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Robust Environmental Change Detection Using PTZ
Camera via Spatial-Temporal Probabilistic Modeling

Jwu-Sheng Hu, and Tzung-Min Su

Abstract—This paper proposes a novel procedure for detecting environ-
mental changes by using a pan–tilt–zoom (PTZ) camera. Conventional ap-
proaches based on pixel space and stationary cameras need time-consuming
image registration to yield pixel statistics. This work proposes an alternative
approach to describe each scene with a Gaussian mixture model (GMM) via
a spatial–temporal statistical method. Although details of the environment
covered by the camera are lost, this model is efficient and robust in recog-
nizing scene and detecting scene changes in the environment. Moreover, the
threshold selection for separating different environmental changes is conve-
nient by using the proposed framework. The effectiveness of the proposed
method is demonstrated experimentally in an office environment.

Index Terms—Gaussian distributions, machine vision, pattern recogni-
tion, surveillance.

I. INTRODUCTION

Detecting environmental changes is crucial in applications such as
video surveillance, monitoring, and robot navigation [1], [2]. Static
cameras generally cannot be used to capture wide areas of background
owing to the limited view angle. The pan–tilt–zoom (PTZ) camera and
the omnidirectional camera are two tools used in wide-area surveil-
lance. Despite having a 360◦ view angle, the omnidirectional cam-
era suffers from image distortion and unevenly distributed resolution.
Meanwhile, the PTZ camera suffers from changes in image coordinates
when the camera is in motion. Therefore, a precision control mecha-
nism is commonly required to ensure accurate matching of the image
coordinates. Otherwise, a time-consuming image recovery or registra-
tion procedure must be performed before image processing or recog-
nition, for example, to detect environmental changes in surveillance
applications.

A similarity measure between the background model and the test
image defines change in the detection of environmental changes. Back-
ground modeling includes deterministic methods and statistical meth-
ods. However, deterministic methods such as time averaging [3] have
been found to have limited effectiveness. Moreover, statistical ap-
proaches, including the Gaussian mixture model [4]–[6] and kernel
density estimation [7], [8] have been applied for background model-
ing, considering the effect of lighting and variations in background
objects. However, most of these approaches are based on pixel space
and stationary cameras. While a wide scene is captured using a PTZ
camera or multiple cameras, the space and time-consuming registra-
tion of an image [9], [10] from each camera view must be performed
to yield pixel statistics. However, matching between the captured im-
age and the background model is difficult because errors accumu-
late from the PTZ mechanism or image registration. Furthermore,
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a Gaussian model [11] of spatial distribution is presented to detect
moving objects using nonstationary cameras, even with approximately
accurate motion compensation, noise, or environmental change. How-
ever, it still bases on pixel-statistics, and an approximate alignment
is necessary. Moreover, Eric et al. [12] assume that the calibration
parameters are known reasonably accurately, and then, extend Stauf-
fer and Grimson’s technique [5] to a pan/tilt head by incorporating
a model for solving motion blur, mixed pixels, and small camera
translations, etc.

Instead of using pixel-based statistics, this work proposes an alter-
native description of the background model using Gaussian mixture
model (GMM), called the blob model, which robustly detects changes
in the scene without image registration, using low-precision PTZ mech-
anisms. The proposed method transforms the background image from
pixel space to feature space in order to reduce the storage require-
ment, and transforms the scene into a conceptual description without
details. Although the details of the scene are lost in the blob model,
the concepts of the scene remains apparent. Furthermore, the mea-
sured similarity between two blob models is adopted to calculate the
differences between them. The differences between blob models de-
scribe the extent of change in the scene, which is important in some
surveillance systems, such as manual video monitoring systems. When
the scene changes exceed a predefined threshold, an alarm is sounded
automatically to notify the security guard for paying attention to the
video monitoring system. Additionally, video clips that show poten-
tially dangerous situations can be extracted from the video sequences
using the proposed method by assigning levels to the scene changes.
Fig. 1 presents the basic workflow of the proposed novel framework,
where T1 denotes the number of Gaussian distributions of GMM
that suffices to select a suitable background model, as described in
Section III.

The remainder of this paper is organized as follows. Section II
describes the features and the statistical learning method. Section III
introduces the spatial and temporal model. Section IV presents the
experimental results to demonstrate the performance of the proposed
method. Conclusions are finally drawn in Section V.

II. PROBABILISTIC MODEL IN THE SPATIAL DOMAIN

Assume that xm = [Ri,j , Gi,j , Bi,j , i, j] is defined as a five-
dimensional (5-D) feature vector associated with the mth pixel that
has color information (Ri,j , Gi,j , Bi,j ) at position (i, j). GMM is
then applied to model the background information using a training fea-
ture set X = {xm , 1 ≤ m ≤ M=h × w}, where M is the number of
pixels, h is the image height, and w is the image width. The procedure
from a test image to a feature plane is listed in Fig. 2. Suppose the
GMM contains N Gaussian distributions and is estimated using (1),
where λ is the GMM parameter set, wk = (wR , wG , wB , wi, wj) is
the weight vector, µk = (µR , µG , µB , µi, µj) is the mean vector, and∑

k
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Fig. 1. Basic workflow of proposed novel framework.

Fig. 2. Procedure from a test image to a feature plane, where the feature
plane is composed of the color information (Ri,j , Gi,j , Bi,j ) and the position
information (i, j).

The expectation maximization (EM) algorithm [13] is an extensively
adopted method for estimating λ using the expectation step and the
maximum step iteratively, which are described by (2) and (3).

1) Expectation step:

βm,n =
wnf(xm |µn ,

∑
n
)∑N

k=1
wkf(xm |µk ,

∑
k
)
, 1 ≤ n ≤ N, 1 ≤ m ≤ M

(2)

where βm,n is the a posteriori probability that the feature vector xm

belongs to the nth Gaussian distribution and M is the number of feature
vectors.

2) Maximum step:

ŵn =
1

N

M∑
m=1

βmn

µ̂n =

M∑
m=1

βmnxm/
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m=1

βmn

∑̂
n

=
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m=1

βmn(xm − µ̂n)(xm − µ̂n)T /

M∑
m=1

βmn . (3)

The termination criteria of the EM algorithm are listed next, where
T2 and T3 are two predefined values.

1) The increment between the new and the last log-likelihood value
is below a minimum increment threshold T2.

2) The number of iterations exceeds a maximum iterative count
threshold T3.

For the acceleration of the EM convergence, GMM parameters are
initialized by applying the K-means algorithm [14] to the training
feature set X .

Fig. 3. Panoramic view of wide scene produced manually from seven single
views. (a) Panoramic view. (b) Seven partitions.

III. MODELING AND MATCHING IN THE

SPATIAL-TEMPORAL DOMAIN

Although the K-means algorithm is a simple clustering method, and
can improve the convergence speed of the EM algorithm, the intuitive
selection of initial parameters in the K-means algorithm, such as cluster
numbers and the initial center of each cluster, is responsible for the
uncertainty of background model representation. To cope with this,
a method that combines Jeffrey divergence [15] and temporal feature
(time) is proposed in this work.

A. Measuring Similarity Using Jeffrey Divergence

Jeffrey divergence is a modification of the Kullback–Leibler distance
that is numerically stable, symmetric, and robust against noise and
histogram bin size, and is regarded as a similarity measure of two
statistical models from an information-theoretic perspective. Suppose
f0 and f1 are defined as two GMMs; the Jeffrey divergence between
f0 and f1 is defined as

D(f1||f0) =

M∑
k=1

(f1(xk) log(f1(xk)/a)

+f0(xk) log(f0(xk)/a)) (4)

where a = (f0(xk) + f1(xk))/2 and log(·) refers to the two-based
logarithm.

B. Model Selection with Temporal Features

Suppose I = {It, 1 ≤ t ≤ T1} is defined as a set of captured frames
of a period T1, and It is the frame captured at time t. Moreover, the
corresponding GMM set of I is defined as F = {f t, 1 ≤ t ≤ T1},
where f t denotes the GMM of the captured frame It . The selection
of T1 depends on the robustness of the model representation and the
computing time. If T1 is defined as a small value, the robustness of the
model representation decreases and the computing time also decreases.
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TABLE I
ROBUSTNESS TEST OF BACKGROUND MODELS

TABLE II
COMPARISON OF THREE METHODS TO THE PROPOSED METHOD (GMM)

In the selection of the suitable GMM f t̂ as the background model, a
correlation matrix S is then, defined by (4) using F , and is described
as

S = D(f t1 ||f t2), 1 ≤ t1 ≤ T1, 1 ≤ t2 ≤ T1. (5)

After S is determined, the sum of the rows in S is defined as Sr

which is given by (6), and then, the frame t̂ that has the minimum Sr(t̂)
is selected to build up the suitable background model. The suitable
GMM f t̂ for detecting the environmental change is estimated using
(7), where t̂ represents the index of GMM in F

Sr =

T1∑
t2=1

D(f t1 ||f t2), 1 ≤ t1 ≤ T1 (6)

t̂ = arg min
∀all t1

Sr . (7)

IV. EXPERIMENTAL RESULTS

This section describes various experiments that demonstrate the ef-
fectiveness of the proposed method using real image sequences ac-
quired using a PTZ camera. For demonstration, only the results con-
cerning the pan motion of the camera are presented. Moreover, an
800 × 240 wide scene is divided into seven 320 × 240 partitions by
rotating the camera from −30◦ to 30◦ in 10◦ increments to explain
the proposed method. Fig. 3 shows the panoramic view of the wide
scene and the seven partitions. Additionally, suppose the background
image of each partition is modeled using five Gaussian distributions
(N = 5), and an appropriate background model is selected with nine
image frames (T1 = 9). The threshold values in the termination criteria

of the EM algorithm are defined as T2 = 10−6 and T3 = 50. However,
the proposed method can be applied to combine more elaborate motion
of the PTZ camera and the other selections of N and T1. The robust-
ness of the background models is demonstrated, and the models are
then adopted to detect environmental changes. The experiments have
three stages, as described next.

A. Robustness of the Proposed Background Model

Suppose Ep
c = {It

c,p , 1 ≤ c ≤ 3, 1 ≤ p ≤ 7, 1 ≤ t ≤ 100} are de-
fined as three sets that contain 100 images in each partition. In Ep

1 ,
test images are captured from the same direction as training images of
each partition. In Ep

2 , test images are captured from different direction,
which is 2◦ away from the direction of training images of each partition.
In Ep

3 , test images that differ by 5% from the original scene in the image
content are captured by placing objects into the scene. However, some
errors exist in the directions defined in Ep

c according to the errors of the
control mechanism of the PTZ camera. The similarity between a test
image and each partition is calculated using each background model
and the GMM of the test image via Jeffrey divergence. The partition
that has the smallest Jeffrey divergence is regarded as the partition to
which the test image belongs. The recognition results of the Ep

1 , Ep
2 ,

and Ep
3 are listed in Table I. The scene can be recognized correctly

via GMM with high recognition rates. However, there exists an issue
about the uncertainty of the K-means algorithm [5] resulting from the
intuitive selection of the cluster center. In order to solve the problem, a
method for selecting a suitable model using the Jeffrey divergence and
temporal features is proposed in this work, and the results are listed in
the next experiments.
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Fig. 4. Image sequence used for testing the proposed method for selecting a suitable background model with temporal features.

TABLE III
MODEL SELECTION WITH TEMPORAL FEATURES

Fig. 5. Four intruders with five intrusion covering ratios on the same background image in an indoor environment.

Image differences [IM DIF, pixel-based image representation (IR)],
extended histograms [16] (EX HI, histogram-based IR), and princi-
pal component analysis [17] (PCA, feature-based IR) are compared
with the proposed method (GMM, feature-based IR) to determine the
efficiency of the proposed method. Moreover, the similarity measure
is calculated using Jeffrey divergence. Suppose Cp

c = {Ît
c,p , 1 ≤ c ≤

8, 1 ≤ p ≤ 7, 1 ≤ t ≤ 100} are defined as eight image sets that con-
tain 100 images in each partition. Cp

1 is the set of test images that
have no error in any partition, Cp

2 , Cp
3 , Cp

4 , Cp
5 , and Cp

6 are the sets
of test images with one-degree, two-degree, three-degree, four-degree
and five-degree position errors from each partition, where the position
error means the difference between the new direction for capturing test
images and the original direction for capturing training images. Cp

7 and

Cp
8 are the sets of test images that differ by 5% and 10% from those

of the original scene. According to the results listed in Table II, the
expanded histogram and GMM are both robust against position errors.
However, GMM is more robust than the expanded histogram against
noise variations according to Cp

7 and Cp
8 in Table II.

B. Efficiency of Model Selection

A method for selecting a suitable model using the Jeffrey divergence
and temporal features is proposed to deal with the uncertainty of the
K-means algorithm and variations in the indoor environment. In Fig. 4,
the image sequences used to establish the background model contain a
man in the first four frames. The representative background model can
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Fig. 6. Distributions of Jeffrey divergence with five intrusion covering ratios.

be selected using the proposed correlation matrix S described by (5)–
(7), and the results are listed in Table III, where Ii is the image index of
the image sequence; S ′

r is defined as S ′
r = 100 × Sr for the display,

and It̂ is the priority order after sorting the frames by S ′
r . According

to It̂ listed in Table III, the first four images have a lower priority than
the last four images for being the frame to build the suitable GMM,
and the eighth image is selected as the frame for training the suitable
background model.
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C. Threshold Selection of Different Covering Ratios

One technical issue with the proposed method is that the background
model depends on the image. Consequently, the threshold values vary
from case to case. This paper finds that a relationship exists between
the model and the complexity of the scene. That is, a mathematical
measure of complexity can be applied to access the model parame-
ters such as the number of Gaussian distributions. This work employs
the minimum description length [18] to optimize the number of the
Gaussian distributions N in GMM. However, it is found that a low
value of N , about four to six, is sufficient to represent the scene in
each view captured by the camera in the experiments. The problem of
developing a systematic method for selecting N for different images
remains unsolved. However, N can be determined if the background
scene is assigned in advance. The threshold value is directly related
to the sensitivity of the surveillance system. The stability of this value
with respect to changes in the image and whether different intrusion
covering ratios have distinct threshold values are of primary concern. In
this experiment, real image sequences with different intrusion covering
ratios are captured in the indoor environment and tested using Jeffrey
divergence. If the corresponding background model of the present view
angle is known, automatic threshold selection can be performed despite
the complexity of the background image and the texture of intruders.

Two classes of image sequences are utilized to determine the effec-
tiveness of threshold selection by the proposed method. Fig. 5 shows
four intruders with five intrusion covering ratios on the same back-
ground image. Although the covering ratios vary only slightly, the
threshold values for seperating different covering levels are easily de-
termined with a 99% confidence level (three-standard deviations), and
the results are presented in Fig. 6.

V. CONCLUSION

This paper has presented an abstract model of background images to
represent the environment captured by a PTZ camera. Although details
of each scene captured by the PTZ camera are lost, the model efficiently
detects environmental changes, as in an intrusion alert in a surveillance
system. For a PTZ camera, the proposed method eliminates the image
registration procedure in pixel-based modeling and the issue of posi-
tioning errors in the PTZ mechanism. A threshold for determining the
environmental changes can be estimated efficiently to improve the sen-
sitivity of the surveillance systems, e.g., the manual video monitoring
system. Additionally, the processing time for calculating the similarity
between two GMMs is about 0.5 s, based on P4 2.8G CPU and 512M
RAM. The computational requirements of the proposed method remain
high. Increasing the efficiency of the proposed method is an issue for
future study.
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