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Abstract: The stability analysis of the Mur’s first order absorbing boundary condition (ABC) in
the alternating direction implicit finite-difference time-domain (ADI-FDTD) method is pre-
sented. The theoretical stability analysis of this scheme is studied by deriving the amplification
matrix. The effect of wave propagation direction on the stability of this scheme is investigated.
From the stability analysis, it is found that the Mur’s first order ABC in the ADI-FDTD method
will be unstable. The instability of the scheme is validated by means of actual numerical
simulations.
1 Introduction

Finite-difference time-domain (FDTD) method has been
widely used to analyse the electromagnetic problems
[1, 2]. The time step size is restricted by the Courant,
Friedrichs and Lewy (CFL) stability condition due to
the explicit nature of this method. Recently, an alternating
direction implicit (ADI) scheme was introduced for the
FDTD method. The newly proposed ADI-FDTD method
is an attractive method due to its unconditional stability
with large CFL numbers [3–6]. When the ADI-FDTD
method is used to simulate unbounded region problems,
efficient absorbing boundary conditions (ABCs) must be
employed. The commonly used ABCs are Mur’s first
order ABC and perfectly matched layer (PML) medium.
In [7, 8], the Mur’s first order ABC was implemented in
the ADI-FDTD method to simulate microstrip circuits.
A split-field PML [9] was employed for the ADI-FDTD
method [10, 11]. However, the implementation of ABCs
in the ADI-FDTD method can affect the stability of this
scheme. For analytical ABCs, it is found that the
implementation of the third order Higdon’s ABC in the
ADI-FDTD method will cause instability in the simulation
results [12]. In [13, 14], it was found that the ADI-FDTD
method with split-field PML will lead to late-time
instability from numerical simulations. Therefore it is
important to analyse the stability of the ABC for the
ADI-FDTD method.

In this paper, the stability analysis of the Mur’s first
order ABC in the ADI-FDTD method is demonstrated.
The theoretical stability analysis of this scheme is
studied by deriving the amplification matrix. The effect
of the wave propagation direction on the stability of
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this scheme is investigated. From the stability analysis,
it is found that the ADI scheme of the Mur’s first
order ABC is unstable. Since we focus on analysing
the stability of the Mur’s ABC at the boundary and do
not consider the stability of the total computation
domain, the proposed stability analysis is approximate.
The stability analysis of the total computational domain
can be accomplished by numerical simulation with a
large number of time steps. In this work, numerical
tests of the ADI-FDTD method with Mur’s ABC are per-
formed. Numerical results of this scheme with different
time step size will be demonstrated to validate the
instability of this scheme.

2 Stability analysis of the Mur’s first order ABC
in the ADI-FDTD method

The stability of the Mur’s ABC in the ADI-FDTD method is
studied. For simplicity, we consider the 2-D TM
ADI-FDTD. This scheme at the y ¼ jmax21 grid boundary
is illustrated. Based on [5], the formulations of Hx, Hy and
Ez components in the first updating step are
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and in the second updating step
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The Mur’s ABC is implemented at the boundary
y ¼ jmax. The ADI schemes of the Mur’s ABC are
based on the formulations in [7]. As an explicit direction
in the first updating step, the wave equation is written as
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From (3), the field component Ez at the boundary y ¼ jmax

can be written as
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On the other hand, as an implicit direction in the second
updating step, the wave equation is written as
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From (5), the implementation of the Mur’s first order
ABC for the ADI-FDTD should be applied inside the tridia-
gonal matrix, the field component Ez at the boundary
y ¼ jmax becomes
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Due to the adoption of the Mur’s first order ABC at the
boundary, the Ezi,jmax

expression in (6) is substituted into
(1a) and (2a), respectively. The Hx components become
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As shown in [5], the stability analysis of the ADI-FDTD
method is studied from deriving the amplification matrix
or the amplification factor for the two updating steps
of this scheme. To derive the amplification matrix for
the first updating step, the relation of field components
at nth time step and (nþ 1/2)th time step in the system
of first updating equations are employed. However, the Hx

at (nþ 1/2)th time step is calculated from the Ez com-
ponents at (n2 1/2)th time step and nth time step, as
shown in (7a). To write this equation into matrix form
from nth time step to (nþ 1/2)th time step, we need to
introduce the amplification factor j for Ez components at
(n2 1/2)th time step and rewrite (7a) to be
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Since j is the amplification factor from (n2 1/2)th time
step to nth time step, it is identical to the amplification
factor of the second updating step. As a result, the first
updating equations (1b), (1c) and (8) can be formulated in
the matrix form.

The numerical stability of this scheme was determined by
the Fourier method described in [15]. We assume the spatial
frequencies to be kx, ky and kz along the x, y and z directions,
respectively, and the field components in the spatial spectral
domain can be written as
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After substituting (9) for the first updating equations, we
can obtain
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Denote the field vector in the spatial spectral domain as

X n
¼ [En

z Hn
x Hn

y ]T (11)

The field components for the first updating equations
from nth time step to (nþ 1/2)th time step can be written
in the matrix form

Xnþ(1=2)
¼ M�1

1 P1X
n
¼ L1X

n (12)
IET Microw. Antennas Propag., Vol. 1, No. 3, June 2007



where
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The growth factor for the first updating step is the eigen-
values of L1. It can be found that j is one element of the
matrix P1.

Similar procedure can be applied to the second updating
equations 2(b), 2(c) and 7(b), the field components for the
second updating equations from (nþ 1/2)th time step to
(nþ 1)th time step can also be written in the matrix form
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The growth factor j for the second updating step is the
eigenvalues of L2.

Combining the two half time steps can lead to one time step

Xnþ1
¼ L1L2X

n
¼ LXn (14)

Therefore to obtain the amplification factors for the two
updating steps, one can solve the eigenvalues of L2 to
obtain the amplification factor j first. After the j value
is obtained, the amplification factor for the first updating
step can be solved. In this work, the j value is solved
IET Microw. Antennas Propag., Vol. 1, No. 3, June 2007
to obtain the matrix L. When the matrix L is obtained,
the amplification factor for the total updating step can be
found. The stability of this scheme requires that the eigen-
values of L lie within or on the unit circle that is jlLj � 1.
Due to the complexity of the amplification matrix L, it is dif-
ficult to obtain a simplified analytical expression for the
eigenvalues. The eigenvalues are numerically calculated by
Matlabw. The amplification matrix L is a function of the
discrete wavenumber. All propagation directions are
considered to study the stability of this scheme. Let
kx ¼ k sinf, ky ¼ k cosf and k ¼ ð

p
k2
x þ k2

y Þ; angle f is
incident angle with respective to y-axis, as shown in Fig. 1.

A 2-D computation domain is studied and the ratio of
Dt/Dtmax is defined as the CFL number (CFLN). The cell
size with Dx ¼ Dy ¼ 1.0 mm and FDTD time step size
limit Dtmax ¼ 2.35 ps are used. The effects of the time
steps and the wave propagation direction on the stability of
this scheme are investigated. The calculated maximum
eigenvalues of L for different time step size and wave propa-
gation direction are shown in Fig. 2. This scheme will be
stable only when the propagation directions are at f ¼ 08,
458 and 908 and will become unstable at other propagation
directions. It can also be found that the eigenvalues are
larger than unity even when CFLN ¼ 1 is used. In a practical
ADI-FDTD simulation, the electromagnetic wave will not
propagate at specific direction when it reaches the ABC.
Since the ADI scheme of the Mur’s ABC is unstable, the
field components at the boundary will become unstable.
Due to the unstable field components at the boundary, the
stability of the total computation domain will be affected.

3 Numerical simulation

In this paper, we use the Fourier method to study the stab-
ility of the Mur’s ABC in ADI scheme. When the

Fig. 1 Wave propagates upon the Mur’s ABC at y ¼ jmax

Fig. 2 Maximum eigenvalue of L for different propagation
directions
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eigenvalues of this scheme are larger than unity, it means
the ADI scheme of the Mur’s ABC will be unstable.
Since the field components will be unstable at the boundary,
the ADI-FDTD method with Mur’s ABC will become
unstable. To illustrate the instability of this scheme, numeri-
cal verification of instability is performed by 3-D
ADI-FDTD with Mur’s first order ABC. In this study, a
uniform mesh with cell size Dx ¼ Dy ¼ Dz ¼ 1.0 mm and
the maximum FDTD time step Dtmax ¼ 1.92 � 10212 s
are used. The computation domain is 42 � 42 � 42. The
Mur’s first order ABCs are applied on the six sides of the
computation domain. A differential Gaussian pulse is
launched for Ez component. The source is excited at the
centre position (21, 21, 21) and the observation point is
positioned at (21, 20, 21).

Numerical simulations of the ADI-FDTD with Mur’s
ABC for different CFLN are demonstrated. First, numeri-
cal simulation of this scheme with CFLN ¼ 1 is studied.
From the theoretical stability analysis, we find that the
Mur’s ABC in the ADI-FDTD will be unstable.
However, it is found that numerical simulation of this
scheme for the total computational domain can still be
stable after running 5000 time step, as shown in Fig. 3.
We have extended the time steps to 100 000 time steps
and no instability is observed. This is because the
maximum eigenvalues of the Mur’s ABC in ADI-FDTD
are slightly larger than unity when CFLN ¼ 1, and it
will require a large number of time steps to make this
scheme unstable. The ADI-FDTD method can be efficient
only when large CFLN is used. This scheme with

Fig. 3 Numerical simulation of 3-D ADI-FDTD with Mur’s ABC
(CFLN ¼1)

Fig. 4 Numerical simulation of 3-D ADI-FDTD with Mur’s ABC
(CFLN ¼ 3)
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CFLN ¼ 3 and CFLN ¼ 5 are studied, as shown in
Figs. 4 and 5, respectively. It can be found that instability
of this scheme will appear after running 1300 time steps
and 600 time steps for CFLN ¼ 3 and CFLN ¼ 5, respect-
ively. With the implementation of the Mur’s ABC in the
ADI-FDTD method, this scheme will become unstable
with less time steps when larger CFLN is used.

4 Conclusion

In this work, the stability analysis of the Mur’s ABC in the
ADI-FDTD is studied. The stability analysis is performed
by deriving the amplification matrix of this scheme. The
effect of the propagation direction on the stability is inves-
tigated. From the stability analysis, we find this scheme will
be stable only when the propagation directions are at
f ¼ 08, 458 and 908 and will become unstable at other
propagation directions. Since the ADI scheme of the
Mur’s ABC is unstable, the field components at the bound-
ary will become unstable. Due to the unstable field com-
ponents at the boundary, the stability of the total
computation domain will be affected. Numerical simu-
lations of 3-D ADI-FDTD method with Mur’s ABC are
demonstrated to validate the instability of this scheme.
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