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Shen-Zheng Wang, Student Member, IEEE, and Hsi-Jian Lee

Abstract—This paper describes a plate recognition system that
can process images rapidly at high accuracy rates. This system is
designed to meet the requirements of performance, computational
speed, and adaptation for vehicle surveillance applications, such
as stolen car detection systems. These requirements are satisfied
by adopting a cascade framework, utilizing plate characteristics,
and developing fast one-pass algorithms. Our system is composed
of three main cascading modules for plate detection, character
segmentation, and postprocessing. Each module is further de-
composed into several cascading procedures, which are composed
of successively more complex rejecters. The first module rapidly
rejects a majority of nonplate regions by using low computational
gradient features and a one-pass scanning algorithm followed
by heavy computational statistical rejecters. The second module
rejects a majority of noncharacter regions in a similar manner.
A peak-valley analysis algorithm is proposed to rapidly detect
all promising candidates of character regions. The third module
eliminates the plate characters that do not satisfy the plate specifi-
cations. In our experiments, the system can recognize plates over
38 frames per second with a resolution of 640 480 pixels on a
3-GHz Intel Pentium 4 personal computer.

Index Terms—AdaBoost, cascade framework, Haar-like fea-
tures, plate recognition, real-time systems.

I. INTRODUCTION

I NFORMATION technology (I.T.) has gained increasing im-
portance for visual surveillance applications in portal con-

trolling, traffic monitoring, stolen car detection, etc. In these ap-
plications, plate numbers are important for recording, analyzing,
and reporting surveillance targets. Techniques of computer vi-
sion can be used in captured images to detect and recognize such
plates. The images can be divided into two different types: still
images and frame sequences. In the first type, a still image from
a camera can be designed explicitly to process complex scenes,
such as multiple plates, that exist in different locations of an
image. In the second type, temporal information could be used
to identify plates more robustly. Fig. 1 shows examples of the
two image types in surveillance applications. Fig. 1(a) shows a
still image captured by a camera controlled by the police, while
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Fig. 1(b) shows several frames from a capturing device installed
in a police patrol car. In both types of images, variations in plate
types or environments pose problems in the detection and recog-
nition of plates. For instance, the plate sizes may change sig-
nificantly in different inputs because the target vehicle or the
capturing device moves continuously. All variations under con-
sideration are summarized as follows:

• Plate variations.
i) Location

* Plates may exist in different locations of an
input image.

ii) Quantity
* An input image may contain many or no plates.

iii) Size
* Plates with different sizes may exist in an image
or different images.

iv) Colors of plate characters and backgrounds
* Plates may have various characters and back-
ground colors due to different plate types (taxis,
private cars, etc.) or capturing devices.

v) Others
* In addition to characters, a plate may contain
adornments, such as frames and screws.

• Environment variations.
i) Illumination

* Different types of illumination may occur
in input images, mainly due to environmental
lighting and vehicle headlights.

ii) Plate-like background patterns
* A background may contain patterns similar to
plates, such as numbers stamped on a vehicle,
bumpers with vertical patterns, and textured
floors.

Fig. 2 shows several examples of variations that were tested
in this study. The headlights of different vehicles at night are
shown in Fig. 2(a), and examples of environmental lighting in
different weather conditions are shown in Fig. 2(b). Plate-like
background patterns on a tiled floor are shown in Fig. 2(c).
To develop a plate recognition system for surveillance, three
requirements must be satisfied. The first is the high-accuracy
performance; for instance, the accuracy rate measured as the
weighted sum of the true positive rate (TPR) and the false pos-
itive rate (FPR) should be above 95%. The rate should be mea-
sured from a real surveillance environment 24 hours a day with
variations in plate types and environments. The second require-
ment is to process all frames from an input stream in real time
because successive frames may contain temporal plate informa-
tion useful in surveillance applications. Moreover, plates may
not be recognized in certain frames due to unexpected events;
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Fig. 1. Two image categories in surveillance applications. (a) A still image from a camera and (b) nine successive frames in a video stream.

Fig. 2. Examples of variations in plate types and environments. (a) Different vehicle headlights. (b) Different types of environment lighting. (c) Plate-like back-
ground.

for example, the plates may be covered by other passing vehicles
or appear significantly blurred when they are out of focus. From
the successively recognized results, certain strategies, such as
voting, could be used to increase the accuracy rate. Currently,
a common input stream may arrive at a standard frame rate
of approximately 30 f/s (frames per second) and a resolution
of 640 480 pixels. Thus, a practical plate recognition system
should function at over 30 f/s; for example, the real-time system
in this study, with a high dimensional input (640 480 pixels).
The third requirement is the adaptability. In real-world envi-
ronments, unfamiliar plate types or background generally exist.
When new plate types or backgrounds arise, the plate recogni-
tion system should have the ability to recognize them correctly
after learning the variation in plates and nonplates automati-
cally.

In the last decade, many researchers have focused heavily
on plate recognition. In general, three major modules are used
in image-based plate recognition systems: 1) plate detection;
2) plate character segmentation; and 3) plate character recog-
nition. Many methods ranging from simple techniques, such
as corner template matching [1], Hough transform [2]–[4],
histogram analysis [5], [6], and morphological operations [7],
to sophisticated mechanisms, such as vector quantization (VQ)
[8], neural networks [9], [10], mean shift [11], support vector
machine [10], or likelihood ratio [12] have been developed to
detect plates based on the features of plate characteristics or
statistical representations including shape [5], [12], symmetry
[13], aspect ratio [5], color of HSI [14], [10], color of
[13], and edges [5], [12]. In plate character segmentation and
recognition modules, the proposed methods [6], [9], [15]–[17]
generally use approaches that are similar to those used in

plate detection; however, these methods focus on character
characteristics.

Simple techniques could be applicable to cases in which prior
knowledge, such as the defined color, is available; however,
these techniques are probably not very robust and accurate for
the variations in plates or environments. Statistical mechanisms
provide more robust and accurate representations of plates and
plate characters. However, an important problem of the statis-
tical type of features or techniques is that the computational
load is high when a statistical mechanism is applied to all input
candidates (more than 100 000 units). Instead of explicitly seg-
menting the characters in detected plates, Amit et al. [12] use a
coarse-to-fine approach for both the detection and recognition of
characters on license plates. Although they achieve high recog-
nition rates, the statistical technique requires 3.5 s to process an
input image, and it does not satisfy the requirement of surveil-
lance applications. Another problem of the proposed algorithms
is that there is a tradeoff between multiscale ability and the
computational effect. Most of them compute a multiscale image
pyramid, which is complicated and time-consuming to detect
targets of a particular size.

It is a challenging task to develop a plate recognition system
that satisfies all three requirements. This is because it is difficult
to adjust the existing approaches to achieve the objective of a
real-time system with a high TPR while maintaining a low FPR
in various plate types or environments. The system may satisfy
the minimum real-time criterion (for example, 15 f/s) only for
one module, such as plate detection [18]. However, it is difficult
to meet the real-time requirement in the entire plate recognition
system.

To account for the lack of real-time consideration in the
overall system, we propose a cascade framework based on
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rejecting mechanisms to develop a real-time statistical plate
recognition system, which could deal with various problems
effectively. Moreover, two one-pass algorithms are proposed to
detect regions containing plate characters and segment these
plate characters precisely and compactly. The compactness of
the results after applying our one-pass algorithm would avoid
the use of additional removal procedures. Finally, an extended
Haar-like feature set that can be extracted in one-pass scanning
is proposed to understand the discriminating characteristics
between plates and nonplates and improve the processing speed
of feature extraction.

The remainder of this paper is organized as follows. Section II
presents the cascade plate recognition system, and Section III
shows the procedure of plate region detection. Section IV
describes plate character segmentation and recognition. In
Section V, some experimental results are presented. In most
input images, although several plate candidates are detected,
only the real candidate is recognized and outputted by our
system. Section VI concludes this study.

II. CASCADE PLATE RECOGNITION SYSTEM

To achieve a high accuracy rate with variations in plate types
or environments, spatial features and temporal information
could be used simultaneously to detect and recognize plates.
However, as more features are measured, the computational
load may increase significantly. A tradeoff then exists in the
plate recognition system between discrimination and compu-
tation. We must design a system that satisfies the constraints
in various environments simultaneously. However, even while
detecting a single plate type, it is still difficult to detect all
plates without false positives. Currently, no approach achieves
a negligible FPR in complex environments while maintaining
an extremely high TPR, that is, without missing plates.

A. Fundamentals of the System

To design a plate recognition system that satisfies the three
requirements, we explore the following three strategies.

1) Cascade Framework: The natural control parameters for
balancing discrimination and computation are the complex-
ities of feature extraction and classification. The conceptual
boundary between feature extraction and classification is rather
arbitrary. An ideal feature extractor would distinctly represent
positive and negative inputs that make the classification process
trivial; conversely, a strong classification process would not
require a sophisticated feature extractor. However, it would
be computationally demanding or impossible to distinguish
between features that are invariant to irrelevant transformations
of the input. When emphasis is placed on the computational
load, it is apparently efficient to reject a majority of negatives
immediately with a single relatively inexpensive process. By
concatenation of rejecting processes with increasing com-
plexity, the overall computational load of the system can be
reduced because not all input candidates are processed by the
more heavy-computational processes.

Based on the above reasoning, we consider two coarse-to-fine
computational designs that can dramatically reduce the compu-
tation, while ensuring that the performance of the system is high.
First, a major portion of the searching space may be quickly

discarded by features with increasing complexity—low compu-
tational features such as gradients followed by heavy computa-
tional features such as statistical region representations. Second,
increasingly more feature dimensions are adopted to correctly
discriminate between positives and negatives. The two designs
allow quick rejection of incorrect input candidates, while more
computation time is used for promising candidates of plates
or character regions. To produce the two designs, a cascade
framework is built on successively more complex processes,
termed rejecters. In comparison with a process with a high ac-
curacy rate, a rejecter only requires slightly higher accuracy
than chance and has minimal computational load. The key con-
straints of such a rejecter are high TPR and relatively low FPR,
for instance, less than 50%. In other words, all, or almost all,
positive targets must be preserved after they are processed by
the rejecter.

The framework is known as a cascade because each rejecter
only accepts the outputs from the previous one. Based on re-
jecting negatives in the shortest possible time using simpler
decision rules, the average computational speed of the system
would be faster than that obtained by adopting the more com-
plex processes for all input candidates.

2) Applications of Plate Characteristics: Although vari-
ations exist in different types of plates, plate characteristics
ranging from low-level gradient features to high-level contex-
tual meanings are summarized as follows.

1) The color of a plate character is always different from
that of the background.

2) Plate characters are arranged in a sequence known as
plate character lines.

3) A plate is mainly composed of plate characters.
4) Plate characters usually satisfy the plate specifications;

for instance, the English alphabet could not be used
in certain parts of the plate or characters have specific
width-to-height ratios, depending on the location of the
vehicle.

3) Computational Reduction in Algorithmic Design: In ad-
dition to the cascade framework and the plate characteristics,
the system could not function at high speed without appropriate
algorithms. Duplicate memory access and computation would
occur in different processes or even in the same process. In the
plate recognition system, we propose an algorithm that scans the
entire input image only once but can extract all plate candidates.
Moreover, the values of the features could be calculated at con-
stant time using several acceleration tables, which will be gen-
erated in a single scanning process, as mentioned in Sections III
and IV.

Overview of the System: Based on the three strategies, the
system, as presented in Fig. 3(a), is composed of three cascaded
modules for plate detection, character segmentation and recog-
nition, and postprocessing. The first module shown in Fig. 3(b)
aims to reduce the searching space of the plates by three cas-
cading procedures. The first procedure eliminates most of the
noncharacter regions by the low computational features, gradi-
ents, according to plate characteristic 1). The second procedure
extracts the promising plate regions by a one-pass extraction al-
gorithm according to plate characteristic 2). The third proce-
dure rapidly rejects a majority of the nonplate regions by using
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Fig. 3. Schematic diagram of the cascade plate recognition system.

complex rejecters with increasing complexity and higher dimen-
sions of statistical features according to plate characteristic 3).
Moreover, these rejecters could be automatically learned by a
boosting algorithm from the characteristics between the plate
and nonplate regions. In the second module, shown in Fig. 3(c),
three procedures are designed for the aforementioned scenario
in order to reduce the searching space of the characters. To ex-
tract character candidates rapidly, a peak-valley analysis algo-
rithm is proposed to detect all promising segments from inten-
sity histograms and projection profiles in the first and second
procedures, respectively. Noncharacter candidates would be re-
jected quickly by the rejecters, which are automatically trained
with character candidates detected from the preceding proce-
dures. Then, the remaining character candidates will be rec-
ognized by an optical character recognizer (OCR). In the last
module, the recognized plate characters that do not satisfy the
plate specifications are discarded. The plate specifications used
for the experimental data are defined as follows.

• PLATE .
• .
• .
• .
• .
• Alphabet Alphabet Alphabet Number

Number Alphabet.
• Alphabet Number.
• Number Number.
• Number.
• Number.

In general, the plate recognition system is a cascade of rejecters,
each of which focuses on the rejection of noncharacters, non-
plate character lines, or nonplates.

B. Discussion on the System

For the plate recognition system, the three requirements for
surveillance applications are analyzed below.

1) Performance: To explain the performance requirement,
we make the following three assumptions: 1) the total number
of rejecters is 20, 2) the TPR of each rejecter is 99.9%, and 3)
the FPR of each rejecter is 40%. Then, the final TPR and FPR
of the entire cascade plate recognition system are 98%( )
and ( ), respectively. The final accuracy rate is 99%;
it is measured by the following formula:

AccuracyRate (1)

where TPR is the rate of positives that are correctly recognized;
FPR, the rate of negatives that are incorrectly recognized; and

, the weighting coefficient, for example, 0.5.
2) Computational Speed: Under the assumption that most of

the input candidates are negative, the computational speed of the
entire system can be improved because a majority of the nega-
tive candidates may be rejected by the initial rejecters using sim-
pler decision rules with a low computational load. The strategy
is referred to as computational risk reduction. Consider the fol-
lowing experimental case as an example: In a 640 480 input
image, the total number of plate region candidates for detecting
a minimum recognizable plate size, 60 15, is 270,746. In our
experiments, approximately 20 candidates of the plate regions
remain after the application of the first two procedures in the
plate detection module. After verification by the plate verifica-
tion procedure, only four candidates remain for processing in the
following module. In addition to computational risk reduction,
duplicate memory access can be avoided by a one-pass plate de-
tection algorithm and a peak-valley analysis algorithm, which
will be described in Sections III and IV, respectively.

Moreover, to reduce duplicate computations, several feature
acceleration tables can be created in one scanning procedure
and can be used in plate verification, plate character segmenta-
tion, and character verification procedures. It is not necessary
to recalculate the area summation operations required in the
three procedures, and they can be measured at constant time.
Thus, each module of the plate recognition system could func-
tion faster than 30 f/s to satisfy the real-time requirement of the
overall system.

3) Adaptation: To measure the variations between positives
and negatives, our verification procedures are based on a cas-
cade classifier proposed by Viola [19] and extended by Lienhart
[20]. Skewed Haar-like features are proposed to represent plates
or characters in plate recognition systems for surveillance ap-
plications. In the learning phase of the verification procedures,
an adaptive machine learning mechanism, AdaBoost [21], in-
creases the classification performance by selecting a few domi-
nant features that satisfy the criteria of the TPR and FPR. More-
over, a postprocessing module is developed to filter the nonplate
characters in order to satisfy the plate specifications.

III. COMPACT PLATE REGION DETECTION

The plate region contains plate characters and various adorn-
ments, such as frames, screws, and subtitles. This type of region
is called the “normal plate region.” The presence of adornments
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Fig. 4. Patterns of (a) normal plate regions and (b) compact plate regions.

Fig. 5. Different gradient results of an input image: (a) Original image.
(b) Sobel gradients. (c) Vertical gradients. (d) Horizontal gradients.

increases the difficulties in plate character segmentation because
the characters and adornments may contact each other in the
captured input. It may be difficult to correctly recognize certain
adornments, such as screws and emblems, because they may
be very small and blurred; moreover, they do not provide dis-
tinguishing information for plate recognition. Therefore, these
adornments should be discarded before plate character segmen-
tation and recognition. However, the use of additional proce-
dures for removing the adornment increases the computation
time of the system. In this study, we propose to detect compact
plate regions (i.e., the regions that bound the top and bottom of
plate characters, in the initial stage to avoid the use of additional
removal procedures). Fig. 4 shows the patterns of normal plate
regions and compact plate regions.

A. Generation of Plate Region Candidates

Irrespective of the plate type, according to plate character-
istic 1), the color of a plate character is always different from
that of the background. Therefore, plate regions may be distin-
guished from most nonplate regions by using gradient features.
However, horizontal gradients are not distinctive features be-
cause plates may usually have contact with some other parts,
such as bumpers, which also have strong horizontal gradients.
To reduce the searching space effectively, only vertical gradients
are used in this step. The vertical gradients in Fig. 5(c) represent
the plate regions that appear clearer than others. After the ver-
tical gradient operation, pixels, whose gradient values are higher
than a threshold, are used as the pixels of plate candidates. The
threshold is obtained automatically from Otsu’s method [22]
and the thresholding map is calleed “ .”

B. Extraction of Compact Plate Regions

1) Nonplate Run Suppression: To extract the compact plate
regions with precision, four types of nonplate runs should be
suppressed. Here, a “plate run” is defined as the successive
pixels of plate candidates in , while a “non-plate run” is
defined as successive pixels of non-plate candidates. Let
and denote the width and height of a compact plate region,
respectively. We define suppressed nonplate runs as follows:

1) Vertical plate runs higher than .
2) Horizontal plate runs longer than .
3) Plate runs located between two nonplate runs longer

than the maximum width of plate characters.
4) Small isolated plate regions.

Runs of types 1) and 2) are mainly caused by plate frames or
bumpers, while those of types 3) and 4) are generated by screws,
noises, and other parts connected with plate characters.

2) Compact Plate Region Extraction: After the nonplate runs
are suppressed, the remaining plate runs may not comprise a set
and they may be scattered significantly, thereby making it dif-
ficult to compose compact plate regions. A horizontal smearing
technique is then used to group two plate runs whose distance
is less than the criterion into compact plate regions. The
smearing criterion could be determined from the plate charac-
teristic 2). Since the distance between two plate runs should not
exceed the maximum width of the plate characters, is de-
fined as , where indicates the number of plate char-
acters. In our experiments, the range of is set to four times

according to the plate specifications, while is selected
from 15 pixels (minimal height of the recognizable plate size)
to the quarter-width of the input image. Finally, the connected
components, whose size exceeds a threshold defined by type 4)
suppression, are extracted as candidates of the compact plate re-
gions. Moreover, the map should be restored in the first step
of every iteration because it would be modified by the nonplate
run suppression. The extraction steps are summarized in Algo-
rithm 1.

Algorithm 1: Multipass algorithm for extracting compact plate
regions.

Data: .

Result: candidates of compact plate regions.

foreach ( , ) in and do

;

1. Restore the map, .

2. Remove vertical plate runs higher than (type 1)
suppression).

3. Remove horizontal plate runs longer than (type 2)
suppression).

4. Remove horizontal plate runs which are shorter than and
located between two horizontal nonplate runs longer than
(type 3) suppression).

5. Smear with the parameter .

6. Remove regions smaller than (type 4)
suppression).

7. Extract connected components.

end
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Fig. 6. Schematic diagram of the one-pass algorithm for extracting compact plate regions.

3) One-Pass Extraction of Compact Plate Regions: For each
size of compact plate regions, the procedure of the compact plate
region extraction scans the input image seven times when the
extraction algorithm is executed. In this study, we propose a
one-pass algorithm for the extraction of compact plate regions,
as illustrated in Fig. 6. During one-pass scanning, type 2) sup-
pression is performed in the step of run determination described
in Algorithm 2.

Algorithm 2: Algorithm for run determination, FindAllRuns.

Data: the of .

Result: plate and nonplate runs

Initialize an array Acc[width of .

foreach in the do.

if then

else

end

if and then

update the plate run

else

update the non-plate run (Type 2 suppression)

end

end

and type 4) suppression is performed in connected compo-
nent extraction. Smearing and type 2) and 3) suppressions are
performed based on the run information without modifying the
image. The one-pass extraction algorithm is described in detail
in Algorithm 3.

Algorithm 3: One-pass scanning algorithm for extracting
compact plate regions.

Data:

Result: candidates of compact plate regions

foreach row in the image do

FindAllRuns() ;

foreach do

;

;

if then group and //
Smearing;

if then continue to process next run //
Type 1 suppression;

if and and
then

continue to process next run // Type 3 suppression;

end

// Type 4 suppression;

update corresponding connected components information
when is connected with runs of the previous row

end

extract connected components whose sizes are larger than
and are not updated at previous procedures;

end

, where implies the distance from the end
of to the start of . Fig. 7 shows an example in which
a candidate of the compact plate region is extracted explicitly
by the application of the algorithm.

C. Plate Verification

After the plate regions are extracted based on low-level
gradient features, background patterns, such as bumpers or
texture floors, may not be rejected. The properties of a compact
plate region are different from those of a nonplate region. A
significant property is that a sequence of character patterns will
exist in compact plate regions but not in most of the nonplate
regions. However, it is difficult to determine all heuristic rules
for all variations in different types of plate and nonplate regions.
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Fig. 7. Example in which the one-pass plate extraction algorithm is applied. (a) Original image. (b) G of plate candidates. (c) Detected compact plate region.

Fig. 8. Schematic diagram of the plate verification procedure.

Fig. 9. Schematic diagram of the learning and verification steps.

Fig. 10. Feature prototypes of upright and skewed Haar-like features used in our system.

To reject nonplates quickly and robustly, we adopt a cascade
classifier [19] and a learning mechanism, AdaBoost [21], to
determine the minimum dominant features from our feature
pool (Section III-CI) and the statistical weak learners
(Section III-C2), using the samples of compact plate regions
and nonplate ones. As shown in Fig. 9, the final rejecter is
composed of all selected weak learners , combined with
the weight , and the threshold . As shown in Fig. 8, plate
verification is performed by cascading rejecters with increasing
complexity to reject nonplate regions in the shortest possible
time. The verification procedure is described in detail in the
following subsections.

1) Feature Extraction: To verify the plates correctly, instead
of using raw pixel values, features are extracted to minimize
the within-class variability while maximizing the between-class
variability. In response to significant characteristics originating
from variations in the plate characters, our feature pool is based
on the Haar-like features in Oren [23] and the fast computation
schemes proposed by Viola [19]. To represent all discriminating
features, we extract overcomplete Haar-like features in all sizes.
More specifically, the values of 20 feature prototypes shown in
Fig. 10, which include four edge features, eight line features,
two center-surround features, and six plate character-line fea-

tures are extracted to represent compact plate regions and non-
plate ones. Their prototypes are classified into two types: upright
and skewed. As discussed later, our features can be computed at
any position and scale in the same constant time; only one scan-
ning procedure is required.

Upright Haar-Like Features: Haar-like features, which rep-
resent regional brightness differences, are reminiscent of Haar
basis functions. As shown in the left part of Fig. 9, Haar-like
features are computed by subtracting the weighted sum of the
pixels covered by the dark rectangle from that covered by the
white rectangle. For a normalized input region of 32 8, the
total number of upright Haar-like features extracted in this stage
is 175 256. In general, the total number of upright feature pro-
totypes with a size of in an image of size could
be defined as

(2)

where and denote the maximum
scaling factors in the horizontal and vertical directions, respec-
tively. This formula is explained below.
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Fig. 11. Acceleration tables: (a) SAT and (b) SSAT.

When sliding along the row, the feature size could be
, or . The feature size can be measured

from

When sliding along the column, the feature size could be
, or . The feature size can be measured

from

Skewed Haar-Like Features: To represent skewed plate char-
acters, we extend the basic Haar-like features by an efficient set
of horizontal skewed features. The number of skewed feature
types with size could be observed as an upright feature
type with a size of .

Fast Computation Schemes: One problem of these features is
that the computational effort increases when a window sweeps
the entire input region at various scales. To reduce duplicate
summation operations, each used feature can be computed by
the acceleration tables, summed area table (SAT) [19], [24], or
skewed summed area table (SSAT), as shown in Fig. 11. In the
SAT, the value at location contains the sum of the pixels
above and to the left of

(3)

where is the value of the input image.
In the SSAT, the value at location of SSAT contains the

sum of the pixels of the indefinite quadrangle that begins at the
righthand corner at and extends to the boundaries of the
image

(4)

where is the value of the input image. In this study, we
propose to calculate the values of SSAT in one-pass by the fol-
lowing formula:

with

Then, each value of the summation in a quadrilateral region
can be measured by two additions and one subtraction indepen-
dent of the position or scale. For example, the gray region de-
noted by in Fig. 11 can be measured by

(5)

where are the values in the SAT or SSAT.
Thereafter, all values of the Haar-like features can be

measured at constant time from the acceleration tables. In
the system, these acceleration tables are also created in the
one-pass extraction algorithm of the compact plate regions
without scanning the image again in subsequent procedures.

2) Feature Dimension Reduction: More than 100 000
quadrilateral features are associated with each region of plate
candidates. Although each feature could be computed effi-
ciently, the hypothesis space was still very large and, therefore,
it was difficult to satisfy the real-time requirement of the system.
In this study, we attempt to determine a dominant subset of
the exhaustive Haar-like features that reject the nonplates very
effectively. For this purpose, we use boosting techniques that
could help improve the accuracy of any given learning algo-
rithm. There are many variations in basic boosting. AdaBoost
(adaptive boosting) [21], which is the most popular boosting
technique, allows the designer to continue adding weak learners
until some desired low training error has been achieved.

AdaBoost: The main concept of AdaBoost is to assign a
weight to each sample of the learning set. In the beginning, all
weights are equal; however, in every iteration, the weak learner
returns a hypothesis, and the weights of all samples classified
incorrectly by that hypothesis are increased. The weak learner
is then forced to focus on the difficult samples of the learning
set. The final hypothesis is a combination of the hypotheses
of all iterations, namely, a weighted majority vote, where hy-
potheses with a lower classification error have higher weights.
The AdaBoost algorithm is summarized in Algorithm 4.

Algorithm 4. Algorithm of AdaBoost.

Data: Given samples , where , 1
for negative and positive samples, respectively.

Result: The final classifier
.

Initialize weights for , 1,
respectively, where and are the number of negatives and
positives, respectively.

for do

1. Train one weak classifier for each feature using ,
with error .

2. Choose , where (i.e.,
the hypothesis with the lowest error ). Let .;
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Fig. 12. Schematic diagram of the learning phase: f denotes the maximum acceptable FPR per stage; t, the minimum acceptable TPR per stage; F , the
overall false positive rate; FPR is the false positive rate at stage i; and TPR , the true positive rate of stages i.

3. Update the weights , where
if sample is classified correctly, otherwise, and

.

4. Normalize so that is
a distribution.

end

Form the final classifier as

if
otherwise.

(6)

Learning Procedure: In the learning phase, the feature di-
mension in a rejecter and the number of rejecters are automat-
ically determined by the AdaBoost learning algorithm and the
criteria satisfying the required TPR and FPR. As shown in the
loop procedure in the right side of Fig. 12, the learning pro-
cedure constructs cascading rejecters by searching the set of
possible features and returns the feature with the lowest clas-
sification error iteratively. For each feature, the weak learner
determines the optimal classification function that has the min-
imum number of misclassified samples. The learner is termed
weak because we do not expect to classify the training data ef-
fectively (i.e., it may only classify the training data correctly
51% of the time). Therefore, a weak classifier consists of
a feature in which is defined as a threshold-type
function with a boolean-valued output that indicates whether
is positive or negative. Here, is a 32 8 image of the normal-
ized regions of the plate candidates. The formal expression of a
threshold-type function is , where is
the threshold. Learning samples are then reweighted in order to
emphasize the false negatives and positives by previous learned
classifiers. The final rejecter takes the weighted combination of
weak classifiers followed by a threshold. In each iteration of
boosting:

• evaluate each quadrilateral feature (a weak classifier) of
each input training sample;

• select the best threshold for each weak classifier;
• select the best weak classifier (feature) and the threshold;
• reweight the samples.
Finally, the number of rejecters is determined when the

overall FPR is satisfied, as shown in the loop procedure in the
left part of Fig. 12.

D. Multiscale Implementation

Scale selection is a fundamental problem in computer vision
and a key bottleneck for object detection algorithms. To increase

Fig. 13. Schematic diagram of the extraction of one Haar-like feature (1� 2)
from two compact plate regions.

the speed of detecting variant plate sizes, we scale our detector
in the parameter space ( and ) without spending compu-
tational effort on scaling the input image, as in the case of other
pyramid searching techniques. Moreover, without normalizing
the input plate candidates, the quadrilateral features used for
plate verification are measured in proportion to the extracted
plate regions because these features are rather invariant to the
variations in the plate size and shape. As shown in Fig. 13, the
left image is detected with pixels and pixels,
while the right image is detected with pixels and

pixels. The two images in the middle show the results
of one Haar-like feature measurements of the compact plate re-
gions detected from the two input images.

IV. CASCADING SEGMENTATION AND

RECOGNITION OF PLATE CHARACTERS

Three procedures are developed in a cascade to segment
and recognize the plate characters. First, low-computational
histogram features are adopted in the first two procedures to
extract promising plate character candidates. Moreover, to
segment characters effectively with different variations, such
as illumination changing on a plate or the variant numbers
of plate characters, a new segmentation approach is proposed
based on peak-valley analysis in conjunction with heuristics
that determine the potential segments. In the third procedure,
heavy-computational statistical Haar-like features are selected
to reject noncharacter regions robustly. The remaining character
regions are recognized by an OCR.

A. Plate Character Segmentation

A compact plate region may contain two types of plate char-
acters: distinct and indistinct. A distinct character is a plate char-
acter that can be separated from the plate region on the basis
of thresholding from gray values, while an indistinct character
is connected to the other ones. Four compact plate regions are
shown in Fig. 14(a). The distinct characters extracted as con-
nected components after a certain values of thresholding are
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Fig. 14. Patterns of (a) compact plate regions, (b) distinct characters, and (c) indistinct characters.

Fig. 15. Inevident difference between the colors of the characters and the background. (a) Compact plate region. (b) Histogram. (c) Binary representation after
thresholding by Otsu’s method.

Fig. 16. One segmentation result: (a) Original compact plate region, (b) histogram of image (a) where peaks and valleys are indicated by white and gray lines,
respectively; (c)-(e) three thresholding results with three different peak values—from low to high; (f) indistinct characters detected by histogram segmentation; (g)
distinct characters detected by histogram segmentation; (h) projection profile of (f); (i) single characters detected by projection segmentation.

exhibited in Fig. 14(b), and the indistinct characters are pre-
sented in Fig. 14(c). In most cases, the plate characters would
be distinct, which will be extracted first to avoid the use of ad-
ditional splitting procedures. In indistinct character regions, the
region candidates of single characters are determined by projec-
tion analysis. For measuring the projection effectively, we use
an additional acceleration table—PSAT—to avoid the recompu-
tation of the summation operations during the projection. The
value at location in the PSAT is the sum of the pixels
above . Each value in the projection histogram could be
calculated by one subtraction operation.

1) Searching for Natural Segmentation Points: It is gener-
ally difficult to determine optimum thresholds during histogram
segmentation or projection segmentation because the difference
between the color of the characters and the background is usu-
ally not evident. For example, a compact plate region with indis-
tinct colors between the characters and the background is shown
in Fig. 15(a), where the histogram is displayed in Fig. 15(b),
where the white line represents the threshold value detected by
Otsu’s method. The result obtained after thresholding by Otsu’s
method is presented in Fig. 15(c), in which only one distinct
character—“7”—could be detected after connected-component
extraction. Other characters, such as “5” or “8,” would be ex-
tracted by other thresholds.

With the assumption that each character is composed of pixels
with similar colors, the potential thresholds to separate distinct
characters from others would occur in a valley of the histogram
for the plates with light-colored characters or in a peak for the
other plates with dark-colored characters. After thresholding,
the connected components are selected as candidates of distinct
characters when their regions satisfy plate characteristic 4), for
example, the width to height ratio of 0.5. To segment the indis-
tinct characters in the remaining regions, we propose to use the
projection profile to detect all promising segment points, which
would exist in the local peaks or valleys of the projection profile
according to the change from the plate characters to the back-
ground.

Certain local peaks (white lines) and valleys (gray lines) of
the histogram are shown in Fig. 16(b), and three results ob-
tained after thresholding with different peak values are shown
in Fig. 16(c)–(e). The distinct character, “7,” would be extracted
from the connected components of Fig. 16(c) and the others,
“5” and “8,” could be extracted from Fig. 16(d). All of the ex-
tracted distinct characters—“5,” “7,” and “8”—are displayed in
Fig. 16(f). The character representation after thresholding with
a lower threshold would be more fragmented than that shown
in Fig. 16(e); this shows that other plate characters marked as
indistinct characters shown in Fig. 16(g) could not be extracted
effectively at this moment. The lower part of Fig. 16(g) shows
the projection profile of the upper part and the corresponding
peaks and valleys. Using the peak or valley values for segmen-
tation, we could separate all single characters from the indistinct
characters, as shown in Fig. 16(h).

2) Searching for Special Segmentation Points: Some nat-
ural segmentation points are highly concentrated or dispersed
according to the degree of noise or different combinations of
characters. The high concentration of segmentation points ap-
pears usually in the middle of thin connected characters such as
“H,” “N,” or “U.” To reduce the number of character candidates,
we select only the regions that satisfy plate characteristic 4); for
example, regions with a width-to-height ratio of 0.5. The seg-
mentation points are dispersed when the character regions are
not segmented exactly because these points would not exist in
the boundaries of characters such as “T” or “L.” For example,
a valley point would be detected at the middle of the “T” pro-
jection or at the left of the “L” projection. To improve the per-
formance of projection segmentation, a segmentation point is
also located in the middle of two detected segmentation points
whose distance is greater than .

B. Peak-Valley Analysis

In a histogram or projection profile, a peak is a point with
the value of the maximum height between two local minima.
In order to consider a point as a peak, the value must be the
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Fig. 17. Schematic diagram of the mode initialization step.

Fig. 18. Schematic diagram of the peak-valley decision step.

Fig. 19. Schematic diagram of the character verification step.

local maximum and at least greater than the local minimum.
Similarly, a valley point is defined as a point with the minimum
value that is less than between two local maxima.

To detect all peaks and valleys, two decision modes, which are
called “peak decision mode” and “valley decision mode,” are de-
signed to determine a peak and a valley, respectively. Moreover,
two cascading procedures are proposed to detect all promising
peaks and valleys in one-pass scanning. The first procedure is
called “mode initialization” as shown in Fig. 17, where de-
notes the value of the profile at position . The mode of peak
finding or valley finding is determined according to the initial
progressive increase or decrease in profile values. The second
procedure is called the peak-valley decision as shown in Fig. 18.
A point is selected as a peak when its value is higher than that
of its neighbor and the previous valley by in the peak finding
mode, while a point is selected as a valley when its value is less
than that of its neighbor and the previous peak by in the valley
finding mode. The peak and valley finding modes are performed
alternately in order to determine all peaks and valleys.

C. Character Verification

The variations in characters and noncharacters extracted
from the preceding segmentation procedures are automatically
learned using the same scenario of plate verification as that
described in Section III-C. The classification phase of char-
acter verification is depicted in Fig. 19. During the feature
extraction step, the SAT and SSAT are reused to calculate the
Haar-like features for character rejecters. Compared with the
plate verification, one more procedure of the OCR is adopted
to recognize each character explicitly. We have investigated
the development of an OCR for plate characters with different
appearances [5]. In the OCR, the feature extraction step is first
adopted to transform the character images into feature vectors.

1) OCR Feature Extraction: Three robust character features
are extracted to represent the characters: 1) contour-crossing
counts (CCs); 2) directional counts (DCs); and 3) peripheral
background area (PBA).
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Fig. 20. Feature prototypes of OCR: (a) CC and (b) DC.

For the CC feature, each subimage is segmented nonuni-
formly into eight strips in both the horizontal and vertical
directions. These strips have the same number of character
pixels. In order to increase the speed of the extraction, four scan
lines are selected to extract the features in each strip. One value
of the contour-crossing count is the number of strokes
intersecting each scan line , as indicated by the dashed line
in Fig. 20(a). The CC feature dimension of an input sample is
16( ). Each CC feature value in strip is defined as
follows:

(7)

The dc feature represents the number of contour points in four
main directions. As shown in Fig. 20(b), we divide the directions
into four groups: G1, G2, G3, and G4, which correspond to the
horizontal, vertical, diagonal, and inverse diagonal strokes, re-
spectively. The patterns are only measured from the pixels lo-
cated at the boundaries of the strokes. The angle of a stroke,
ranging from 0 to 180 , is determined by the Sobel operator.
The dc feature dimension of an input sample is estimated as
64(4 4 4) by splitting the input character image into 4 4
sub-blocks.

The PBA feature is the length of line segments that begin from
the boundary of the image to the character contour. The input
character image is first segmented into eight strips in both the
horizontal and vertical directions by the method described in the
above processing technique.

In each strip, two feature values are measured from the
lengths between the strip boundary and the nearest character
contour. Each PBA feature value is then divided by the length
of the strip for normalization. The PBA feature dimension of
an input sample is 32( ). The final feature dimension
of each character is 112(16 + 64 + 32).

2) OCR Classification: The classification step is realized by
a support vector machine (SVM) [25] to classify each plate char-
acter. The SVM method searches for a linear separating hyper-
plane as a linear combination of support vectors (in addition to
a constant). The distance from all of the support vectors to the
hyperplane is 1. The SVM implementation used in this study
is LibSVM [26]. In order to determine the best setting for the
SVM, we test different settings for the parameters. The radial
basis function (RBF) is the final used kernel given to LibSVM
for the OCR. The highest OCR accuracy (with only one char-
acter error on the training set) is obtained by setting gamma (re-
lated to the RBF radius) to 0.0078125.

3) Nonplate Character Suppression: After the extraction and
recognition of the plate characters, several characters would be
suppressed when they exist in the subregions of the real charac-
ters, such as “L” in the region of “C,” “7” in the region of “Z,” or
“F” in the region of “E.” For the first example, if “L” is another

recognition candidate in the region of the recognized character
“C,” it should be suppressed according to the geometrical simi-
larity between the lower half of the plate character “C” and the
plate character “L.” In this study, these heuristic rules are col-
lected and generated manually in the training phase from the
recognition candidates and the ground truth data. In the region
of character “C”, for example, if more than 30% subregions, are
recognized as “7,” the recognition result should be suppressed.

V. EXPERIMENTAL RESULTS AND DISCUSSION

This section describes the results of our cascade plate recog-
nition system, including the detection and the final recogni-
tion results. The discussion includes details on a comparison
with other publishing systems as well as the results of a large
real-surveillance testing set. The system proposed in this study
was implemented in C language and tested on a standard Intel
Pentium 4, 3-GHz personal computer. To recognize the plates
more effectively, we reduced the height of the test images to half
or directly captured the half-height images from the capturing
devices without performing the deinterlace procedure. This in-
dicates that the width-to-height ratio of the plate character is set
to 1 in the experiments.

A. Plate Recognition System Performance

The plate training set consisted of 8520 manually selected
plates scaled to a base resolution of 32 8 pixels. The plates
were extracted from images captured in actual visual surveil-
lance environments. The training and test images showed dif-
ferent plate types, sizes, locations, or illuminations. The char-
acter training set consisted of 4786 manually selected charac-
ters scaled to a base resolution of 16 16 pixels. The characters
were extracted from the plate training set.1

The test images are arranged into three sets according to the
captured image size to demonstrate the performance, computa-
tional speed, and adaptation. Each test set is mainly composed of
three kinds of capturing environments, which are a portal, road-
side, and pavement background. These datasets are used to show
different types of lighting or environment on a wet, cloudy, and
sunny day. The datasets also show tolerance of our plate recog-
nition system to the camera’s pan and tilt motion.

In these images, the plate candidates extracted by compact
plate region extraction are shown with blue rectangles, while the
final recognized plates are indicated by red rectangles. Fig. 21
shows the experimental results obtained with different head-
lights on a wet day, while Figs. 22 and 23 show the results ob-
tained with different types of environmental lighting on cloudy
and sunny days, respectively. The results of images captured in
the environment of the pavement background with texture pat-
terns are presented in Fig. 24. Fig. 25 demonstrates the ability to
recognize the frames from a capturing device installed in a car.
Although the capturing device placement (pan/tilt) was changed
(approximately 20 ), as shown in Fig. 25, our plate recognition
system still performed well without the application of any skew
correction procedure.

The system performances are shown in Table I. In this table,
plate heights are shown in the third column, while the testing

1The parts of test images can be downloaded from http://lpr.csie.nctu.edu.tw.
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Fig. 21. Examples of a variety of plates on a wet day. (a) Input images., (b) Recognized results shown in color images. (c) Enlarged recognized plates.

Fig. 22. Examples of a variety of plates on a cloudy day. (a) Input images. (b) Recognized results shown in color images. (c) Enlarged recognized plates.

Fig. 23. Examples of a variety of plates on a sunny day. (a) Input images. (b) Recognized results shown in color images. (c) Enlarged recognized plates.

numbers of images with and without plates are presented in the
fourth column. The numbers of images with plates recognized
are given in the fifth column. In dataset 3, for example, 11 598
images (say, true positives) are recognized correctly in the 11
896 plate images and 516 images (say, false positives) are rec-
ognized erroneously in the 52 000 nonplate images. The TPR,
defined as the ratio of true positives to the number of input im-
ages with plates, is shown in the sixth column; the FPR, de-
fined as the ratio of false positives to the number of input im-
ages without plates, is shown in the seventh column. In dataset
3, for instance, the FPR is 0.01%, standing for one false alarm
in 10 000 input images. The errors occur due to the existence of
similar patterns, such as the symbol “ ,” near the borders of the
plate, or ambiguous characters such as “8” and “B” or “0” and
“D.” Finally, the system accuracy rates shown in the last column
are all greater than 96%, which are the weighted sum of the TPR
and the FPR, as defined in Section II-B.

B. Plate Detection Performance

The number of features used in the stages of the plate veri-
fier using only upright Haar-like features and both upright and

skewed Haar-like features are demonstrated in Fig. 26. The de-
tection performance is shown in Table II. The detection accu-
racy rates are greater than 99%. As shown in Figs. 21(c)–25(c),
the algorithm for a one-pass compact plate region extraction
could detect the plate character regions without restrictions on
the sizes, locations, and colors of the plate or environmental
lighting.

C. Comparison of Computational Speed

A comparison of the experimental computational speed and
performance comparisons with those of two other studies is
shown in Table III. The term “LPD” indicates that the system
only dealt with plate detection, “LPS” shows that the system
only dealt with plate character segmentation and character
recognition, and “All” denotes the system, including plate de-
tection, plate character segmentation, and character recognition.
Moreover, our system also outperforms commercial systems
with respect to computational speeds. The VECON–VIS system
[27] processes each image in less than 0.5 s while the SeeCar
library [28] could response at 25 ms per image but requiring
at least 80 pixels height per typical plate. When we applied
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Fig. 24. Examples of a variety of plates with the pavement background of texture patterns. (a) Input images. (b) Recognized results shown in color images. and
(c) Enlarged recognized plates.

Fig. 25. Examples of a variety of plates captured from a device installed in a car. (a) Input images. (b) Recognized results shown in color images. (c) Enlarged
recognized plates.

TABLE I
RECOGNITION RESULTS OF OUR PLATE RECOGNITION SYSTEM

Fig. 26. Comparison of feature numbers between classifiers using only upright and both upright and skewed Haar-like features.

our system to the dataset—32 local vehicle images used in the
SeeCar library [28]—all plates in the images are recognized
correctly. Other systems, such as Zamir’s LPR engine [29]
and CARMENR Parking License Plate Recognition Engine
[30], would perform in less than 20 f/s. Above commercial
systems, all proclaim that the accuracy rates are more than

95%. However, the details of settings and testing environments
are unavailable for detailed comparisons.

VI. CONCLUSION

We have presented a cascaded framework for a plate recog-
nition system that minimizes the computation time while
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TABLE II
DETECTION RESULTS OF OUR PLATE DETECTION MODULE

TABLE III
COMPARISON RESULTS OF THE COMPUTATIONAL SPEED AND THE ACCURACY RATE FOR PLATE RECOGNITION

achieving a high frame rate and a high accuracy rate. The
framework is used to develop a plate recognition system that
operates only with information presented in a single gray-level
image and at a rate of more than 30 f/s. Without scaling the input
image, the proposed system performs well even if the plates
have different sizes. In particular, no information is obtained
from motion or color. We expect that many challenges will be
presented for surveillance applications, such as illumination,
sizes, or locations, as well as a large range of tilt and pan.
However, alternative sources of information, such as color filter
or motion detection, could also be integrated into our system to
achieve higher frame rates or deal with special cases.

This study combines low-level image processing and high-
level statistical analyses, which are very generic and may have
broader applications in computer vision. The first contribution
is a new technique for directly extracting compact plate regions
at various scales by using the one-pass scanning procedure. In
order to satisfy the challenge of scale variances, almost all plate
detection systems must operate on multiple image scales. By
eliminating the need to compute a multiscale image pyramid,
the proposed algorithm significantly reduces the initial image
processing effort required for plate detection.

The second contribution of this study is a simple and efficient
segmentation technique developed from computationally effi-
cient features using peak-valley selection for the determination
of dominant thresholds. This segmentation method is computa-
tionally efficient since only a small number of candidates must
be evaluated by the computation-required procedure—OCR.

The third contribution of this study is a rejection-based cas-
cade framework for constructing a cascade of rejecters, which
dramatically reduces the computation time while maintaining
very high detection accuracy. The initial rejecters of the cascade
are designed to reject a majority of the input regions in order to
focus the successive processing on promising regions. The ad-
vantage of this framework is that it allows tradeoffs between the
processing time and the system performance. This framework is
clearly effective for the plate recognition and we are confident
that it will also be effective in other domains such as sign or text
detection. Finally, this paper presents the co-design of plate de-
tection and character segmentation using the same summed area
tables to avoid recalculating the procedures. Skewed Haar-like
features are also proposed to represent skewed plate images in

a better manner. The test dataset includes plates under a very
wide range of conditions, such as illumination, scale, location,
or camera variation.
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