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In 1998, Chen et al. [1998] found an error in Marotto’s paper [1978]. It was pointed out by
them that the existence of an expanding fixed point z of a map F in Br(z), the ball of radius
r with center at z does not necessarily imply that F is expanding in Br(z). Subsequent efforts
(see e.g. [Chen et al., 1998; Lin et al., 2002; Li & Chen, 2003]) in fixing the problems have
some discrepancies since they only give conditions for which F is expanding “locally”. In this
paper, we give sufficient conditions so that F is “globally” expanding. This, in turn, gives more
satisfying definitions of a snap-back repeller. We then use those results to show the existence of
chaotic backward traveling waves in a discrete time analogy of one-dimensional Cellular Neural
Networks (CNNs). Some computer evidence of chaotic traveling waves is also given.

Keywords : Snap-back repellers; traveling waves; cellular neural networks.

1. Introduction

The study of traveling wave and standing wave
solutions for partial differential equations and lat-
tice dynamical systems has drawn considerable
attention in the past decades. For instance, the
existence and stability of such solutions for lat-
tice dynamical systems has been much studied by
many authors. (See, e.g. [Afraimovich et al., 1994;
Afraimovich & Nekorkin, 1994; Chow et al., 1998;
Erneux & Nicolis, 1993; Hsu & Lin, 2000; Hsu et al.,
1999; Hsu & Yang, 2004; Hudson & Zinner, 1994;
Keener, 1987; Mallet-Paret, 1999a, 1999b; Wu &
Zou, 1997; Zinner, 1992; Zinner et al., 1993; Zou
& Wu, 1998] and many references cited therein.)
On the other hand, the study of the discrete (in
time) analog of such systems has only focused on
diffusion Huxley–Nagumo (see, e.g. [Afraimovich
et al., 1994; Afraimovich & Nekorkin 1994]) equa-
tion. Specifically, they proved the existence of trav-
eling waves of a chaotic profile by establishing the

existence of the Smale-Horseshoe of a corresponding
two-dimensional map. In this paper, we study a
chaotic profile of stationary traveling wave solutions
of a discrete analog of one-dimensional Cellular
Neural Networks (CNNs) by showing the pres-
ence of snap-back repellers. The dynamics of one-
dimensional CNNs (see, e.g. [Ban et al., 2002; Ban
et al., 2001; Chua, 1998; Chua & Yang, 1998a,
1998b; Hänggi & Chua, 2000; Itoh et al., 2001;
Juang & Lin, 2000; Thiran, 1997] and the references
cited therein) is of the form

dxi

dt
= −k xi + z + αf(xi−1)

+ af(xi) + βf(xi+1), i ∈ Z. (1a)

Here f is a piecewise linear output function
defined by

f(x) =




rx + 1 − r, if x ≥ 1,
x, if |x| ≤ 1,
rx − 1 + r, if x ≤ −1,

(1b)
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1970 Y.-W. Chang et al.

where r is a non-negative constant, k is positive.
The quantity z is called a threshold or biased term.
The constants α, a and β are the interaction weights
between neighboring cells.

Discretizing equation (1a) by Euler method, we
have the discrete-time CNNs of the form

xi(t + 1) = kxi(t) + z + αf(xi−1(t)) + af(xi(t))
+ βf(xi+1(t)). (2)

Here k = 1 − �tk, z = �tz, α = �tα, a = �ta,
β = �tβ, and �t is a step size. We will refer to
the solutions of system (2) of the form xi(n) =
ϕ(i + cn), c ∈ Z being a wave speed, as station-
ary waves by analogy with the continuous case.
Apparently, the function ϕ(i + cn) must satisfy the
equation

ϕ(i + cn + c)
= kϕ(i + cn) + z + αf(ϕ(i − 1 + cn))

+ af(ϕ(i + cn)) + βf(ϕ(i + 1 + cn)). (3)

Setting the “iteration index” j = i + cn, we see
that (3) becomes

yj+c = kyj + αf(yj−1) + af(yj) + βf(yj+1) + z.

(4)

where yj = ϕ(i + cn) = ϕ(j). For c > 1, Eq. (4)
induces a (c + 1)-dimensional map T of the form

T (x1, x2, . . . , xc+1)
= (x2, . . . , xc+1, kx2 + αf(x1) + af(x2)

+ βf(x3) + z). (5)

For c = 1, Eq. (4) becomes

xj+1 := g(yj+1) := yj+1 − βf(yj+1)
= kyj + af(yj) + αf(yj−1) + z. (6a)

or

xj−1 := f(yj−1) =
−k

α
yj − a

α
xj +

1
α

yj+1

− β

α
xj+1 − z

α
. (6b)

If we assume momentarily that g (resp. f) is invert-
ible, then Eq. (6a) (resp. (6b)) can be represented
by a two-dimensional map F (resp. B) of the form

F(x, y) = (y, f1(y) + f2(x) + z). (7a)
(
resp. B(x, y) =

(
y, g1(y) + g2(x) − z

α

))
. (7b)

Here,

f1(x) = kg−1(x) + af(g−1(x)), (8a)(
resp. g1(x) = − k

α
f−1(x) − a

α
x

)
, (8b)

and,

f2(x) = αf(g−1(x)). (9a)(
resp. g2(x) =

1
α

f−1(x) − β

α
x

)
. (9b)

The map F (resp. B) generates the forward (resp.
backward) wave solutions of (2). Assuming (1 −
βr)(1 − β) > 0, we see that g is invertible. After
some calculations, we obtain that, for 1 − β > 0,

f1(x) =




k + ar

1 − βr
x +

(1 − r)(kβ + a)
1 − βr

, if x ≥ 1 − β,

k + a

1 − β
x, if |x| ≤ 1 − β,

k + ar

1 − βr
x − (1 − r)(kβ + a)

1 − βr
, if x ≤ −1 + β,

(10a)

and,

f2(x) =




αr

1 − βr
x +

α(1 − r)
1 − βr

, if x ≥ 1 − β,

α

1 − β
x, if |x| ≤ 1 − β,

αr

1 − βr
x − α(1 − r)

1 − βr
, if x ≤ −1 + β,

(10b)
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Snap-Back Repellers and Chaotic Traveling Waves in One-Dimensional CNNs 1971

for 1 − β < 0,

f1(x) =




k + ar

1 − βr
x − (1 − r)(kβ + a)

1 − βr
, if x ≥ −1 + β,

k + a

1 − β
x, if |x| ≤ −1 + β,

k + ar

1 − βr
x +

(1 − r)(kβ + a)
1 − βr

, if x ≤ 1 − β,

(10c)

and,

f2(x) =




αr

1 − βr
x +

α(r − 1)
1 − βr

, if x ≥ −1 + β,

α

1 − β
x, if |x| ≤ −1 + β,

αr

1 − βr
x − α(r − 1)

1 − βr
, if x ≤ 1 − β.

(10d)

Replacing x by (1− β)x or (β − 1)x depending
upon the sign of 1 − β, we have that

f1(x) =




a1x + a10 − a1, if x ≥ 1,
a10x, if |x| ≤ 1,

a1x − a10 + a1, if x ≤ −1,
(11a)

and,

f2(x) =




a2x + a20 − a2, if x ≥ 1,
a20x, if |x| ≤ 1,

a2x − a20 + a2, if x ≤ −1.
(11b)

Here,

a1 =




(1 − β)(k + ar)
1 − βr

, if 1 − β > 0,

(β − 1)(k + ar)
1 − βr

, if 1 − β < 0.

a10 =
{

k + a, if 1 − β > 0,
−(k + a), if 1 − β < 0.

a2 =




(1 − β)αr

1 − βr
, if 1 − β > 0,

(β − 1)αr

1 − βr
, if 1 − β < 0.

and,

a20 =
{

α, if 1 − β > 0,

−α, if 1 − β < 0.

Assuming r > 0, which in turn guarantees the
invertibility of f , we have that

g1(x) =




b1x + b10 − b1, if x ≥ 1,

b10x, if |x| ≤ 1,
b1x − b10 + b1, if x ≤ −1,

(12a)

and,

g2(x) =




b2x + b20 − b2, if x ≥ 1,

b20x, if |x| ≤ 1,
b2x − b20 + b2, if x ≤ −1,

(12b)

Here b1 = −(k + ra)/rα, b10 = −(k + a)/α, b2 =
(1 − βr)/rα , b20 = (1 − β)/α.

To consider various possibilities of the graphs
of fi(x) and gi(x), i = 1, 2, we need the following
notions.

Given a piecewise function f(x) in the form of
f1(x), as given in (11), then f(x) is said to be of
Types (I)–(IV), respectively, if a1 < 0 and a10 > 0;
a1 > 0 and a10 < 0; a1, a10 > 0; and a1, a10 < 0.
See Fig. 1.

To find out the type of functions of fi(x) and
gi(x), i = 1, 2, we group the parameters as fol-
lows.

(I) Dividing β into two parts: we have (i) 1 < β
(ii) 1 > β.

(II) Dividing k into four parts: we have

(i) k > −ar, a > 0 (or k > −a, a < 0),
(ii) k < −a, a > 0 (or k < −ar, a < 0),
(iii) −a < k < −ar < 0,
(iv) 0 < −ar < k < −a.
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1972 Y.-W. Chang et al.

Fig. 1. The graph of each type of f1.

(III) Dividing α into two parts: we get (i) α > 0
(ii) α < 0.

(IV) Dividing β into three parts: we get (i) β > 1/r
(ii) 1 < β < 1/r (iii) β < 1.

For the applications purpose in CNNs, r is either
zero or a small positive constant. Thus, we assume
−ar > −a when a > 0. Likewise, −ar < −a
when a < 0. We also note that to insure the
existence of the forward map F, we must have
(1 − β)(1 − βr) > 0.

We next provide conditions of parameters for
which the type of functions fi(x) and gi(x), i = 1, 2,
is characterized accordingly. Via the selection of
parameters’ ranges, the forward map F can be
grouped into eight different types. Likewise, there
are 16 different types for the backward map B. See
Tables 1 and 2 for those function types and their
corresponding parameters’ ranges.

If fi(x) and gi(x), i = 1, 2 are monotonic,
such as in the cases F1–F4 and B1–B4, then the

forward map F and the backward map B generate
no chaotic dynamics. All other cases may produce
chaotic dynamics. To have chaotic dynamics via the
presence of a snap-back repeller, we need to con-
sider the noninvertible maps, such as B5–B7 and
B13–B16. In the paper, we will only consider B15.

In 1998, Chen et al. [1998], found an error in
Marotto’s paper [1978]. It was pointed out by them
that the existence of an expanding fixed point z
(see Definition 2.1) of a map F in Br(z), the ball of
radius r with center at z, does not necessarily imply
that F is expanding in Br(z) (see Definition 2.1).
Subsequent efforts (see e.g. [Chen et al., 1998; Lin
et al., 2002; Li & Chen, 2003]) in fixing the prob-
lems have some discrepancies since they only give
conditions for which F is expanding “locally”. In
this paper, we give sufficient conditions so that F is
“globally” expanding. This, in turn, gives more sat-
isfying definitions of a snap-back repeller. We then
use those results to show the existence of chaotic
backward traveling waves in a discrete time anal-
ogy of one-dimensional Cellular Neural Networks
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Snap-Back Repellers and Chaotic Traveling Waves in One-Dimensional CNNs 1973

Table 1.

Function Type

Cases of Forward Map F f1(x) f2(x) Conditions Satisfied

F1 III III (I-i)+(II-i)+(III-i) or (I-ii)+(II-ii)+(III-ii)
F2 III IV (I-i)+(II-i)+(III-ii) or (I-ii)+(II-ii)+(III-i)
F3 IV III (I-i)+(II-ii)+(III-i) or (I-ii)+(II-i)+(III-ii)
F4 IV IV (I-i)+(II-ii)+(III-ii) or (I-ii)+(II-i)+(III-i)
F5 II III (I-i)+(II-iii)+(III-i) or (I-ii)+(II-iv)+(III-ii)
F6 II IV (I-i)+(II-iii)+(III-ii) or (I-ii)+(II-iv)+(III-i)
F7 I III (I-i)+(II-iv)+(III-i) or (I-ii)+(II-iii)+(III-ii)
F8 I IV (I-i)+(II-iv)+(III-ii) or (I-ii)+(II-iii)+(III-i)

Table 2.

Function Type

Case of Backward Map B g1(x) g2(x) Conditions Satisfied

B1 III III (II-iv)+(III-i)+(IV-iii) or (II-i)+(III-ii)+(IV-i)
B2 III IV (II-iv)+(III-i)+(IV-i) or (II-i)+(III-ii)+(IV-iii)
B3 IV III (II-i)+(III-i)+(IV-iii) or (II-iv)+(III-ii)+(IV-i)
B4 IV IV (II-i)+(IV-i)+(III-i) or (II-iv)+(III-ii)+(IV-iii)
B5 III I (II-iv)+(IV-ii)
B6 III II (II-i)+(III-ii)+(IV-ii)
B7 IV I (II-i)+(IV-ii)
B8 IV II (II-iv)+(III-ii)+(IV-ii)
B9 I III (II-ii)+(III-i)+(IV-iii) or (II-iii)+(III-ii)+(IV-i)
B10 I IV (II-ii)+(III-i)+(IV-i) or (II-iii)+(III-ii)+(IV-iii)
B11 II III (II-iii)+(III-i)+(IV-iii) or (II-ii)+(III-ii)+(IV-i)
B12 II IV (II-iii)+(III-i)+(IV-i) or (II-ii)+(III-ii)+(IV-iii)
B13 I I (II-ii)+(IV-ii)
B14 I II (II-iii)+(III-ii)+(IV-ii)
B15 II I (II-iii)+(IV-ii)
B16 II II (II-ii)+(III-ii)+(IV-ii) or

(CNNs). We conclude this introductory section by
mentioning that in Sec. 2, we will review the prob-
lems in the early definitions of a snap-back repeller.
Moreover, we will point out what would be the
more satisfying definitions of snap-back repeller.
The sufficient conditions under which F is “glob-
ally” expanding are recorded in Sec. 2 as well. Sec-
tion 3 contains the applications of those results to
a discrete time analogy of CNNs. Moreover, some
computer evidence of chaotic traveling waves is also
given.

2. Snap-Back Repellers

In 1975, Li and Yorke [1975] proved a celebrated
result “period three implies chaos”. This result
plays an important role in predicting and ana-
lyzing one-dimensional chaotic systems. Motivated
by Li–Yorke’s work, Marotto [1978] generalized
such notion of chaos to higher-dimensional discrete

dynamical systems. Specifically, he proved that
Snap-Back repellers imply chaos in R

n. Because the
existence of a snap-back repeller is much easier (as
compared to a homoclinic point) to verify, this theo-
rem was widely applied ever since. However, in 1998,
Chen et al. [1998] found that there was an error in
Marotto’s paper [1978]. Specifically, let (A) and (B)
be as follows.

(A): All eigenvalues of the Jacobian DF(x), where
x ∈ Br(z) = {y ∈ R

n : ‖y− z‖ < r}, r > 0 and z is
a fixed point of F, are greater than 1 in norm.

(B): There exists some s > 1 such that any x ∈
Br(z), x �= z, ‖F(x) − z‖ > s‖x− z‖.

Definition 2.1. A fixed point z of F satisfying (A)
is called an expanding fixed point of F in Br(z).
A map F satisfying (B) is said to be expanding in
Br(z).
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1974 Y.-W. Chang et al.

Note that both statements of (A) and (B) depend
on how one chooses the norm ‖ · ‖. If necessary,
we shall call such F is expanding (resp. has a fixed
point z) in Br(z) with respect to a certain norm
‖ · ‖.

It was pointed out in [Chen et al., 1998] that the
existence of an expanding fixed point z of a high-
dimensional map F in Br(z) does not necessarily
guarantee that F is expanding in Br(z). Even in the
case that F is linear, (A) does not necessarily imply
(B). See Fig. 2 (Fig. 1 of [Li & Chen, 2003]). Here in
Fig. 2, the norm chosen is the Euclidean norm. Con-
sequently, for x ∈ Br(z), x does not necessarily lie
on the local unstable manifold W u

loc(z). To fix such
problem, Chen et al. imported a new norm differ-
ent from the Euclidean norm to guarantee the map
F’s expansibility in the neighborhood of its fixed
point.

However, as observed by Li and Chen [2003],
and Lin et al. [2002] that the incorporation of a
new norm by Chen et al., into Marotto Theorem
does not close the gap of the proof. Because the
new norm depends on the points x ∈ Br(z) and the
map F. Thus, it is unclear how such new norm can
be used to prove the assertion in (B) when F is non-
linear. Nevertheless, Chen et al. also gave a modi-
fied definition of a snap-back repeller, which refined
the Marotto’s Theorem in the spirit of Devaney’s
Theorem [Devaney, 1989]. Their proof seems to be
correct (see also [Li & Chen, 2003; Lin et al., 2002]).
We next describe their definition and results.

Chen’s Definition. F : R
N → R

N . Let z be a
fixed point of F such that all eigenvalues of DF(z)
have absolute values larger than 1. We say that z
is a snap-back repeller if there exists a point x0 in
W u

loc(z), the local unstable set of z, and some integer
m, such that Fm(x0) = z and det DFm(x0) �= 0.

Fig. 2.

Chen–Hsu–Zhou Theorem. Let F : R
N → R

N be
C1, and z be a snap-back repeller of F. Then for
each neighborhood U of z, there is an integer m > 0
such that Fm has a hyperbolic invariant subset in U
on which Fm is topologically conjugate to the shift
map on the binary symbol space

∑
2.

We remark that Chen’s definition of a snap-
back repeller is a special case of a transverse homo-
clinic point. Moreover, F is a diffeomorphism on a
sufficiently small neighborhood of z. Consequently,
their theorem above resembles the results induced
by the presence of a transverse homoclinic point
(see, e.g. Theorem 4.5 of [Robinson, 1995]). As an
effort to prove the existence of chaos in the sense of
Marotto, Lin et al. [2002] proposed another modi-
fied definition of snap-back repeller to ensure chaos
in the sense of Marotto. However, as mentioned by
Li and Chen [2003], the proof of their correspond-
ing theorem is incorrect. What is at fault is that
they used a differential mean value theorem, which
generally does not exist for high dimensional vector-
valued functions. Li and Chen [2003] then gave their
definition of a snap-back repeller as follows.

Li and Chen’s Definition. A fixed point z of system
xk+1 = F(xk), k = 0, 1, 2, . . . is called a snap-back
repeller if

(i) F(x) is continuously differentiable in Br(z);
(ii) all eigenvalues of (DF(z))T DF(z) are greater

than 1 in norm;
(iii) there exists a point x0 ∈ Br(z) with x0 �= z

such that Fm(x0) = z, and det DFm(x0) �= 0
for some positive integer m.

We next record a Lemma of Li and Chen [2003],
which showed the “local” expansibility of F.

Lemma 2.1 (Lemma 5 of [Li & Chen, 2003]).
Suppose that z is a fixed point of system xk+1 =
F(xk), k = 0, 1, 2, . . . and F is continuously differ-
entiable in some closed ball Br(z). Also, assume,
that, all eigenvalues of (DF(z))T DF(z) are larger
than 1 in norm. Then, there exist some s > 1 and
r′ ∈ (0, r] such that

(i) ‖F(x) − F(y)‖ > s‖x − y‖ for x �= y ∈ Br′(z);
(ii) all eigenvalues of (DF(x))T DF(x) exceed 1 in

norm for all x ∈ Br′(z).

Unfortunately, Li and Chen’s Definition of a
snap-back repeller still contains some discrepancies.
Specifically, they proved, though correctly, in the
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Snap-Back Repellers and Chaotic Traveling Waves in One-Dimensional CNNs 1975

lemma above that F is expanding in a small neigh-
borhood, Br′(z). However, for x0 ∈ Br(z) with
r ≥ r′, there is no guarantee that F−k(x0) is to
be in Br′(z), for some k ∈ N. Therefore, the gap
appeared in the paper of Marotto is still there. In
the paper of Marotto, the following alternative def-
inition of a snap-back repeller was also given.

Definition 2.2. Let F : R
N → R

N be continuous
and z be a fixed point of F. We say that z is a snap-
back repeller if there exists a sequence of compact
sets {Bk}m

k=−∞ (homeomorphic to the unit ball in
R

N) which satisfy: (a) Bk → {z} as k → −∞; (b)
F(Bk) = Bk+1; (c) F is 1-1 in Bk; (d) Bk ∩Bm = ∅
for 1 ≤ k < m; and (e) z ∈ B0

m, the interior of Bm.

In the original proof of Marotto’s chaos, the
property that F is expanding in Br(z) was used
to show the existence of such sequence of com-
pact sets. Thus, if one assumes such existence of
a sequence of compact sets as the definition of a
snap-back repeller, then the existence of Marotto’s
chaos holds.

In light of the comment above, we will also
define a snap-back repeller as follows

Definition 2.3. Let z ∈ RN be a fixed point of F.
We say that z is a snap-back repeller if

(i) F is expanding in Br(z), for some r > 0;
(ii) There exists a point x0 ∈ Br(z) with x0 �= z,

Fm(x0) = z and det DFm(x0) �= 0 for some
positive integer m.

For such definitions (Definition 2.2 or Defini-
tion 2.3) of snap-back repellers, the following notion
of Marotto’s chaos, indeed, can be achieved. Thus,
from here on, when we say a point z is a snap-back
repeller it means that z satisfies either Definition 2.2
or Definition 2.3. For completeness, we next recall
Marotto’s chaos [1978] with the presence of such
snap-back repeller.

Theorem 2.1 (Marotto’s Chaos). Suppose F :
R

N → R
N , and z is a snap-back repeller, defined as

in Definition 2.2 or Definition 2.3. Then the map
F is chaotic in the sense of Li–Yorke:

(i) There is a positive integer N such that for each
integer p ≥ N, F has a point of period p.

(ii) There is a “scrambled set” of F, i.e. an
uncountable set S containing no periodic points
of F such that

(b1) F(S) ⊂ S,

(b2) for every xS ,yS ∈ S with xS �= yS ,

lim
k→∞

sup‖Fk(xS) − Fk(yS)‖ > 0.

(b3) for every xS ∈ S and any periodic point
yper of F,

lim
k→∞

sup‖Fk(xS) − Fk(yper)‖ > 0,

(iii) There is an uncountable subset S0 of S such
that for every xS0 ,yS0 ∈ S0 :

lim
k→∞

sup‖Fk(xS0) − Fk(yS0)‖ = 0.

In the following, we will give sufficient condi-
tions for which the “global” expansibility of a map
can be obtained. Thus, the verification of the exis-
tence of a snap-back repeller should be made more
friendly.

Theorem 2.2. Let F = (f1, f2, . . . , fn) be a smooth
vector-valued function from R

N → R
N , and z be a

fixed point of F. Suppose DF(z) is a normal matrix.
Let α and β be defined as

α = min
1≤i≤n

|λi |,
β = max

1≤i≤n
max

x∈Br(z)
max

1≤j≤n
|βi,j(x) | (13)

where λi, i = 1, . . . , n, are eigenvalues of DF(z) and
βi,j(x), j = 1, 2, . . . , n, are eigenvalues of Hessian
matrices Hfi

(x) = (∂k∂lfi(x))k×l and Br(z) is a
closed ball with center at z and radius r > 0. If
α − (rβ/2) > 1, then F is expanding in Br(z).

Proof. For y ∈ Br(z), we have, see e.g. 3.3.11 of
[Ortega & Rheinbaldt, 1970] on p. 80, that

F(y) − z = DF(z)(y − y)

+
∫ 1

0
(1 − t)F′′(z + t(y − z))

× (y − z)(y − z)dt. (14)

We next estimate the first term on the right-hand
side of (14). Now,

‖DF(z)(y − z)‖2 = ‖T−1ΛT (y − z)‖2

= ‖ΛT (y − z)‖2 ≥ α‖y − z‖2,

(15)

where T is a unitary matrix and

Λ =




λ1 · · · 0
...

. . .
...

0 · · · λn


 .
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1976 Y.-W. Chang et al.

Since Hessian matrices Hfi
(x) is symmetric, for all

x ∈ Br(z) and ‖y‖2 ≤ r, we have

|yT Hfi
(x)y | ≤ β ‖ y ‖2

2 ≤ βr‖y‖2 (16)

Using (13)–(15) and the fact that [F′′(x)hk]T =
(kT Hf1(x)h, kT Hf2(x)h, . . . , kT Hfn(x)h), we see
that

‖F(y) − z‖2 ≥
(

α − rβ

2

)
‖y − z‖2. (17)

Thus, F is expanding in Br(z). �

We next give a global expanding theorem with-
out the restriction that DF(z) is normal.

Theorem 2.3. Let F = (f1, f2, . . . , fn) be a smooth
vector-valued function from R

N → R
N , and z be a

fixed point of F. Suppose all eigenvalues of DF(z)
have absolute values greater than α. Here we assume
that α > 1. Let β be defined as in (13). Assume the
radius r in (13) is measured in the Euclidean norm.
Let P be a matrix for which P−1DF(z)P = J . Here
J is a Jordan canonical form of DF(z). We assume
further that c is a positive constant for which

‖x‖2 ≤ c‖x‖p, where ‖x‖p = ‖P−1x‖2 (18)

If

α − r

2
βc

√
n‖P−1‖2 > 1, (19)

then F is expanding in Br(z) with respect to the
p-norm, defined in (18).

Proof. It follows from Theorem IV.2 of [Chen et al.,
1998] that

‖DF(z)(y − z)‖p ≥ α‖ y − z ‖p. (20)

Here, the p-norm is defined as in (18). Now, for all
x ∈ Br(z) and ‖y‖2 ≤ r, we have

|yT Hfi
(x)y | ≤ β ‖ y ‖2

2 ≤ βr‖y‖2 ≤ cβr‖y‖p.

(21)

Applying (20), (21) to equality (14), we get

‖ F(y) − z ‖p ≥
(
α − r

2
βc

√
n‖P−1‖2

)
‖ y − z ‖p.

(22)

We have just completed the proof of the
theorem. �

In view of (21) we have the following locally
expanding theorem.

Corollary 2.1. Suppose α > 1. Then F is locally
expanding. That is, there exists a r′ > 0 such
that F is expanding in Br′(z) with respect to the
p-norm.

Remarks

1. If F is linear, β = 0. Thus F is expanding in
R

n with respect to the p-norm provided that
α > 1. This is essentially due to Chen et al.
[1998].

2. When F is nonlinear, it is not a small task to ver-
ify the assumptions of Theorem 2.3. However, in
applications, the choice of x0, where x0 is given
as in Definition 2.3, often depends on a certain
parameter(s), say d. Thus, if α, as given in Theo-
rem 2.3, is greater than one and x0 can be made
arbitrarily close to z, where z is as given in Def-
inition 2.3, as one varies the parameter d, then
there must exist a r > 0 sufficiently small so that
the following assertion holds: F is expanding in
Br(z) with respect to the p-norm. Thus, in appli-
cations if there exists a d0 ∈ R ∪ {±∞} (resp.
for certain ranges of d) so that

lim
d→d0

x0(d) = z(resp., lim
n→∞F−n(x0(d)) = z),

(23)

then we may choose d sufficiently close to
d0(resp. k ∈ N sufficiently large) so that x0(d) ∈
Br′(z) (resp. F−k(x0(d)) ∈ Br′(z)). Here r′ is
chosen as in Corollary 2.3. Under such circum-
stances, the verification of Definition 2.3. is much
friendly.

3. Chaotic Backward Map

In this section, we consider the backward map B
with 1 < β < (1/r), −(k/r) > a > −k > 0, and
α > 0. (see B15 in Table 2) Under the circum-
stances,

b1 < 0, b10 > 0, b2 > 0, and b20 < 0. (24)

We denote by Ω1,Ω0,Ω−1,Ω1,−1 and Ω−1,1 the
regions Ω1 = {(x, y) : x, y ≥ 1}, Ω0 = {(x, y) :
−1 ≤ x, y ≤ 1}, Ω−1 = {(x, y) : x, y ≤ −1},
Ω1,−1 = {(x, y) : x ≥ 1, y ≤ −1}, and Ω−1,1 =
{(x, y) : x ≤ −1, y ≥ 1}, respectively.
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Lemma 3.1. Suppose (24) holds. Let b1 + b2 > 1,
(resp. b1 + b2 < 1) and −1 + b10 + b20 < c <
1−b10−b20 (resp. 1−b10−b20 < c < −1+b10+b20),
then the map B has exactly three fixed points

(x1, x1) =: x1, (x0, x0) =: x0

and (x−1, x−1) =: x−1,
(25)

in Ω1, Ω0, Ω−1, respectively. Here

x1 =
b10 + b20 − b1 − b2 + c

1 − b1 − b2
, x0 =

c

1 − b10 − b20

x−1 =
−b10 − b20 + b1 + b2 + c

1 − b1 − b2
.

(26)

Lemma 3.2. Suppose the first set of assumptions
in Lemma 3.1 holds. Then x1 and x−1 are repelling
fixed points.

Proof. It is obvious that

DB(x±1) =
[

0 1
b2 b1

]
.

The eigenvalue of DB(x±1) are (b1 +
√

b2
1 + 4b2)/

2 and (b1 −
√

b2
1 + 4b2)/2. Moreover, (b1+√

b2
1 + 4b2)/2 > 1 provided that b1 + b2 > 1. We

thus complete the proof of lemma. �

We are next to find a point p = (x0, y0) for
which B(p) ∈ Ω1,−1, B2(p) ∈ Ω−1,1, B3(p) = x1.
To this end, we first compute a pre-image q =
(q1, q2) of x1 for which q lies in Ω−1,1. Clearly, q2 =
x1 and q1 must satisfy equation g1(x1) + g2(q1) +
c = x1, or equivalently,

b2q1 = (1 − b1)x1 − b10 + b20 + b1 − b2 − c

= b2x1 + 2b20 − 2b2.

Thus,

q1 = x1 + 2
b20

b2
− 2, and q2 = x1. (27)

Now,

p = (x0,y0), (28)

must satisfy the following equations

g1(y0) + g2(x0) + c = q1, (29a)
g1(q1) + g2(y0) + c = q2. (29b)

From (29b), we see that

b2y0 = (1 − b1)x1 − 2
b1b20

b2
+ b1 + b10 − b20 + b2 − c

= b2x1 − 2
b1b20

b2
+ 2b10.

So,

y0 = x1 − 2
b1b20

b2
2

+ 2
b10

b2
:= x1 + d1. (30a)

Substituting (30a) into (29a), we obtain that

x0 = x1 + 2
b20

b2
2

− 2
b2

− 2
b1b10

b2
2

+ 2
b2
1b20

b3
2

:= x1 + d2.

(30b)

We then need to show that there is a nonempty set
of parameters for which

x0, y0 > 1, (31a)

and

g1(y0) + g2(x0) + c = x1 + 2
b20

b2
− 2 < −1. (31b)

Proposition 3.1. Let b10 = −b20 = q > 0 and
b2 = −pb1 > 0, where p > 0. Suppose b1(1− p) > 1,
−1 < c < 1, b1 ≤ −3, q ≥ 2p ≥ 12. Then x0 ≥ x1

and y0 ≥ x1. Consequently, (31) holds.

Proof. Clearly, y0, given as in (30a), is greater
than x1.

Now,

x0 =
c + (p − 1)b1

1 + (p − 1)b1
− 2q

p2b1

[
1 +

1
b1

− 1
p

]
+

2
pb1

≥ c + (p − 1)b1

1 + (p − 1)b1
− q

p2b1
+

2
pb1

≥ c + (p − 1)b1

1 + (p − 1)b1

= x1

≥ 1.

To complete the proof of the proposition, we see,
via (31b), that

x1 + 2
b20

b2
− 1 =

c − 1
1 + (p − 1)b1

+
2q
pb1

=
1

pb1(1 + (p − 1)b1)
[pb1(c − 1)

+ 2q(1 + (p − 1)b1)]

≤ 1
b1(1 + (p − 1)b1)

× [−2b1 + 4(1 + 5b1)]

=
1

b1(1 + (p − 1)b1)
[18b1 + 4]

< 0.

�
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We next show that there are parameter values for
which B has a snap-back repeller.

Theorem 3.1. Let b10 = −b20 = q > 0 and
b2 = −pb1 > 0, where p > 0.

Suppose,

−1 < c < 1, q ≥ 2p ≥ 12

and − b1is sufficiently large. (32)

Then B has a snap-back repeller.

Proof. Let

r := x1 − 1 =
c + (p − 1)b1

1 + (p − 1)b1
=

c − 1
1 + (p − 1)b1

.

(33)

Note that β, as defined in (13), is zero in Br(x1).
Here r is given as in (33) and x1 is defined in (25).
In view of remark related to (23), it suffices to show
that limn→∞ B−n(p) = x1, where p is defined in
(28). To this end, we make a change of variables
x′ = x − x1 and y′ = y − x1 on B in the region Ω1.
The resulting map B then has the form

B(x′, y′) = (y′, b2x
′ + b1y

′). (34)

In the new coordinate systems, (x0, y0) becomes
(x′

0, y
′
0), where

(x′
0, y

′
0) := (x0 − x1, y0 − x1)

= (d2, d1)

=
(−2q

p2b2
1

+
2

pb1
− 2q

p2b1

+
2q

p3b1
,

2q
p2b1

− 2q
pb1

)
; (35)

where d1 and d2 are given as in (30). Note also that
d1, d2 > 0. Let the pre-image (x′

0, y
′
0),located in Ω0,

be denoted by (x′−1, y
′−1). We then denote, induc-

tively, by the pre-image of (x′
−i, y

′
−i), located in Ω0,

(x′
−i−1, y

′
−i−1), for any i ∈ N. Using (34) and (35),

we see immediately that

x′
−i−1 = −b1

b2
x′
−i +

1
b2

y′−i =
x′
−i

p
− y′−i

pb1
, (36a)

y′−i−1 = x′
−i. (36b)

Let −1 < c < 1 and q ≥ 2p ≥ 16. By making −b1

sufficiently large, we see that

r > x′
0 = d2 > 0. (37a)

and

r > y′0 = d1 > 0. (37b)

Using (36) and (37), we may prove inductively that

0 < x′
−k, y

′
−k < r,

and lim
k→∞

x′
−k = lim

k→∞
y′−k = 0. (38)

We have just proved that lim
n→∞B−n(p) = x1. Thus

there exists a r > 0 sufficiently small so that z is a
snap-back repeller in Br(z). �

Theorem 3.2. Let b10 = −b20 = q > 0 and b2 =
−pb1 > 0, where p > 0. Suppose (32) holds. Then
the system (2) exists as backward traveling waves of
a chaotic profile.

Inspired by the assumption in (32), we first treat b1

as a bifurcation parameter and fix all other param-
eters. Specifically, we fix parameters z = 0, α = 1,
p = 6.1, b10 = 23, and b20 = −23. The bifurca-
tion parameter b1 is shown on the horizontal axis
of the following plots and the vertical axis shows
the logarithmical values of the x axis of the back-
ward map B. The periodic solutions, for example,
is apparent in Fig. 5 for |b1| small and is shown
in magnified form in Fig. 3 for −0.15 ≤ b1 ≤
0.2. When |b1| is large, the orbit of {yi} seems to
be dense on two separate intervals and is shown
in magnified form in Fig. 4 As predicted in the
assumption (32), if −b1 is sufficiently large, then a
snap-back repeller exists. Figure 3, suggests that
when −b1 is small, no chaotic traveling wave would
occur.

Letting z = 0, α = 1, p = 6.1, b10 = 23,
b20 = −23, we then illustrate the effectiveness of the
main theorems by producing some (chaotic) pro-
files of the traveling waves graphically by choos-
ing b1 = −0.1 and −5, respectively. The shapes
of the wave solutions yj with b1 = −0.1, −5 are
shown in Figs. 6 and 7, respectively. And the ampli-
tudes in Fig. 6 show that the oscillation is close to
period four, but in Fig. 7, the amplitudes oscillate
acutely.

Next, their amplitude-space plots of yj with a
shift of time steps are given in Figs. 8 and 9, respec-
tively. In (4), we have the equality j = i + n for
c = 1. Hence, yj has the same height, provided that
the index j is the same. In other words, if the sum of
i and n is equal then these yj have the same height
for i, n ∈ Z (see Figs. 8 and 9). Here, we mention
that the value of yj at the corresponding i, n is
shifted to 1.0.

We conclude this paper with the following
remarks.
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Fig. 3.

Fig. 4.
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Fig. 5.

Fig. 6.
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Fig. 7.

Fig. 8.
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Fig. 9.

(1) Let �t be small, let r and α, as given in (1), be
such that r > 0 is small and α is negative. Then
(31) is satisfied under some mild compatibility
conditions of other parameters.

(2) Under similar parameters conditions, x−1 is
also a snap-back repeller. Moreover, x0 can be
made a snap-back repeller by a proper choice of
the parameters.

(3) It is also of interest to study the chaotic dynam-
ics of the backward map B for the other com-
binations of g1 and g2, as well as those of the
forward map F.
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