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In 1998, Chen et al. [1998] found an error in Marotto’s paper [1978]. It was pointed out by
them that the existence of an expanding fixed point z of a map F in B, (z), the ball of radius
r with center at z does not necessarily imply that F is expanding in B,(z). Subsequent efforts
(see e.g. [Chen et al., 1998; Lin et al., 2002; Li & Chen, 2003]) in fixing the problems have
some discrepancies since they only give conditions for which F is expanding “locally”. In this
paper, we give sufficient conditions so that F is “globally” expanding. This, in turn, gives more
satisfying definitions of a snap-back repeller. We then use those results to show the existence of
chaotic backward traveling waves in a discrete time analogy of one-dimensional Cellular Neural
Networks (CNNs). Some computer evidence of chaotic traveling waves is also given.
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1. Introduction

The study of traveling wave and standing wave
solutions for partial differential equations and lat-
tice dynamical systems has drawn considerable
attention in the past decades. For instance, the
existence and stability of such solutions for lat-
tice dynamical systems has been much studied by
many authors. (See, e.g. [Afraimovich et al., 1994;
Afraimovich & Nekorkin, 1994; Chow et al., 1998;
Erneux & Nicolis, 1993; Hsu & Lin, 2000; Hsu et al.,
1999; Hsu & Yang, 2004; Hudson & Zinner, 1994;
Keener, 1987; Mallet-Paret, 1999a, 1999b; Wu &
Zou, 1997; Zinner, 1992; Zinner et al., 1993; Zou
& Wu, 1998] and many references cited therein.)
On the other hand, the study of the discrete (in
time) analog of such systems has only focused on
diffusion Huxley—Nagumo (see, e.g. [Afraimovich
et al., 1994; Afraimovich & Nekorkin 1994]) equa-
tion. Specifically, they proved the existence of trav-
eling waves of a chaotic profile by establishing the

existence of the Smale-Horseshoe of a corresponding
two-dimensional map. In this paper, we study a
chaotic profile of stationary traveling wave solutions
of a discrete analog of one-dimensional Cellular
Neural Networks (CNNs) by showing the pres-
ence of snap-back repellers. The dynamics of one-
dimensional CNNs (see, e.g. [Ban et al., 2002; Ban
et al., 2001; Chua, 1998; Chua & Yang, 1998a,
1998b; Hanggi & Chua, 2000; Itoh et al., 2001;
Juang & Lin, 2000; Thiran, 1997] and the references
cited therein) is of the form

dz;
dt

= —Efi +z+ af(fi,l)

+af@) +Bf(Tiy1), i€Z.  (la)
Here f is a piecewise linear output function
defined by

re+1—r, ifzx>1,
re—1+r ifz < -1,
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where 7 is a non-negative constant, k is positive.
The quantity Z is called a threshold or biased term.
The constants @, @ and 3 are the interaction weights
between neighboring cells.

Discretizing equation (1a) by Euler method, we
have the discrete-time CNNs of the form

Ti(t +1) = kTi(t) + 2 + of (Ti—1 (1)) + af(Ti(1))
+ Bf (@is1(t)). (2)
Here k = 1 — Atk, z = AtZ, a = Ata, a = Ata,
6 = AtS, and At is a step size. We will refer to
the solutions of system (2) of the form z;(n) =
©(i + cn),c € Z being a wave speed, as station-
ary waves by analogy with the continuous case.
Apparently, the function ¢(i + cn) must satisfy the
equation
o(i +cn +c)
=kp(i +cn)+ 2+ af(p(i —14cn))
+af(e(i+cn)) + Bf(p(i +1+cn)).  (3)

Setting the “iteration index” j = i + cn, we see
that (3) becomes

Yj+e = kyj +af(yj-1) +af(y;) + Bf(yj+1) + 2.
(4)
where y; = (i + cn) = ¢(j). For ¢ > 1, Eq. (4)

For ¢ =1, Eq. (4) becomes
Tit1 = g(Yj+1) == Yj+1 — Bf (Yj+1)
= kyj +af(y;) +of (yj—1) + 2. (6a)

or
— a 1
ri1:= f(yj—1) = Vi T ST S
15} z
Pria-Z 6b
axﬂ-l o (6b)

If we assume momentarily that g (resp. f) is invert-
ible, then Eq. (6a) (resp. (6b)) can be represented
by a two-dimensional map F (resp. B) of the form

F(z,y) = (y, /1i(y) + fa(2) + 2). (7a)

(resp- B = (1 10) + ) - 2)). (70
Here,

filz) =kg (@) +af(g7 (), (3a)
(resp. g1(z) = —gf_l(x) — ga:>, (8b)

and,

fa(z) = af (g~ (x)). (9a)

induces a (¢ + 1)-dimensional map 7' of the form 1, 3
resp. ga(z) = —f " (z) — —x |. (9b)
T(xl,xg,...,xcﬂ) o «
= (2, Tet1, kw2 + af (21) + af(z2) The map F (resp. B) generates the forward (resp.
+ Bf(z3) + 2). (5)  backward) wave solutions of (2). Assuming (1 —
Br)(1 — ) > 0, we see that g is invertible. After
| some calculations, we obtain that, for 1 — 3 > 0,
1
k—i—a'rx ( r)(kﬁ—i—a)’ fr>1-0,
1—0r 1—pr
k+a .
filz) = mx, if |z] <1-—0, (10a)
k+ar 1—-r)(kB+a) .
— foz<-—1
kl—ﬂrx 1—Br o s =1+ f,
and,
1—
1frﬂrx+a1(—ﬂ:)’ ifx>1-70,
a .
or all —r .
kl—ﬂrw 1(—ﬂ7")’ ifos-1+4
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for1— (<0,
k+ar (1—r)(kB+a) .
— fa>-1
1-6r 1—pr ) w2145
k+a .
S < -
hie) = T if o] < —1+ 6,
k+ar 1—r)(kB+a) .
fa<l1-—
L1 —fBr * 1—pr RS p
and,
(o =D s 14p
1—pr 1—p6r’ - '
a .
fo(z) = 1 _ﬂx, if || < -1+ 0,
ar a(r—1) .
kl—ﬂrx 1—p06r’ ife<l-p

Replacing z by (1 — B)x or (f — 1)z depending |

upon the sign of 1 — 3, we have that

a1x +ag —ar, if x>1,
fi(x) = < awox, if |z] <1,
ax —ag +aq, ifz<-—1,
and,
asxT + asy — as, if x > 1,
fa2(x) =  azoz, if |z| <1,
asT — asy + ag, if x < —1.
Here,
1-p)(k+ar) .
f1-— 0
1—pr . f>0,
Y Bk +ar)
if 1— )
1—pr . p<0
{k+a, if1—-738>0,
a0 = .
—(k+a), if1-—p<0.
(1-pBar .
— ifl1- 0
1—p0r "’ ! g>0,
"oy
—Dar
— if1- 0.
1—08r "’ ! p<
and,
_fa, H1-05>0,
0= a, if1-g<o0.

1971

(10c)

(10d)

(11a)

(11b)

Assuming r > 0, which in turn guarantees the

invertibility of f, we have that

blx + b10 — bl,
g1(x) = < biox,
bix — big + b1,
and,
bax + bag — ba,
g2(x) = < by,
box — bog + bo,

if x> 1,
if |x| <1,
if v < -1,

(12a)

ifx>1,
if |x| <1,
if x < -1,

(12D)

Here by = —(k+ra)/ra, bijp = —(k+a)/a, by =

(1—=pr)/ra, by = (1 —-75)/a.

To consider various possibilities of the graphs
of fi(x) and g;(z), i = 1, 2, we need the following

notions.

Given a piecewise function f(z) in the form of
fi(x), as given in (11), then f(z) is said to be of
Types (I)~(IV), respectively, if a; < 0 and a9 > 0;
a1 > 0 and aig < 0; a,a19 > 0; and ay,a19 < O.

See Fig. 1.

To find out the type of functions of f;(z) and
gi(x), i = 1, 2, we group the parameters as fol-

lows.

(I) Dividing (8 into two parts: we have (i) 1 <

(i) 1> .

(ITI) Dividing k into four parts: we have

(i) k> —ar,a>0 (or k > —a,a < 0),

(i)
(iii) —a <k < —ar <0,
(iv) 0 < —ar < k < —a.

i) k< —a,a>0 (or k< —ar,a<0),



Int. J. Bifurcation Chaos 2007.17:1969-1983. Downloaded from www.worldscientific.com
by NATIONAL CHIAO TUNG UNIVERSITY on 04/25/14. For persona use only

1972 Y.-W. Chang et al.

N

a; > 0,a,<0

\

a, < 0,a,;>0

Type (1) Type (I1)
af
alO
alU
-1 1 4 1
a!

a; , a5, >0 a; ,a,<0o0

Type (II11) Type (IV)

Fig. 1. The graph of each type of fi.

(III) Dividing « into two parts: we get (i) a > 0
(i) o < 0.

(IV) Dividing 3 into three parts: we get (i) 5 > 1/r
(i) 1 < B < 1/r (iii) g < 1.

For the applications purpose in CNNs, r is either
zero or a small positive constant. Thus, we assume
—ar > —a when a > 0. Likewise, —ar < —a
when a < 0. We also note that to insure the
existence of the forward map F, we must have
(1-A)(1 - fr) > 0.

We next provide conditions of parameters for
which the type of functions f;(z) and g;(x),7 =1, 2,
is characterized accordingly. Via the selection of
parameters’ ranges, the forward map F can be
grouped into eight different types. Likewise, there
are 16 different types for the backward map B. See
Tables 1 and 2 for those function types and their
corresponding parameters’ ranges.

If fi(x) and g¢;(z), ¢ = 1,2 are monotonic,
such as in the cases F1-F4 and B1-B4, then the

forward map F and the backward map B generate
no chaotic dynamics. All other cases may produce
chaotic dynamics. To have chaotic dynamics via the
presence of a snap-back repeller, we need to con-
sider the noninvertible maps, such as B5-B7 and
B13-B16. In the paper, we will only consider B15.

In 1998, Chen et al. [1998], found an error in
Marotto’s paper [1978]. It was pointed out by them
that the existence of an expanding fixed point z
(see Definition 2.1) of a map F in B, (z), the ball of
radius r with center at z, does not necessarily imply
that F is expanding in B,(z) (see Definition 2.1).
Subsequent efforts (see e.g. [Chen et al., 1998; Lin
et al., 2002; Li & Chen, 2003]) in fixing the prob-
lems have some discrepancies since they only give
conditions for which F is expanding “locally”. In
this paper, we give sufficient conditions so that F is
“globally” expanding. This, in turn, gives more sat-
isfying definitions of a snap-back repeller. We then
use those results to show the existence of chaotic
backward traveling waves in a discrete time anal-
ogy of one-dimensional Cellular Neural Networks
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Table 1.

Function Type
Cases of Forward Map F fi(z)  fa(x)

Conditions Satisfied

F1 11 M0 (L) (I4) 4+ (I11) or (I-if)+ (IL-i) 4+ (IT1-ii)
F2 11 IV (L) (I4) + (L) or (I-ii)+ (LL-ii)+(IT1-1)
F3 IV I (Ii)+ (1) (IT0) or (I-ii)+(11-i)+ (ITL-ii)
F4 v IV (L) (i) + (L) or (I-ii)+ (1) +(I11-9)
F5 1 M0 (L) (Tid) 4+ (1) or (I-id) 4 (I-iv) -+ (ITL-ii)
F6 II v (I-1) 4 (II-iii) + (111-ii) or (I-ii)+(II-iv)+(III-i)
F7 I M0 (L) (Iiv) 4+ (1) or (I-ii)+ (IL-iii) -+ (IT-ii)
FS$ I IV (L) 4+ (Ieiv)+ (i) or (L) (I-ii) 4+ (I11-0)
Table 2.

Function Type

Case of Backward Map B g1(z)  g2(x) Conditions Satisfied
B1 111 I (Ieiv)+ (I)+ (IV-iii) or (I1-4)+ (I1L-ii)+ (IV-i)
B2 11 IV (Iiv)+(I)+(IV-i) or (I-i)+(IT1-ii) + (IV-iii)
B3 IV I ()4 (1) +(IV-iii) or (I-iv)+(ITT-ii)+(IV-i)
B4 v IV (L) +(IV-i)+ (I1L) or (I-iv)+(IT-ii) + (IV-iii)
B5 11 I (IL-iv)+(IV-ii)
B6 111 I (T1i) -+ (ITI-ii) -+ (IV-i)
B7 v 1 (11-3) +(IV-ii)
B8 v I (IL-iv)+ (I1L-i)+ (IV-ii)
BY I I (TLii) (L) (IV-iii) or (I-iid)+ (I11-ii)+ (IV-i)
B10 I IV (L) (II4) 4+ (IV-i) or (LL-iii)+ (IIL-ii)+(IV-iii)
B11 1 M0 (DL (L) + (IV-iii) or (I-ii)+ (111-ii)+ (IV-i)
B12 I IV (ILsii) 4 (IT0-4) -+ (IV-i) or (I1-ii)+(ITL-ii) + (IV-iii)
B13 I I (IT-ii) + (IV-ii)
Bl4 I I (L) + (I1L-i)+ (IV-ii)
B15 I 1 (I1-iii)+ (IV-ii)
B16 1 I (I1-41) + (I1L-)+ (IV-ii) or

(CNNs). We conclude this introductory section by
mentioning that in Sec. 2, we will review the prob-
lems in the early definitions of a snap-back repeller.
Moreover, we will point out what would be the
more satisfying definitions of snap-back repeller.
The sufficient conditions under which F is “glob-
ally” expanding are recorded in Sec. 2 as well. Sec-
tion 3 contains the applications of those results to
a discrete time analogy of CNNs. Moreover, some
computer evidence of chaotic traveling waves is also
given.

2. Snap-Back Repellers

In 1975, Li and Yorke [1975] proved a celebrated
result “period three implies chaos”. This result
plays an important role in predicting and ana-
lyzing one-dimensional chaotic systems. Motivated
by Li-Yorke’s work, Marotto [1978] generalized
such notion of chaos to higher-dimensional discrete

dynamical systems. Specifically, he proved that
Snap-Back repellers imply chaos in R"™. Because the
existence of a snap-back repeller is much easier (as
compared to a homoclinic point) to verify, this theo-
rem was widely applied ever since. However, in 1998,
Chen et al. [1998] found that there was an error in
Marotto’s paper [1978]. Specifically, let (A) and (B)
be as follows.

(A): All eigenvalues of the Jacobian DF(x), where
x€B(z)={yeR":|ly—z| <r},r>0and zis
a fixed point of F', are greater than 1 in norm.

(B): There exists some s > 1 such that any x €
By(2), x # 2, [|[F(x) —z]| > s[lx — z]|.

Definition 2.1. A fixed point z of F satisfying (A)
is called an expanding fixed point of F in B,(z).
A map F satisfying (B) is said to be expanding in
B, (z).
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Note that both statements of (A) and (B) depend
on how one chooses the norm | - ||. If necessary,
we shall call such F is expanding (resp. has a fixed
point z) in B,(z) with respect to a certain norm
-1

It was pointed out in [Chen et al., 1998] that the
existence of an expanding fixed point z of a high-
dimensional map F in B,(z) does not necessarily
guarantee that F is expanding in B, (z). Even in the
case that F is linear, (A) does not necessarily imply
(B). See Fig. 2 (Fig. 1 of [Li & Chen, 2003]). Here in
Fig. 2, the norm chosen is the Euclidean norm. Con-
sequently, for x € B,(z), x does not necessarily lie
on the local unstable manifold W _(z). To fix such
problem, Chen et al. imported a new norm differ-
ent from the Euclidean norm to guarantee the map
F’s expansibility in the neighborhood of its fixed
point.

However, as observed by Li and Chen [2003],
and Lin et al. [2002] that the incorporation of a
new norm by Chen et al., into Marotto Theorem
does not close the gap of the proof. Because the
new norm depends on the points x € B,(z) and the
map F. Thus, it is unclear how such new norm can
be used to prove the assertion in (B) when F is non-
linear. Nevertheless, Chen et al. also gave a modi-
fied definition of a snap-back repeller, which refined
the Marotto’s Theorem in the spirit of Devaney’s
Theorem [Devaney, 1989]. Their proof seems to be
correct (see also [Li & Chen, 2003; Lin et al., 2002]).
We next describe their definition and results.

Chen’s Definition. F : RY — RN, Let z be a
fixed point of F such that all eigenvalues of DF(z)
have absolute values larger than 1. We say that z
is a snap-back repeller if there exists a point xg in
Wit (z), the local unstable set of z, and some integer
m, such that F™(xq) = z and det DF™(xq) # 0.

Fig. 2.

Chen—-Hsu—Zhou Theorem. Let F : RY — RY be
C', and z be a snap-back repeller of F. Then for
each neighborhood U of z, there is an integer m > 0
such that F™ has a hyperbolic invariant subset in U
on which F™ is topologically conjugate to the shift
map on the binary symbol space > _,.

We remark that Chen’s definition of a snap-
back repeller is a special case of a transverse homo-
clinic point. Moreover, F is a diffeomorphism on a
sufficiently small neighborhood of z. Consequently,
their theorem above resembles the results induced
by the presence of a transverse homoclinic point
(see, e.g. Theorem 4.5 of [Robinson, 1995]). As an
effort to prove the existence of chaos in the sense of
Marotto, Lin et al. [2002] proposed another modi-
fied definition of snap-back repeller to ensure chaos
in the sense of Marotto. However, as mentioned by
Li and Chen [2003], the proof of their correspond-
ing theorem is incorrect. What is at fault is that
they used a differential mean value theorem, which
generally does not exist for high dimensional vector-
valued functions. Li and Chen [2003] then gave their
definition of a snap-back repeller as follows.

Li and Chen’s Definition. A fixed point z of system
xkr1 = F(xg),k = 0,1,2,... is called a snap-back
repeller if

(i) F(x) is continuously differentiable in B,(z);
(i) all eigenvalues of (DF(z))" DF(z) are greater
than 1 in norm;
(iii) there exists a point xg € B,(z) with xo # z
such that F™(x¢) = z, and det DF"(xq) # 0
for some positive integer m.

We next record a Lemma of Li and Chen [2003],
which showed the “local” expansibility of F.

Lemma 2.1 (Lemma 5 of [Li & Chen, 2003]).
Suppose that z is a fized point of system Xpy1 =
F(xy),k = 0,1,2,... and F is continuously differ-
entiable in some closed ball B,(z). Also, assume,
that, all eigenvalues of (DF(z))T DF(z) are larger
than 1 in norm. Then, there exist some s > 1 and
r’ € (0,7] such that

(i) [[F(x) = Fy)l > slx -yl forx#y e By(z);
(ii) all eigenvalues of (DF(x))T DF(x) exceed 1 in
norm for all x € By/(z).

Unfortunately, Li and Chen’s Definition of a
snap-back repeller still contains some discrepancies.
Specifically, they proved, though correctly, in the
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lemma above that F is expanding in a small neigh-
borhood, B,/(z). However, for xo € B,(z) with
r > 7/, there is no guarantee that F~*(xg) is to
be in B,/(z), for some k € N. Therefore, the gap
appeared in the paper of Marotto is still there. In
the paper of Marotto, the following alternative def-
inition of a snap-back repeller was also given.

Definition 2.2. Let F : RN — RY be continuous
and z be a fixed point of F. We say that z is a snap-
back repeller if there exists a sequence of compact
sets { By}~ _ ., (homeomorphic to the unit ball in
RY™) which satisfy: (a) By — {z} as k — —o0; (b)
F(By) = Bii1; (c) Fis 1-1 in By; (d) BxkN By, =0
for 1 <k < m; and (e) z € BY,, the interior of B,.

In the original proof of Marotto’s chaos, the
property that F is expanding in B,(z) was used
to show the existence of such sequence of com-
pact sets. Thus, if one assumes such existence of
a sequence of compact sets as the definition of a
snap-back repeller, then the existence of Marotto’s
chaos holds.

In light of the comment above, we will also
define a snap-back repeller as follows

Definition 2.3. Let z € RY be a fixed point of F.
We say that z is a snap-back repeller if

(i) F is expanding in B, (z), for some r > 0;

(ii) There exists a point xg € By(z) with xg # z,
F™(x¢) = z and det DF™(xg) # 0 for some
positive integer m.

For such definitions (Definition 2.2 or Defini-
tion 2.3) of snap-back repellers, the following notion
of Marotto’s chaos, indeed, can be achieved. Thus,
from here on, when we say a point z is a snap-back
repeller it means that z satisfies either Definition 2.2
or Definition 2.3. For completeness, we next recall
Marotto’s chaos [1978] with the presence of such
snap-back repeller.

Theorem 2.1 (Marotto’s Chaos). Suppose F
RN — RN, and z is a snap-back repeller, defined as
in Definition 2.2 or Definition 2.3. Then the map
F is chaotic in the sense of Li—Yorke:

(i) There is a positive integer N such that for each
integer p > N, F has a point of period p.
(ii) There is a “scrambled set” of F, i.e. an

uncountable set S containing no periodic points
of F such that

(b1) F(5) C 5,

(ba) for every xg,ys € S with xg # ysg,
klim sup||F¥(xg) — F¥(yg)|| > 0.

(b3) for every xg € S and any periodic point
Yper of F,

lim sup|[F* (xs) = F(yper)| > 0,

(iii) There is an uncountable subset Sy of S such
that for every xs,,ys, € So:

lim supHFk(XSO) - Fk(YSo)H =0.
k—o0

In the following, we will give sufficient condi-
tions for which the “global” expansibility of a map
can be obtained. Thus, the verification of the exis-
tence of a snap-back repeller should be made more
friendly.

Theorem 2.2. Let F = (f1, fa,..., fn) be a smooth
vector-valued function from RN — RN, and z be a
fized point of F. Suppose DF(z) is a normal matriz.
Let a and 3 be defined as

a= min |\,
1<i<n

_ - (13)

A= max e max |8, (%) |
where N\j,i = 1,...,n, are eigenvalues of DF(z) and
Bij(x), 7 =1,2,...,n, are eigenvalues of Hessian

matrices Hy (x) = (Or0,fi(X))kx1 and B,(z) is a
closed ball with center at z and radius v > 0. If
a—(rf/2) > 1, then F is expanding in By (z).

Proof. For y € B,(z), we have, see e.g. 3.3.11 of
[Ortega & Rheinbaldt, 1970] on p. 80, that

F(y) —z= DF(z)(y — )
! 1!
+ /0 (1-t)F'(z+t(y —2))

X (y —z)(y — z)dt. (14)

We next estimate the first term on the right-hand
side of (14). Now,

IDF(2)(y —2)2 = [T~ 'AT(y — 2)|l2
= [[AT(y = 2)[2 = ally — zll2,

(15)
where T is a unitary matrix and
N - 0
A=t 0
0 - A\
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Since Hessian matrices Hy,(x) is symmetric, for all
x € B,(z) and [|¥|2 < r, we have

Y Hp (¥ < B 7 13 < 6rl7: (16)

Using (13)-(15) and the fact that [F”(x)hk]T =
(KTHy, (x)h, kT Hg,(x)h, ..., kT Hy, (x)h), we see
that

rp
F@) el = (a= 5 ) Iy -2l ()
Thus, F is expanding in B,(z). N

We next give a global expanding theorem with-
out the restriction that DF(z) is normal.

Theorem 2.3. Let F = (f1, fo,..., fn) be a smooth
vector-valued function from RN — RN, and z be a
fized point of F. Suppose all eigenvalues of DF(z)
have absolute values greater than o. Here we assume
that o« > 1. Let 3 be defined as in (15). Assume the
radius v in (13) is measured in the Euclidean norm.
Let P be a matriz for which P~*DF(z)P = J. Here
J is a Jordan canonical form of DF(z). We assume
further that c is a positive constant for which

Ixcll2 < clixlly,  where [Ix], = [P~"xll>  (18)
if
a = 5fev/nllP ! > 1, (19)

then F is expanding in B,(z) with respect to the
p-norm, defined in (18).

Proof. It follows from Theorem IV.2 of [Chen et al.,
1998] that
IDF(z)(y —2)lp 2 ol y — 2 ||p- (20)

Here, the p-norm is defined as in (18). Now, for all
x € B,(z) and ||y||2 < r, we have

Y Hy,(x)¥] < B 73 < B8rF]2 < cBr|¥]lp.
(21)

Applying (20), (21) to equality (14), we get
r _
| F(y) =2 llp = (a = Z8eval P~ 2) |y =2 |
(22)

We have just completed the proof of the

theorem. W

In view of (21) we have the following locally
expanding theorem.

Corollary 2.1. Suppose o > 1. Then F is locally
expanding. That is, there exists a ' > 0 such
that F is expanding in B, (z) with respect to the
p-norm.

Remarks

1. If F is linear, § = 0. Thus F is expanding in
R"™ with respect to the p-norm provided that
a > 1. This is essentially due to Chen et al
[1998].

2. When F is nonlinear, it is not a small task to ver-
ify the assumptions of Theorem 2.3. However, in
applications, the choice of x(, where x is given
as in Definition 2.3, often depends on a certain
parameter(s), say d. Thus, if «, as given in Theo-
rem 2.3, is greater than one and x(y can be made
arbitrarily close to z, where z is as given in Def-
inition 2.3, as one varies the parameter d, then
there must exist a r > 0 sufficiently small so that
the following assertion holds: F is expanding in
B, (z) with respect to the p-norm. Thus, in appli-
cations if there exists a dy € R U {00} (resp.
for certain ranges of d) so that

dlinc} xo(d) = z(resp., lim F~"(x¢(d)) = z),
o do n—o00
(23)

then we may choose d sufficiently close to
do(resp. k € N sufficiently large) so that xo(d) €
B,(z) (resp. F7¥(x¢(d)) € B(z)). Here r' is
chosen as in Corollary 2.3. Under such circum-
stances, the verification of Definition 2.3. is much
friendly.

3. Chaotic Backward Map

In this section, we consider the backward map B
with 1 < 8 < (1/r), —(k/r) > a > —k > 0, and
a > 0. (see B15 in Table 2) Under the circum-
stances,

b1 <0,b10 > 0,05 >0, and by <O0. (24)

We denote by Ql,QO,Q—l,QL—l and Q—l,l the
regions ()} = {(xay) Ty 2> 1}> Qo = {(xay) :
-1 < €,y < 1}7 Q—l = {(CE,y) Y < _1}7
M1 ={(z,y) 2 > 1y < -1}, and Q11 =
{(z,y) : x < =1,y > 1}, respectively.
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Lemma 3.1. Suppose (24) holds. Let by + by > 1,
(resp. by +ba < 1) and —1 + byg + byg < ¢ <
1—big—bao (resp. 1—=big—bog < ¢ < —1+b1g+b2),
then the map B has exactly three fixed points

(T1,71) =: X1, (To,To) =: Xo

and (T_1,T_1) =:X_q, (25)
m Qq, Qo, Q_q, respectively. Here
jlzblo+b20_bl_b2+cjoz c
1—by—bo 1 —byo — b2o
7, = —b1p — bag + b1 + bo —l—c.
1—by —bo
(26)

Lemma 3.2. Suppose the first set of assumptions
in Lemma 3.1 holds. Then X1 and X_1 are repelling
fized points.

Proof. 1t is obvious that

DB(x41) = o1
X41) = bg b1 .
The eigenvalue of DB(x41) are (b + /b3 + 4b2)/

2 and (by — /b +4b2)/2. Moreover, (b;+
/b + 4by)/2 > 1 provided that by + by > 1. We
thus complete the proof of lemma. M

We are next to find a point p = (xg,yo) for
which B(p) S 917,1, B2(p) S Q,Ll, Bg(p) = X3.
To this end, we first compute a pre-image q =
(g1, g2) of X3 for which q lies in Q_1 ;. Clearly, g2 =
71 and ¢ must satisfy equation g1 (Z1) + g2(q1) +
c =T, or equivalently,

bagi = (1 = b1)T1 — b+ bag + b1 — by — ¢
= boT1 + 2byy — 2bo.

Thus,
b
¢ =T+ 2% —2, and ¢ =7 (27)
2
Now,
P = (X0, Y0), (28)
must satisfy the following equations
91(y0) + g2(x0) + ¢ = qu, (29a)
91(q1) + 92(yo) + ¢ = qa. (29b)

From (29b), we see that

b1b
bgyo = (1 — bl)fl -2 1b 20

4+ b1 + big — by + by — ¢
2

b1b
Ty — 2 1b20

+ 2b10.
2

So,
b1b b
yo=T1 —2—2 420 =7 +d;. (30)
2
Substituting (30a) into (29a), we obtain that
_ by 2 b1b19o Wby  _
—7 42 f g P =T + do.
Top =121+ 2 b 0 + b3 T1 + d2
(30b)

We then need to show that there is a nonempty set
of parameters for which

To, Yo > 1> (313)
and
b
91(y0) + g2(wo) + ¢ =21 + 2% —2<—1. (31b)
Proposition 3.1. Let byjg = —bypy = q > 0 and

by = —pby > 0, where p > 0. Suppose by (1 —p) > 1,
—1<e<1,b <=-3,q>2p>12. Then xog > T
and yo > T1. Consequently, (31) holds.

Proof. Clearly, o, given as in (30a), is greater

than 7.

Now,

c+ (p—1)by 2 1 1 2
0 1+E1;—1§b1 _p221 [1+b_1_1_7] pby

c+t(p—1Dbr ¢ | 2

T 1+ (p—-1b p?1  ph
c+(p—1)b

1+ (p-1bh

=7

> 1.

To complete the proof of the proposition, we see,
via (31b), that

_ b2 c—1 2q
422 g °7° A
T, 1+ (p—1)bs ' pby
1
[pb1(c — 1)

T b1+ (p— 1)by)
+2¢(1+ (p— 1)by)]
1
=5+ (- Dby)
X [—2by + 4(1 + 5by)]

1
BT

< 0.
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We next show that there are parameter values for
which B has a snap-back repeller.

Theorem 3.1. Let byjg = —by = q > 0 and
ba = —pby > 0, where p > 0.
Suppose,

-1<e<1l,g>2p>12
and — byis sufficiently large. (32)
Then B has a snap-back repeller.

Proof. Let

c+(p—1)b c—1

I+(p—1)b 1+(p—1)b
(33)

Note that 3, as defined in (13), is zero in B,(X7).
Here r is given as in (33) and X is defined in (25).
In view of remark related to (23), it suffices to show
that lim, . B™"(p) = X1, where p is defined in
(28). To this end, we make a change of variables
' =x -7, and vy = y — T, on B in the region ;.
The resulting map B then has the form

B(',y") = (v, oz’ + b1y/). (34)

In the new coordinate systems, (zq,yo) becomes
(x(,v(), where

r=71—1=

(xo — T1, 10 — T1)
(d2,dy)

—2q 2 2q
2¢ 29 24
p3_b1’p2_bl_p_bl>

(xi)vyé)) =

; (35)

where d; and dj are given as in (30). Note also that
dy,ds > 0. Let the pre-image (x(, y(),located in o,
be denoted by (z';,y" ;). We then denote, induc-
tively, by the pre-image of (2,1’ ;), located in Q,
(', 1,y ,_q), for any i € N. Using (34) and (35),
we see immediately that

by 1 oy,
F =y ) == 36
T_i—1 b2 T_; + b2 Y P pb1’ ( a)
v, =2, (36b)

Let —1 < c <1 and ¢ > 2p > 16. By making —b;
sufficiently large, we see that

r> x4 =ds > 0. (37a)
and

r >y, =d; >0. (37Db)

Using (36) and (37), we may prove inductively that

0< ZCLk,y/,k <,
and lim 2/, = kh_{go y . =0. (38)

k—o0

We have just proved that lim B™"(p) = X3. Thus
n—oo

there exists a r > 0 sufficiently small so that z is a
snap-back repeller in B,(z). W

Theorem 3.2. Let bjg = —byy = q >0 and by =
—pby > 0, where p > 0. Suppose (32) holds. Then
the system (2) exists as backward traveling waves of
a chaotic profile.

Inspired by the assumption in (32), we first treat b;
as a bifurcation parameter and fix all other param-
eters. Specifically, we fix parameters z = 0, o = 1,
p = 61, blO == 23, and b20 = —23. The bifurca-
tion parameter b; is shown on the horizontal axis
of the following plots and the vertical axis shows
the logarithmical values of the x axis of the back-
ward map B. The periodic solutions, for example,
is apparent in Fig. 5 for |b;| small and is shown
in magnified form in Fig. 3 for —0.15 < b; <
0.2. When |by] is large, the orbit of {y;} seems to
be dense on two separate intervals and is shown
in magnified form in Fig. 4 As predicted in the
assumption (32), if —b; is sufficiently large, then a
snap-back repeller exists. Figure 3, suggests that
when —b; is small, no chaotic traveling wave would
oceur.

Letting z = 0, a = 1, p = 6.1, byg = 23,
bog = —23, we then illustrate the effectiveness of the
main theorems by producing some (chaotic) pro-
files of the traveling waves graphically by choos-
ing by = —0.1 and —5, respectively. The shapes
of the wave solutions y; with by = —0.1, =5 are
shown in Figs. 6 and 7, respectively. And the ampli-
tudes in Fig. 6 show that the oscillation is close to
period four, but in Fig. 7, the amplitudes oscillate
acutely.

Next, their amplitude-space plots of y; with a
shift of time steps are given in Figs. 8 and 9, respec-
tively. In (4), we have the equality j = i + n for
¢ = 1. Hence, y; has the same height, provided that
the index j is the same. In other words, if the sum of
¢ and n is equal then these y; have the same height
for i,n € Z (see Figs. 8 and 9). Here, we mention
that the value of y; at the corresponding 7, n is
shifted to 1.0.

We conclude this paper with the following
remarks.
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(1) Let At be small, let r and @, as given in (1), be
such that » > 0 is small and @ is negative. Then
(31) is satisfied under some mild compatibility
conditions of other parameters.

(2) Under similar parameters conditions, X_1 is
also a snap-back repeller. Moreover, Xy can be
made a snap-back repeller by a proper choice of
the parameters.

(3) It is also of interest to study the chaotic dynam-
ics of the backward map B for the other com-
binations of g1 and g9, as well as those of the
forward map F.
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