, b(L, t) ¼ 0,
K ¼

0 1 c0b 0 c0g 0

sin aL cos aL c0b cosh bL c0b sinh bL c0g cos gL �c0g sin gL

0 0 0 1 0 1

0 0 sinh bL cosh bL sin gL cos gL

a 0 0 �Db2 0 Dg2

c0a cos aL �c0a sin aL �Db2 sinh bL �Db2 cosh bL Dg2 sin gL Dg2 cos gL

2
6666666664

3
7777777775
,

BC2: uc(0, t) ¼ 0, uc(L, t) ¼ 0, y(0, t) ¼ 0, y0(0, t) ¼ 0, m(L, t) ¼ 0, b(L, t) ¼ 0,
K ¼

0 1 c0b 0 c0g 0

sin aL cos aL c0b cosh bL c0b sinh bL c0g cos gL �c0g sin gL

0 0 0 1 0 1

0 0 b 0 g 0

0 0 R1 cosh bL R1 sinh bL R2 cos gL �R2 sin gL

c0a cos aL �c0a sin aL �Db2 sinh bL �Db2 cosh bL Dg2 sin gL Dg2 cos gL

2
6666666664

3
7777777775
,

BC3: uc(0, t) ¼ 0, uc(L, t) ¼ 0, y(0, t) ¼ 0, y(L, t) ¼ 0, y0(0, t) ¼ 0, b(0, t) ¼ 0,
K ¼

0 1 c0b 0 c0g 0

sin aL cos aL c0b cosh bL c0b sinh bL c0g cos gL �c0g sin gL

0 0 0 1 0 1

0 0 sinh bL cosh bL sin gL cos gL

0 0 b 0 g 0

c0a cos aL �c0a sin aL �Db2 sinh bL �Db2 cosh bL Dg2 sin gL Dg2 cos gL

2
6666666664

3
7777777775
,

BC4: uc(0, t) ¼ 0, f(L, t) ¼ 0, y(0, t) ¼ 0, y0(0, t) ¼ 0, m(L, t) ¼ 0, b(0, t) ¼ 0,
K ¼

0 1 c0b 0 c0g 0

a cos aL �a sin aL 0 0 0 0

0 0 0 1 0 1

0 0 b 0 g 0

0 0 R1 cosh bL R1 sinh bL R2 cos gL �R2 sin gL

c0a cos aL �c0a sin aL �Db2 sinh bL �Db2 cosh bL Dg2 sin gL Dg2 cos gL

2
6666666664

3
7777777775
,
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BC5: uc(0, t) ¼ 0, uc(L, t) ¼ 0, y(0, t) ¼ 0, y0(0, t) ¼ 0, y(L, t) ¼ 0, y0(L, t) ¼ 0,

K ¼

0 1 c0b 0 c0g 0

sin aL cos aL c0b cosh bL c0b sinh bL c0g cos gL �c0g sin gL

0 0 0 1 0 1

0 0 b 0 g 0

0 0 sinh bL cosh bL sin gL cos gL

0 0 b cosh bL b sinh bL g cos gL �g sin gL

2
6666666664

3
7777777775
,

where D ¼ Ic=A; R1 ¼ Hb� Fb3; R2 ¼ Hgþ Fg3, F ¼ EIc=GJ; H ¼ 1� ðrIc=GJÞo2.
Appendix B

The bar element developed here has two nodes with six degrees of freedom per node. Two sets of nodal degrees of
freedom corresponding to warped and unwarped cross-section are considered here. The relation between two sets of
element nodal degrees of freedom is derived. The element stiffness matrix and mass matrix corresponding to unwarped
cross-section may be easily derived using standard procedure and not given here. The relation between element matrices
referred to different sets of element nodal degrees of freedom is derived.

The axial displacement u(x, t) of the unwarped cross-section and axial rotation y(x, t) about the centroid axis are
assumed to be the linear and Hermitian polynomials of x, respectively. u(x, t) and y(x, t) may be expressed by

uðx; tÞ ¼ Nt
aua,

yðx; tÞ ¼ Nt
dud , ð34Þ

Na ¼
1� x
2

;
1þ x
2

� �
; ua ¼ fu1; u2g,

Nd ¼ fN1;N2;N3;N4g; ud ¼ fy1; y;x1; y2; y;x2g,

N1 ¼
1
4
ð1� xÞ2ð2þ xÞ; N2 ¼

‘
8
ð1� x2Þð1� xÞ,

N3 ¼
1
4
ð1þ xÞ2ð2� xÞ; N4 ¼

‘
8
ð�1þ x2Þð1þ xÞ,

x ¼ �1þ
2x

‘
,

where uj (j ¼ 1, 2) denote the axial displacement of the unwarped cross-section at element node j, yj and y,xj (j ¼ 1, 2) are
nodal values of y, y,x at nodes j, respectively, ‘ is the length of the bar element. In this paper, { } denotes column matrix.

Let duc
j (j ¼ 1, 2) denote the variation of the axial displacement of the centroid axis of the bar element at node j, and duj

(j ¼ 1, 2) denote the variation of uj.
Making use of Eq. (3), the relation between duc

j and duj may be expressed by

duj ¼ duc
j � c0dy;xj, (35)

where dy,xj (j ¼ 1, 2) are the variation of y,xj.
Let dq and dqc denote the variation of nodal degrees of freedom corresponding to unwarped and warped cross-section.

dq and dqc may be given by

dq ¼ fdua; dudg; dqc ¼ fdu
c
a; dudg,

dua ¼ fdu1; du2g; duc
a ¼ fdu

c
1; du

c
2g,

dud ¼ dy1; dy;x1; dy2; dy;x2
� �

, ð36Þ

where dyj (j ¼ 1, 2) are the variation of yj.
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From Eqs. (35) and (36), one may obtain

dq ¼ Tcdqc, (37)

Tc ¼

1 0 0 �c0 0 0

0 1 0 0 0 �c0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
666666664

3
777777775
. (38)

Let kc and k denote the element stiffness matrices corresponding to dqc and dq, respectively. The relation between kc and
k may be expressed by

kc ¼ Tt
ckTc, (39)

k ¼
kaa kad

kt
ad kdd

" #
, (40)

kaa ¼
AE

‘

1 �1

�1 1


 �
; kad ¼ 02�4,

kdd ¼ GJ

Z
N0dN

0t
d dxþ EIo

Z
N00dN

00t
d dx,

where N0d ¼ dNd=dx; N00d ¼ d2Nd

�
dx2, Nd is defined in Eq. (34), the range of integration for the integral

R
( ) dx in Eq. (40)

is from 0 to ‘, A is the cross-section area.
Let mc and m denote the element stiffness matrices corresponding to dqc and dq, respectively. The relation between mc

and m may be expressed by

mc ¼ Tt
cmTc, (41)

m ¼
maa mad

mt
ad mdd

" #
, (42)

maa ¼ rA

Z
NaN

t
a dx; mad ¼ 02�4,

mdd ¼ rðIy þ IzÞ

Z
NdN

t
d dxþ rIo

Z
N0dN

0t
d dx,

where Na and Nd are defined in Eq. (34), the range of integration for the integral
R
( ) dx in Eq. (42) is from 0 to ‘, A is the

cross-section area.
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