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The self-organizing map (SOM), as a kind of unsupervised neural network, has been used for both static
data management and dynamic data analysis. To further exploit its search abilities, in this paper we
propose an SOM-based algorithm (SOMS) for optimization problems involving both static and dynamic
functions. Furthermore, a new SOM weight updating rule is proposed to enhance the learning efficiency;
this may dynamically adjust the neighborhood function for the SOM in learning system parameters. As
a demonstration, the proposed SOMS is applied to function optimization and also dynamic trajectory
prediction, and its performance compared with that of the genetic algorithm (GA) due to the similar
ways both methods conduct searches.
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1. Introduction

The self-organizing map (SOM), as a kind of unsu-
pervised neural network, is performed in a self-
organized manner in that no external teacher or
critic is required to guide synaptic changes in the
network.4,13 By contrast, for the other two basic
learning paradigms in neural networks, supervised
learning is performed under the supervision of an
external teacher8 and reinforcement learning involves
the use of a critic that evolves through a trial-
and-error process3; these other two also demand
the input-output pairs as the training data. The
appealing features of learning without needing the
input-output pairs makes the SOM very attractive
when dealing with varying and uncertain data. In
its many applications, the SOM has been used for
both static data management and dynamic data
analysis, such as data mining, knowledge discovery,

clustering, visualization, document browsing, text
archiving, image retrieval, speaker recognition,
mobile communication, robot control, identification
and control of dynamic systems, local dynamic
modeling, nonlinear control, and tracking mov-
ing objects.1,2,8,11,13,14,17–20,22 There have also
been many approaches proposed to improve or
modify the original SOM algorithm for different
purposes.2,7,12,19,23–25 However, from our survey, its
search abilities have not been adequately exploited
yet.5,6,9,15,16,21 This need thus motivates us to pro-
pose an SOM-based algorithm (SOMS) for optimiza-
tion problems involving both static and dynamic
functions.

There have been several applications of the SOM
for optimization problems.9,15,21 Michele et al. pro-
posed a learning algorithm for optimization based on
the Kohonen SOM evolution strategy (KSOM-ES).15

In this KSOM-ES algorithm, the adaptive grids are
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used to identify and exploit search space regions
that maximize the probability of generating points
closer to the optima. Su et al. proposed an SOM-
based optimization algorithm (SOMO).21 Through
the self-organizing process in SOMO, solutions to a
continuous optimization problem can be simultane-
ously explored and exploited. Our proposed SOMS
will extend the application further to optimization
problems involving dynamic functions. When search-
ing for a dynamic function, the goal may be to look
for a set of optimal parameters that lead to the
desired performance of the dynamic system from lim-
ited measured data. For instance, in a missile inter-
ception application, the task may be to predict the
most probable launching position and velocity of
an incoming missile from the measured radar data.
Thus, the proposed SOMS should be able to execute
both system performance evaluation and the subse-
quent search in a real-time manner.

In developing the SOMS, we will first examine
the SOM regarding its learning strategy and search
ability. As the dynamic system is tackled, the SOM
learning may involve system parameters that fall in
quite different ranges, e.g., position and velocity. To
achieve high learning efficiency under such widely
varying parameters, we propose a new weight updat-
ing rule which may dynamically adjust the shape and
location of the neighborhood function for the SOM,
in an individual basis, in learning the system param-
eters. Meanwhile, at the current stage, the proposed
SOMS is effective for optimization problems with one
optimum. The rest of this paper is organized as fol-
lows. Evaluation of the SOM search ability and the
proposed SOMS are discussed in Sec. 2. The pro-
posed weight updating rule is described in Sec. 3.
To evaluate its effectiveness, in Sec. 4, the SOMS is
applied to both function optimization and dynamic
trajectory prediction. The performance is especially
compared with that of the genetic algorithm (GA),
since these two learning algorithms exhibit similari-
ties when searching. Finally, conclusions are given in
Sec. 5.

2. Proposed SOM-Based Search
Algorithm (SOMS)

Before proposing the SOMS, we first evaluate the
SOM by its search ability. The SOM, first intro-
duced by Kohonen, transforms input vectors into
a discrete map (e.g., a 2-D grid of neurons) in a

topological ordered fashion adaptively.13,19 During
each iteration of learning, each neuron competes
with each other to gain the opportunity to update
its weight, and the one that generates the output
most close to the desired value (vector) is chosen
as a winner. Because the SOM allows local inter-
action between neighboring neurons, the weights of
the winner and also those of its neighbors are all
updated. Through repeated weight modification, a
cluster (or clusters) may form and become more and
more compact until a final configuration develops.
The SOM thus has a structure very suitable for par-
allel processing. We further exploit this parallelism
and design an organized search. In other words, we
take advantage of the SOM in its distribution of
the neurons in a grid pattern and the presence of
local interaction in between the grid. Take the mis-
sile interception application as an example again. We
may distribute the possible launching positions and
velocities of the missile (as weight vectors) into the
network in an organized fashion. Under this arrange-
ment, the searches among the neurons are closely
related through the grid, leading to a more rapid
convergence.

Figure 1(a) shows the proposed SOMS, which
consists of mainly the evaluation and search mech-
anisms and the dynamic model that stands for
the target system. Initially, the function for per-
formance evaluation is installed in the evaluation
mechanism, and possible solutions (e.g., vectors of
dynamic parameters), selected from the estimated
range, will be distributed among the neurons of the
SOM. During each time interval of the learning pro-
cess, each of all the possible solutions in the neurons
is sent to the dynamic model one by one. In other
words, the dynamic model will be equipped with a
possible set of dynamic parameters repeatedly, when
used to derive the output data corresponding to the
target system. The evaluation mechanism will then
compute the difference between the derived data and
the incoming measured data. From the results, the
search mechanism chooses the solution leading to
the most accurate derived data as the winner, and
updates the weights of this winner and its neigh-
boring neurons. Note that this SOMS can also be
applied to continuous optimization problems, with
the dynamic model replaced by the objective func-
tion for a given optimization problem and the input
by the reference data.
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Fig. 1. (a) Proposed SOM-based algorithm for opti-
mization. (b) The structure and operation of the SOM
in the SOMS.

The SOM, shown in Fig. 1(b), executes the func-
tions of search and evaluation in the SOMS. In
Fig. 1(b), each neuron j in the SOM contains a vec-
tor of a possible solution set W j (the weight vector).
Each time new measured data Pm are sent into the
scheme, the SOM is triggered to operate. All of the
possible solution sets in the neurons will then be sent
to the dynamic model to derive their corresponding
data Pdj

. The SOM evaluates the difference between
Pm and each Pdj

. Of all the neurons, it chooses the
neuron j∗, which corresponds to the smallest differ-
ence, as the winner. The learning process then con-
tinues, and the network will eventually converge to
the optimal solution. And even when the optimal
solution is not within the estimated range for some
cases, the search mechanism is still expected to move
the possible candidates out of their initial locations
and guide them to converge to the optimal solution.

3. Proposed Weight Updating Rule

For effective weight updating in the SOM, the topo-
logical neighborhood function and learning rate need

to be properly determined. Their determination may
depend on the properties of the system parameters to
learn. As mentioned above, system parameters may
operate in quite different working ranges. To achieve
high learning efficiency, the weight updating should
be executed on an individual basis, instead of using
the same neighborhood function for all the parame-
ters. We thus propose a new SOM weight updating
rule which can dynamically adjust the center and
width of their respective neighborhood function for
the SOM in learning each of the system parameters.

The proposed weight updating rule is designed to
first let the weight vectors approach the vicinity of
the optimal solution set when it falls outside the cov-
erage of the SOM. The weight vector cluster is then
moved to the center of the SOM. The process will
continue until the solution set falls within the SOM.
Later, the rule will make the weight vectors converge
to a more and more compact cluster centering at the
optimal solution. We first define a Gaussian distribu-
tion function Dj that covers the entire neuron space
and centers at its middle:

Dj = exp

(
−d2

j,j∗

2σ2
d

)
(1)

where dj,j∗ stands for the lateral connection distance
between neuron j and j∗ and σd the standard devia-
tion for Dj. We then define another Gaussian dis-
tribution function F (W j(k)) as the neighborhood
function for the q dimensional W j :

F (W j(k)) = exp

(
−1

q

q∑
i=1

(wj,i(k) − wj∗,i(k))2

2σ2
wi

)

(2)

where wj∗,i(k) stands for the ith element in W j∗(k)
and σwi the standard deviation of the distribution
for wj,i(k). Note that F (W j(k)) is defined by con-
sidering the effects from all the q elements in W j(k).
Here, Dj, in the neuron space, is used as a reference
distribution for F (W j(k)), in the parameter space,
to approximate. In other words, we intend to map
the magnitude difference of the parameter into the
neuron space.10 To make F (W j(k)) approach Dj , an
error function Ej(k) is then defined as

Ej(k) =
1
2
(
Dj − F (W j(k))

)2
. (3)

During the learning, we can find that when
wj∗,i(k) is much different from w̃i(k), the average of
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all wj,i(k), the optimal solution is possibly located
far outside the estimated range; contrarily, when
wj∗,i(k) is close to w̃i(k), the optimal solution is
possibly within the estimated range. Based on this
observation, we propose a method to speed up the
learning. For illustration, we define a Gaussian dis-
tribution function G(wj,i(k)) as the neighborhood
function for each element wj,i(k), the ith element
in W j(k) in the kth stage of learning:

(a)

(b)

Fig. 2. Center and width adjustment for the neighborhood function G(wj,i(k)), when (a) (w̃i − wj∗,i(k))2 ≥ σ2
wi

and

(b) (w̃i − wj∗,i(k))2 < σ2
wi

.

G(wj,i(k)) = exp
(
− (wj,i(k) − w̃i(k))2

2σ2
wi

)
. (4)

The strategy is to vary the mean and variance of
G(wj,i(k)) by moving its center to where wj∗,i(k)
is located and enlarging (reducing) the variance
σ2

wi
to be σn

wi

2 = |wj∗,i(k) − w̃i(k)|2, where | · |
stands for the absolute value, as illustrated in Fig. 2.
The new neighborhood function Gn(wn

j,i(k)) is then

In
t. 

J.
 N

eu
r.

 S
ys

t. 
20

07
.1

7:
17

1-
18

1.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

5/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0129065707001044&iName=master.img-054.png&w=395&h=209
http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0129065707001044&iName=master.img-055.png&w=403&h=210


2nd Reading

July 3, 2007 20:25 00104

An SOM-Based Algorithm for Optimization with Dynamic Weight Updating 175

formulated as

Gn(wn
j,i(k)) = exp

(
− (wn

j,i(k) − wj∗,i(k))2

2σn
wi

2

)

= exp
(
− (wj,i(k) − w̃i(k))2

2σ2
wi

)

= G(wj,i(k)) (5)

where wn
j,i(k) stands for the new wj,i(k) after the

adjustment. As indicated in Fig. 2, Gn(wn
j,i(k)) is

equal to G(wj,i(k)) when wj,i(k) varies to wn
j,i(k).

From Eq. (5), during each iteration of learning,
G(wj,i(k)) is dynamically centered at the location
of the winning neuron j∗, with a larger (smaller)
width when w̃i(k) is much (less) different from
wj∗,i(k). It thus covers a more fitting neighborhood
region, and leads to a higher learning efficiency. With
Gn(wn

j,i(k)), the new weight wn
j,i(k) is derived as

wn
j,i(k) =

|wj∗,i(k) − w̃i(k)|
σwi

· (wj,i(k) − w̃i(k)) + wj∗,i(k). (6)

And, with a desired new weight wn
j,i(k), the learn-

ing should also make W j(k) approach Wn
j (k), in

addition to minimizing the error function Ej(k) in
Eq. (3). A new error function En

j (k) is thus defined as

En
j (k) =

1
2
[(Dj − F (W j(k)))2

+ (W j(k) − Wn
j (k))2]. (7)

Based on Eq. (7) and the gradient-descent
approach, the weight-updating rule is derived as

wj,i(k + 1)

= wj,i(k) − η(k)
∂En

j (k)
∂wj,i(k)

= wj,i(k) − η(k)

[
∂Ej(k)

∂F (W j(k))
· ∂F (W j(k))

∂wj,i(k)

+ (wj,i(k) − wn
j,i(k))

]

= wj,i(k) − η(k)
[
(wj,i(k) − wj∗,i(k))

q · σ2
wi

·F (W j(k)) · (Dj − F (W j(k)))

+ (wj,i(k) − wn
j,i(k))

]
(8)

where η(k) stands for the learning rate in the kth
stage of learning. In the initial stage of the learning,

wj,i(k) and wj∗,i(k) may be much different from each
other, and the learning process can be speeded up
with a larger η(k). Later on, when they almost coin-
cide, the learning rate may be decreased gradually.
A function for η(k) that satisfies the demand is for-
mulated as

η(k) = η1 · e−k/τ + η0 (9)

where η0 and η1 are constants smaller than 1, and
τ time constant. Of course, other types of functions
can also be used. Together, the weight updating rule
described in Eq. (8) and the learning rate in Eq. (9)
will force the minimization of the difference between
the weight vector of the winning neuron and those
corresponding to every neuron in each learning cycle.
The learning will eventually converge.

4. Applications

To demonstrate its capability, the SOMS is applied
to both function optimization and dynamic tra-
jectory prediction. Based on the SOMS, we first
develop learning schemes corresponding to each of
the applications. Simulations are then executed for
performance evaluation. The results are especially
compared with those of the genetic algorithm (GA)
because of their similar searching abilities. The GA is
basically a search algorithm based on the mechanics
of natural selection and natural genetics.6 It employs
multiple concurrent search points called chromo-
somes and evaluates the fitness of each chromosome.
The search procedure uses random choice as a tool
to guide a highly explorative search through a cod-
ing of a parameter space. Both the SOM and GA
have the merit of parallel processing. Furthermore,
both of their searches are through the guidance of
the evaluation function, while the SOM in our design
adopts a somewhat organized search and the GA has
a somewhat random approach. This implies that the
SOM may be more suitable for applications with cer-
tain knowledge, especially when the distribution of
the possible solutions is not utterly random. On the
contrary, for applications with no a priori knowledge
available, the GA may yield better performance.

4.1. Function optimization

For a function optimization problem, the goal may be
to maximize (minimize) an objective function O(·).
Let O(W j(k)) be the function value for the weight
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vector W j(k), which represents a possible solution.
During the learning process, an initial reference value
Pr(k) is chosen first and later set to be the current
maximal (minimal) value of the objective function
for maximization (minimization). With the repeated
approximation of the objective function to Pr(k), the
SOMS will approach the optimal maximal (minimal)
value gradually. The learning algorithm for function
optimization is organized as follows.

Algorithm for function optimization based
on the SOMS: Maximize (minimize) an objective
function using the SOMS.

Step 1: Set the stage of learning k = 0. Choose an
initial reference value Pr(0). Estimate the ranges of
the possible parameter space and randomly store the
possible parameters W j(0) into the neurons, where
j = 1, . . . , N×N , N×N the total number of neurons
in the 2D (N × N) space.

Step 2: Compute O(W j(k)) for all W j(k).

Step 3: Among the neurons, find the one with the
largest (smallest) value as the winning neuron j∗ for
the maximization (minimization) problem.

Step 4: Update the weight vectors of the winning
neuron j∗ and its neighbors according to the weight
updating rule described in Sec. 3.

Step 5: Check whether the difference between
O(W j∗(k)) and Pr(k) is smaller than a preset thresh-
old value. If it is not, let k = k + 1, set Pr(k) to be
the current maximal (minimal) value of the objective
function for the maximization (minimization) prob-
lem, and go to Step 2; otherwise, the learning process
is completed and output the optimal value.

Two standard test functions are used to demon-
strate the proposed algorithm, a 2-D Griewant
function

f(x1, x2) = 1 +
1

4000
[
(x1 − 100)2 + (x2 − 100)2

]
− cos(x1 − 100) · cos

(
x2 − 100√

2

)
(10)

and a 30-D Rosenbrock function

f(x) =
30∑

i=1

[
100(xi+1 − x2

i )
2 + (xi − 1)2

]
. (11)

These two test functions have also been used in
Ref. 21. The optimization here is to minimize these
two functions. Their global minimal values are known

in advance: for the Griewant function, it is 0 when
(x1, x2) = (100, 100); for the Rosenbrock function,
it is also 0 when all xi are equal to 1. The SOM is
chosen to be of 5×5 neurons and the learning rate as

η(k) = 0.7 · e−k/50 + 0.2. (12)

For comparison, we also use the GA for function min-
imization, which is with a population size of 25 to
match that of the SOM, and the crossover and muta-
tion probability of 0.6 and 0.0333, respectively.

We start with the learning for the 2-D Griewant
function. The initial W j(0) for the SOMS was ran-
domly chosen within the ranges of (−3, 3)× (−3, 3),
i.e., the optimal solution was outside of the esti-
mated region. Figure 3 shows the simulation results.
In Fig. 3(a), both SOMS and GA found the optimal
minimal value successfully, but the SOMS converged
faster. Figures 3(b) and (c) show the weight vector
movement (k = 0 ∼ 11) for the SOMS and GA,
respectively. From the figures, we observed that the
search in the SOMS was basically in grouping and
more directional; by contrast, that of the GA was
in a random manner. This indicates that the SOMS
was more effective for this 2-D Griewant function
minimization because the distribution of the possi-
ble solutions might not be utterly random. In the
minimization of the 30-D Rosenbrock function, we
simulated the case where the optimal solution was
within the estimated region. For its complexity, the
size of the SOM was enlarged to be of 25×25 neurons,
while that of the GA was also enlarged accordingly.
The learning rate for the SOMS and the crossover
and mutation probabilities for the GA were set to
be the same. Each wj,i(0) of the initial W j(0) was
randomly chosen within the range of (−5, 5). In addi-
tion to the SOMS and GA, the SOMO proposed in
Ref. 21 was also used for the minimization, with its
parameters adjusted via a trial-and-error process to
yield salient performance. Figure 4 shows the simu-
lation results. In Fig. 4, all SOMS, GA, and SOMO
found the optimal minimal value successfully, while
the SOMS converged faster. It indicates that the
SOMS was also more effective for the 30-D Rosen-
brock function minimization.

4.2. Dynamic trajectory prediction

For a dynamic trajectory prediction problem, the
goal may be to estimate the launching position and
velocity of a moving object using the measured
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(a)

(b)

(c)

Fig. 3. Minimization of the 2-D Griewant function using
the SOMS and GA with the optimal solution outside
of the estimated region: (a) minimal function values
O(W j∗ (k)) during the learning process, (b) weight vector
movement in the SOM, and (c) weight vector movement
in the GA.

Fig. 4. Minimal function values O(W j∗ (k)) during the
learning process for the minimization of the 30-D Rosen-
brock function using the SOMS, GA, and SOMO.

data. Through a learning process, the SOMS may
determine the most probable initial state through
repeatedly comparing the measured data with the
predicted trajectories derived from the possible ini-
tial states stored in the neurons of the SOM. We
consider the SOMS very suitable for this application
because the relationship between the initial state and
its resultant trajectory is not entirely random. We
can thus distribute the initial states into the SOM in
an organized fashion, and make it as a guided search.

In this application, the nonlinear dynamic equa-
tion describing the trajectory of the moving object
and the measurement equation are first formulated as

x(k + 1) = fk(x(k)) + ξ
k

(13)

p(k) = gk(x(k)) + ζ
k

(14)

where fk and gk are the vector-value function defined
in Rq and Rl (q and l the dimension), respectively,
and their first-order partial derivatives with respect
to all the elements of x(k) continuous. ξ

k
and ζ

k
are

the zero-mean Gaussian white noise sequence in Rq

and Rl, respectively, with

E[ξ
k
] = 0 (15)

E[ξ
j
ξT

k
] = Qδjk (16)

E[ζ
k
] = 0 (17)

E[ζ
j
ζT

k
] = Rδjk (18)

E[ξ
j
ζT

k
] = 0 (19)

where E[·] stands for the expectation function, Q

and R the covariance matrix of the input noise and
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output noise, respectively, and δjk the Dirac delta
function. Q and R are expected to be uncertain and
varying in noisy, unknown environments, and their
estimated values possibly imprecise, even incorrect.
Being unaware of the statistical properties of the
dynamic model, the SOMS is utilized to find the
optimal initial state via learning. The learning algo-
rithm for dynamic trajectory prediction is organized
as follows.

Algorithm for dynamic trajectory prediction
based on the SOMS: Predict an optimal initial
state for the trajectory of a moving object using the
measured position data.

Step 1: Set the stage of learning k = 0. Estimate the
ranges of the possible launching position and veloc-
ity of the moving object, and randomly store the
possible initial states W j(0) into the neurons, where
j = 1, . . . , N×N , N×N the total number of neurons
in the 2D (N × N) space.

Step 2: Send W j(k) into the dynamic model,
described in Eqs. (13)–(14), to compute Pdj

(k), the
predicted position.

Step 3: For each neuron j, compute its output
Oj(k) as the Euclidean distance between the mea-
sured position data Pm(k) and Pdj

(k):

Oj(k) =
k∑

i=0

‖Pm(i) − Pdj
(i)‖. (20)

Find the winning neuron j∗ with the minimum
Oj∗ (k):

Oj∗(k) =
k∑

i=0

‖Pm(i) − Pdj∗(i)‖

= min
j

k∑
i=0

‖Pm(i) − Pdj
(i)‖. (21)

Step 4: Update the weight vectors of the winning
neuron j∗ and its neighbors.

Step 5: Check whether Oj∗(k) is smaller than a pre-
specified value ε:

Oj∗(k) < ε. (22)

If Eq. (22) does not hold, let k = k + 1 and go to
Step 2; otherwise, the prediction process is completed
and output the predicted optimal initial state to the
dynamic model to derive the object trajectory.

Note that the value of ε is empirical according to
the demanded resolution in learning, and we chose it

very close to zero. In addition, during each stage of
learning, we perform a number of learning to increase
the SOM learning speed. This number of learning is
set to be a large number in the initial stage of the
learning process, such that the SOMS may converge
faster at the price of more oscillations, and decreased
gradually to achieve smooth learning in later stages
of learning.

To demonstrate the effectiveness of the proposed
SOMS and weight updating rule, we performed a
series of simulations for dynamic trajectory predic-
tion based on using the SOMS, the SOMS with-
out the proposed center and width adjustment on
the neighborhood function (named as SOMSO), and
GA. The trajectory to predict in the simulations was
designed to emulate that of a missile. Its governing
equations of motion in the 3D Cartesian coordinate
system are described as

ẍ =
−gmx

(x2 + y2 + z2)3/2
+ 2ωẏ + ω2x + ξx (23)

ÿ =
−gmy

(x2 + y2 + z2)3/2
+ 2ωẋ + ω2y + ξy (24)

z̈ =
−gmz

(x2 + y2 + z2)3/2
+ ξz (25)

where gm and ω stand for the gravitational con-
stant and the rotative velocity of the earth, respec-
tively, and set to be gm = 3.986 × 105km3/s2 and
ω = 7.2722 × 10−5rad/s. (ξx, ξy, ξz) are assumed to
be continuous-time uncorrelated zero-mean Gaussian
white noise processes. Referring to Eq. (13) and let-
ting X = (x, y, z, ẋ, ẏ, ż)T = (x1, x2, x3, x4, x5, x6)T ,
we can obtain the discretized dynamic equation as

X(k + 1) = f(X(k)) + ξ
k

(26)

where

f(X(k)) =




x1(k) + tx4(k)

x2(k) + tx5(k)

x3(k) + tx6(k)

x4(k) − tgmx1(k)/(x1(k)2 + x2(k)2

+x3(k)2)3/2 + 2tωx5(k) + tω2x1(k)

x5(k) − tgmx2(k)/(x1(k)2 + x2(k)2

+x3(k)2)3/2 + 2tωx4(k) + tω2x2(k)

x6(k) − tgmx3(k)/(x1(k)2

+x2(k)2 + x3(k)2)3/2




(27)
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and

ξ
k

= [0 0 0 ξx4 ξx5 ξx6 ]
T (28)

with t the sampling time. (ξx4 , ξx5 , ξx6) are assumed
to be uncorrelated zero-mean Gaussian white noise
sequences with a constant variance σ2

f = (0.1m/s2)2.
And, referring to Eq. (14), the measurement equation
is formulated as

P (k) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


X(k) + ζ

k
(29)

where ζ
k

= (ζx1 , ζx2 , ζx3) are the measurement noise
sequences with a zero mean and constant variance
σ2

m = (15m)2. The ranges of the possible initial
states W j(0) were estimated to be

68.6 × 105m ≤ x1(0) ≤ 68.8 × 105m

2.7 × 105m ≤ x2(0) ≤ 2.8 × 105m

4.8 × 105m ≤ x3(0) ≤ 4.9 × 105m

110m/s ≤ x4(0) ≤ 150m/s

810m/s ≤ x5(0) ≤ 850m/s

1360m/s ≤ x6(0) ≤ 1380m/s.

(30)

Within the ranges described in Eq. (30), the possible
launching positions and velocities of the missile were
selected and stored into the 729 (27×27) neurons of
the 2D SOM. In addition, the learning rate for the
SOMS was chosen to be

η(k) = 0.8 · e−k/50 + 0.2 (31)

The sampling time t was 0.5s. For the GA, the pop-
ulation size was selected to be 729 to match with the
SOM, and the crossover and mutation probability 0.6
and 0.0333, respectively.

We first applied the SOMS, SOMSO, and GA
for trajectory prediction with a good estimate of
the initial state. The ideal initial state of the missile
was assumed to be (68.7 × 105m, 2.7 × 105m, 4.8 ×
105m, 130m/s, 820m/s, 1370m/s), which was within
the estimated range. The variance of the measure-
ment noise was set to be (15m)2. Figure 5 shows the
simulation results. All SOMS, SOMSO, and GA pre-
dicted the initial state quite well and thus resulted
in very small estimated errors, except for the initial
stage of the prediction, as shown in Fig. 5(a) (only
the position error in the X-direction (x1) is shown
for illustration). Figure 5(b) shows how the neighbor-
hood function F (W j(k)), described in Eq. (3), varied

during the SOM learning process. In Fig. 5(b), from
a random distribution in the beginning of the learn-
ing, F (W j(k)) gradually approximated the Gaussian
distribution along with the stage of learning.

In the second set of simulations, we investigated
their performances for the condition of a bad esti-
mate of the initial state. In this simulation, the
ideal initial state was assumed to be (64 × 105m,

4.8×105m, 2.4×105m, 215m/s, 2130m/s, 1030m/s),
which was outside the estimated range. The vari-
ance of the measurement noise was enlarged to be
(30m)2. From the simulation results shown in Fig. 6,
the influence of the bad estimate on the SOMS and
SOMSO was mostly at the initial stage of the pre-
diction. After the transient, the SOMS and SOMSO
still managed to find the optimal initial state. Mean-
while, we also observed that the SOMS converged
faster than the SOMSO. As for the GA, it con-
verged very slowly as the optimal initial state did
not fall within the estimated range. We thus con-
clude that the SOMS performed better than the GA
for this dynamic trajectory prediction application,
and the proposed dynamic weight updating rule was
effective.

For further investigation, in the third set of simu-
lations, we compared the performance of the SOMS
with that of the Kalman filtering, a famous approach
widely used in predicting the movements of the satel-
lites, airplanes, ships, etc. As the dynamic model of

(a)

Fig. 5. Simulation results for dynamic trajectory pre-
diction using the SOMS, SOMSO, and GA with a good
estimate of the initial state: (a) the estimated position
error in the X-direction and (b) the variation of the neigh-
borhood function F (W j(k)) during the SOMS learning
process.
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Fig. 5. (Continued)

the moving object was available, the Kalman filter
yielded satisfactory performance when the statis-
tics of the environmental noises and initial condi-
tions were well approximated. However, with bad

Fig. 6. Simulation results for dynamic trajectory pre-
diction using the SOMS, SOMSO, and GA with a bad
estimate of the initial state.

estimates of the noise distribution and initial condi-
tions, its performance was much degraded. By con-
trast, their influence on the SOMS was mostly as
the transient in the early stage of the prediction.
The results show that the SOMS is more robust to
uncertainty, while the Kalman filter may not be that
suitable for unknown, noisy environments.

5. Conclusion

In this paper we have proposed an SOM-based
algorithm for optimization problems, which can be
used for both static and dynamic functions in real
time. To achieve high learning efficiency for system
parameters in different working ranges, we have also
proposed a new SOM weight updating rule. The
applications of the proposed SOMS on both func-
tion optimization problems and dynamic trajectory
predictions have clearly proven its effectiveness. To
further exploit its search ability, in future work, we
will apply the SOMS for system identification and
control problems. Another worthwhile future work
will be to extend the proposed SOMS for systems
involving multiple targets.
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