
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 55, NO. 6, JUNE 2007 1131

Transactions Papers

A View of Gaussian Elimination Applied to
Early-Stopped Berlekamp–Massey Algorithm

Chih-Wei Liu, Member, IEEE, and Chung-Chin Lu, Member, IEEE

Abstract—In this paper, we adopt a restricted Gaussian elimi-
nation on the Hankel structured augmented syndrome matrix to
reinterpret an early-stopped version of the Berlekamp–Massey al-
gorithm in which only (+) iterations are needed to be per-
formed for the decoding of BCH codes up to errors, where is
the number of errors actually occurred with , instead of the
2 iterations required in the conventional Berlekamp–Massey al-
gorithm. The minimality of (+) iterations in this early-stopped
Berlekamp–Massey (ESBM) algorithm is justified and related to
the subject of simultaneous error correction and detection in this
paper. We show that the multiplicative complexity of the ESBM al-
gorithm is upper bounded by (+ 2 1) and except for
a trivial case, the ESBM algorithm is the most efficient algorithm
for finding the error-locator polynomial.

Index Terms—BCH codes, Berlekamp–Massey algorithm, de-
coding, error-correcting codes, Gaussian elimination.

I. INTRODUCTION

LET , be the syndromes for a transmitted
codeword of a BCH code with design error-correcting ca-

pability . Suppose there are exactly errors, . The coeffi-
cients of the error-locator polynomial with

satisfy [4]–[6]

(1)

With its low complexity of order , the Berlekamp–Massey
algorithm is one of the most popular algorithms for computing
the error-locator polynomial. The Berlekamp–Massey algo-
rithm, as discussed in [7] and [8] interprets the linear recurrence
in (1) as a shift-register synthesis problem. The determination
of the error-locator polynomial then becomes the synthesis
of a minimum-length linear-feedback shift register (LFSR)
to generate a known, prescribed sequence of syndromes. In
generalizing the Berlekamp–Massey algorithm to decode cyclic
codes up to the Hartmann–Tzeng bound and the Ross bound

Paper approved by T.-K. Truong, the Editor for Coding Theory and Tech-
niques of the IEEE Communications Society. Manuscript received August 21,
2004; revised July 28, 2006. This work was supported by the National Science
Council, Taiwan, R.O.C., under Contract NSC89-2213-E-007-060.

C.-W. Liu is with the Department of Electronics Engineering, National Chiao
Tung University, Hsinchu 30010, Taiwan, R.O.C.

C.-C. Lu is with the Department of Electrical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan, R.O.C.

Digital Object Identifier 10.1109/TCOMM.2007.898827

in [1], the determination of the error-locator polynomial is
reformulated as the problem of finding the smallest initial set of
linearly dependent columns in a matrix formed by syndromes.
An algorithm, called the fundamental iterative algorithm (FIA),
which is a kind of restricted Gaussian elimination, is proposed
in [1] to solve the problem of finding the smallest initial set
of linearly dependent columns in a generic matrix. It is shown
there that the Berlekamp–Massey algorithm is equivalent to a
refinement of the FIA on a syndrome matrix of the form

...
...

. . .
...

...
(2)

where the entries , , designate “don’t
cares” and can be so specified as to satisfy the linear dependence
relation in (1).

However, a more efficient version of the Berlekamp–Massey
algorithm is developed in [2] and [3] and requires only
iterations to be performed for the decoding of BCH codes up
to errors, where is the number of errors actually occurred
with , instead of the iterations in the conventional
Berlekamp–Massey algorithm.

To begin with our excursion from the Gaussian elimination
to this early-stopped Berlekamp–Massey (ESBM) algorithm, it
turns out that the syndrome matrix in (2) is too big to be
taken. To present a syndrome matrix of the right size as hinted in
[2], we first state the following basic theorem which is the foun-
dation of the Gorenstein–Zierler decoding method. For a proof
of this theorem, please see [9] or any of the textbooks in [4]–[6].

Theorem 1: Suppose that the number of errors actually oc-
curred is and . Then the syndrome matrix ,
where

...
...

. . .
...

is nonsingular if and singular if .
This theorem leads naturally to a top-down approach, begin-

ning with the matrix and ending with the matrix , to
check their nonsingularity in order to determine the number of
errors actually occurred, provided that (see [4]), and after

0090-6778/$25.00 © 2007 IEEE

1132 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 55, NO. 6, JUNE 2007

the nonsingular square matrix stands out, the following
matrix equation:

...
...

can be solved by applying Gaussian elimination first and then
backward substitution on the augmented syndrome
matrix

...
...

. . .
...

...

Now, for a bottom-up approach, consider the maximal pos-
sible augmented syndrome matrix

...
...

. . .
...

...
(3)

From (1), the th column of is a linear combination
of its previous (left) columns, i.e.,

(4)

for each , . On the other hand, the first
columns of are linearly independent since the principal
submatrix of is nonsingular by Theorem 1 and then
the columns of are linearly independent. Furthermore,
the expression of the th column of as a linear
combination of the first columns of , , as in (4)
must be unique, i.e., the coefficients ’s of the error-locator
polynomial can be uniquely determined once the first (i.e., the

th) column of is expressed as a linear combination of
its previous columns in . We summarize the above discussion
in the following corollary.

Collorary 2: Suppose that the number of errors actually oc-
curred is and . Then the first column of the augmented
syndrome matrix being a linear combination of its previous
columns is , and the linear combination coefficients deter-
mine the error-locator polynomial.

A variant of Gaussian elimination on the rows of the aug-
mented syndrome matrix in (3) is adopted in [10] to determine
the coefficients of the error-locator polynomial. Although this
algorithm is shown to be more efficient than the conventional
Berlekamp–Massey algorithm when the number of errors ac-
tually occurred is very small, it is still subject to the same high
complexity of order as the Gaussian elimination operates
on a generic matrix of dimension . This is because that the row
operations are not the right operations to be performed on the
augmented syndrome matrix and the structural properties of
the augmented syndrome matrix are not exploited there.

Structural properties of other syndrome matrices than are
exploited implicitly in [1] and more explicitly in [11] in the

derivation of the Berlekamp–Massey algorithm. In [11], var-
ious syndrome matrices, being identified as Hankel matrices,
are used to derive an inherent rule of how the length of the
minimal LFSR, synthesized by an arbitrary recursive algorithm
(including the Berlekamp–Massey algorithm), grows with the
length of the syndrome sequence input to the algorithm. A nec-
essary and sufficient condition of the uniqueness of the LFSR
is derived there, and the early-stopped conditions in [2] and [3]
for the Berlekamp–Massey algorithm are also revisited in [11].

In this paper, we will adopt the right type of column opera-
tions, a restricted Gaussian elimination as that in the FIA in [1],
to perform on the right augmented syndrome matrix in (3) with
the exploitation of the structural properties of . With this new
approach, we will develop an ESBM algorithm, as a re-interpre-
tation of the early-stopped version of the Berlekamp–Massey
algorithm in [2] and [3], in which only iterations are
needed to be performed for the decoding of BCH codes up to
errors, where is the number of errors actually occurred with

, instead of the iterations required in the conventional
Berlekamp–Massey algorithm. Although an attempt to show the
minimality of iterations in an ESBM algorithm is made
in [11], we think it is vague and not successful. We will prove
the minimality of iterations through our formulation
and relate it to the subject of simultaneous error correction and
detection. We will analyze the multiplicative complexity of the
developed algorithm and show that except one trivial case, our
developed ESBM algorithm is the most efficient algorithm for
finding the error-locator polynomial.

II. LEFT-COLUMN REPLACEMENT OPERATIONS

In this section, we will present a basic type of column oper-
ations performed in the fundamental iterative algorithm (FIA)
in [1] for determining the linear dependency of a column on its
previous (i.e., left) columns in a matrix. Related concepts and
useful results will be further developed.

To determine the linear dependency of a column on its pre-
vious columns in a matrix , a restricted Gaussian elimination
on columns of can be performed as follows. For each nonzero
column of , we add a multiple of a previous column ,

, of from column to eliminate the leading (i.e., top-
most) nonzero entry of column to lower down the position
of the leading nonzero entry of the newly resulted column, if
possible. More precisely, if the leading nonzero entry of the th
column is the th entry and there is a previous column

, , which has a leading nonzero entry also at the
th position, then we replace column by .

The replaced column is either a zero vector
or has a leading nonzero entry below the th position. Such an
elimination operation is called a left-column replacement oper-
ation. A matrix is called a left-reduced matrix of if it is
obtained by applying a series of left-column replacement oper-
ations on and the leading nonzero entry of each column of

, if exists, cannot be further eliminated by any left-column
replacement operation. The leading nonzero entry of a column
in a left-reduced matrix is called a pivot. Pivots must be in
different rows of ; otherwise, one of them can be further elim-
inated by a left-column replacement operation.

LIU AND LU: VIEW OF GAUSSIAN ELIMINATION APPLIED TO EARLY-STOPPED BERLEKAMP–MASSEY ALGORITHM 1133

It is clear that each column of a left-reduced matrix is
a linear combination of the first columns , , of
the original matrix as

(5)

where , , are constants and dependent on the
column index . If of the left-reduced matrix is a zero
vector, then column of the original matrix is a linear com-
bination of its previous columns in . Otherwise, column has
a pivot at the th coordinate for some . Since

, we have

(6)

from (5) and column of is said to be a partial linear combi-
nation of its previous columns up to the th entry. A further
argument can render us the following lemma.

Lemma 3: A left-reduced matrix of a matrix has a pivot
at the th position if and only if the th column of is a
partial linear combination of its previous columns in up to
the th entry, but not to the th entry.

Proof: Please see Appendix I.
Thus, all left-reduced matrices of a matrix have the same

pivot positions and we shall say that the matrix has a pivot
position at the th entry if a left-reduced matrix of has a
pivot at that position. A consequence of Lemma 3 is that matrix

has a pivot position in column if and only if column is
linearly independent of its previous columns in .

Recall that a square matrix is symmetric if for
all . The following lemma is useful later.

Lemma 4: A square symmetric matrix has a pivot position
at the th entry if and only if it has a pivot position at the
transposed th entry.

Proof: Please see Appendix II.

III. STRUCTURAL PROPERTIES OF THE AUGMENTED

SYNDROME MATRIX

In this section, we assume that the number of errors actu-
ally occurred is no greater than . By Corollary 2, the last (i.e.,
the th) column of the augmented syndrome matrix

in (3) is a linear combination of its previous columns, and by
Lemma 3, all pivot positions of are located in the principal
submatrix which is square and symmetric. The next corol-
lary follows from Lemma 4.

Corollary 5: If the number of errors actually occurred is
no greater than , then the augmented syndrome matrix has
a pivot position at the th entry if and only if it has a pivot
position at the transposed th entry.

An matrix is said to be in a Hankel form if
(7)

The augmented syndrome matrix in (3) is in a Hankel form
since the th entry of is for all ,

. The slanted diagonal in where all ’s reside,
as shown in Fig. 1 for , is called the -slanted
diagonal. While for each , , the -slanted

Fig. 1. S -slanted diagonal and the S -slanted diagonal in the augmented
syndrome matrix SSS.

diagonal does not cross the first columns of , we shall
still regard every entry in these columns as being above
the -slanted diagonal.

Lemma 6: Given an , , if a column of has a
pivot position on or above the -slanted diagonal, then every
column of to the left of that column also has a pivot position
on or above the -slanted diagonal.

Proof: Let the column having a pivot position on or above
the -slanted diagonal be the th column . If , we
are done. Suppose that and that there is a column ,

, which does not have any pivot position on or above
the -slanted diagonal. If , i.e., all entries of the
column are above the -slanted diagonal, then the column

of the augmented syndrome matrix is a linear combination
of its previous columns by Lemma 3. Thus, by Corollary 2, we
have . Hence, since , the column
is also a linear combination of its previous columns in and
then does not have any pivot position by Lemma 3, which is a
contradiction. Thus, and the column is a partial
linear combination of its previous columns in up to the

th entry by Lemma 3. Then there exist coefficients
, , such that

(8)

Since is in a Hankel form and by (7), we have
for all ,

. With and from (8), we have

which means that the column is a partial linear combination
of its previous columns in up to the th entry ,
which is on the -slanted diagonal, a contradiction, too. This
completes the proof.

Now, for each , , we define to be the column
index of the rightmost column in which has a pivot position on
or above the -slanted diagonal. If there does not exist such a
column, we define to be 0. It is clear that the first columns
of the augmented syndrome matrix are linearly independent
and the th column of is a partial linear combination
of its previous columns up to the th entry . Let be
the first such that

(9)

1134 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 55, NO. 6, JUNE 2007

Then the th column is the first column which is a linear
combination of its previous columns in , and by Corollary 2,
we have and then

(10)

If , then trivially. Now suppose that
. Since the column of has a pivot position on

or above the -slanted diagonal which is trivially above the
-slanted diagonal, we have

(11)

Lemma 7: For an , , with , the principal
submatrix of is nonsingular. In particular, there are

pivot positions of within the submatrix which are
in different columns and in different rows.

Proof: By Lemma 6, each column , , of has
a pivot position on or above the -slanted diagonal. Thus, the
first columns of are linearly independent. Suppose that
there is a column, says column , , with pivot position
located below the th entry, says located at the th entry. Then
we have which implies .
By the symmetry property of the pivot positions in , as stated
in Corollary 5, the column of has a pivot position which
is located at the th entry, i.e., the th position of . With

, this pivot position (i.e., the th entry) of column
is on or above the -slanted diagonal, which contradicts

to the definition of . Thus, the pivot position in each of the
first (linearly independent) columns of is located on or
above the th entry. Hence, there are pivot positions of
located within the principal submatrix of , which are
in different columns and in different rows. It is clear that this
submatrix is nonsingular.

Suppose that . Since the submatrix of
is nonsingular by Lemma 7, any vector of dimension

must be a linear combination of the columns in .
Thus, each column , , of is a partial
linear combination of its previous columns in up to the th
entry . The smallest , ,
such that (which means that the column

is a partial linear combination of its previous columns up to
an entry on or below the -slanted diagonal and then cannot
have a pivot position on or above the -slanted diagonal) is

. This implies that

(12)

by Lemma 6. Thus, if , i.e., , then
we have from (11) and (12). Now suppose that

, i.e., . If , then all entries of
the column are on or above the -slanted diagonal
and by the definition of , the column is a linear
combination of its previous columns in . By Corollary 2, every
column of to the right of the column is also a linear
combination of its previous columns in . Thus, we have

and then by (11). Now consider
. If the column is a partial linear combination of its

previous columns up to the th entry , then it is clear
that by Lemma 6 and then by (11). If

not, the column has a pivot position at the th
entry , and by Corollary 5, the column has a pivot
position at the th entry . Now, by Lemma 6, we
have and then by (12). We
summarize the results in the following theorem, where we let

for convenience.
Theorem 8: For or , we have

, and for , if the column
is a partial linear combination of its previous columns

up to the th entry , then and if not,
.

From (11), the sequence is nonde-
creasing. The next corollary describes the pattern of pivot
positions in the augmented syndrome matrix .

Collorary 9: If , then there does not exist any
pivot position of on the -slanted diagonal, and if

, then there are exactly pivot positions of lying
on the -slanted diagonal, beginning at the th
entry and ending up at the th entry.

Proof: By Lemma 6, each of the first columns of has
a pivot position on or above the -slanted diagonal and none
of the rest columns have a pivot position on or above
the -slanted diagonal. Thus, if , then there does
not exist any pivot position of on the -slanted diagonal.
Now for , we have and

by Theorem 8. Then the -slanted diagonal
crosses the column at the th entry

up to the column at the th entry . Thus,
there are exactly pivot positions of lying on the

-slanted diagonal, beginning at the th entry
and ending up at the th entry. This completes the
proof.

IV. EARLY-STOPPED BERLEKAMP–MASSEY

(ESBM) ALGORITHM

Suppose that there are jumps in the nondecreasing sequence
at indices , , i.e.,

if and otherwise, where we have defined
for convenience. From Theorem 8, we have

(13)

Let be the size of the jump at . By
Corollary 9, is the number of (consecutive) pivot positions of

lying on the -slanted diagonal and there is no pivot position
of lying on the -slanted diagonal if is not a jump index.
Then we have

(14)

and, in particular, by assuming that the number of errors ac-
tually occurred is no greater than , the total number of pivot
positions in is from Corollary 2, and we have

(15)

Since the principal submatrix of for each ,
, is nonsingular by Lemma 7, the th column of

LIU AND LU: VIEW OF GAUSSIAN ELIMINATION APPLIED TO EARLY-STOPPED BERLEKAMP–MASSEY ALGORITHM 1135

is a linear combination of its previous columns in up to
the th entry , i.e.,

(16)

where the linear combination coefficient vector

must be unique (We will use a

-tuple, denoted by , with the rightmost component to be 1
to represent the coefficients of a linear combination with which
the th column is a partial linear combination of its previous
columns up to the th component as in above. In general, is
not necessarily unique). We next describe an iterative procedure

to find , , and from , , and .
To find the next jump index , and then , is equivalent

to find the , beginning at and ending at
, such that the th column of

is not a partial linear combination of its previous columns up to
the th entry by Theorem 8, i.e., to find the first
in such that the discrepancy

(17)

is nonzero by Lemma 3. This is called the search phase for
and then for .

If all the discrepancies , ,
are zeros, then the th column is the
first column of which is a linear combination of its pre-
vious columns. By Corollary 2, the linear combination co-

efficient vector is equal to the coefficient vector

of the error-locator polynomial and
no more pivot positions of can be found. In this case, the final
index has and such that
this final index is the first index with and .
By (9), this final index is equal to . Thus, no more jump
index can be found, and we have . Otherwise, we find

as the first in with . This
completes the phase of search for , and then we have

(18)

as stated in Theorem 8.
Now, to determine the linear combination coefficient vector

with which the th column of is a
unique linear combination of its previous columns in up
to the th entry , we will apply left-column replacement
operations on the augmented syndrome matrix . This is called

the update phase for .

At first, we note that the th column of is a linear
combination of its previous columns in up to the

th entry , i.e.,

for all , , since the discrepancy in
(17) is zero from to . Now since
is in a Hankel form, we have

for all , , i.e.,

for all , , which says that the th
column of is a linear combination of its previous columns in

up to the th entry with linear combination
coefficient vector

(19)

Since

from (17), and there is a pivot position at the
th entry (i.e., the th entry since

by (18)) of , i.e.,

we have

This implies that the th column of is a partial
linear combination of its previous columns in up to the

1136 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 55, NO. 6, JUNE 2007

Fig. 2. Alternative search and update phases in the iteration process of deter-

mining r , L and��� for j = 1; 2; . . . ; J , where the pivot positions are
marked by “�.”

th entry with the linear combination coefficient vector

by updating the vector to

(20)

by (19), which is, indeed, the result via a series of left-column
replacement operations on to eliminate all nonzero entries at
or above the th position of the th column

of .
Now for each , , we continue

to eliminate the th entry of the th column
by employing the pivot at the th
position, lying on the -slanted diagonal as stated in Corollary

9, and by updating the vector to

(21)
where

(22)

After completing the phase of updating coefficient vector at
, we obtain the desired linear combination coefficient

vector , which is unique.
We now summarize the iterative procedure to find , and

as shown in Fig. 2. In general, there are two phases in
each th iteration. The first phase is a search phase for in the
interval of the index by detecting a

nonzero discrepancy in (17) by using the most recently ob-

tained linear combination coefficient vector . If none

of the discrepancies with is
detected to be nonzero, then the number of errors actually oc-
curred is and the coefficient vector of the error-locator

polynomial is . Then the algorithm stops. Oth-
erwise, is found and . The end of the first
phase triggers immediately the begin of the second phase. The
second phase is an update phase for obtaining the next linear

combination coefficient vector in the interval
of the index . We use (20) to update the coefficient vector when

and use (21) when .
There are totally iterations and the last, i.e., the th,

iteration consists of only a search phase. For each , ,
the th iteration consists of steps for the
index from to . Among the steps, the first

steps for the index from to is in the
th search phase and the last steps for the index from

to is in the th update phase. Note that the
th search phase and the th update phase overlap at the th

step of the th iteration for the index ,
where the th jump of the sequence occurs.
In each step of the th iteration, we should at first calculate the
discrepancy by (17) or (22), depending on the index being
in the search phase or in the update phase. Since

(23)

we have

(24)

by (17), (20), and (21). Thus, we can rewrite the calculation of
the th discrepancy as

(25)

by (17), (22), and (24). Since the discrepancy is zero in the
search phase except at the last step, i.e., the th step, there is
no need to update the linear combination coefficient vector. A
similar case occurs if the discrepancy is zero in the update
phase. However, if the discrepancy is nonzero in the update
phase except at the first step, i.e., the th step, we will update
the linear combination coefficient vector as

(26)

for , where we have used two auxiliary
variables

(27)

(28)

by (21) and (24) and the notation for a vector
in (26) with , is defined to be the right

-truncate of the vector , i.e., .

LIU AND LU: VIEW OF GAUSSIAN ELIMINATION APPLIED TO EARLY-STOPPED BERLEKAMP–MASSEY ALGORITHM 1137

Now, when , the discrepancy is nonzero and the linear
combination coefficient vector will be updated as

(29)

where

(30)

(31)

by (20) and (24). From (27) and (30), we have

(32)

and from (28) and (31), we have

.
(33)

With (23), (26), (29), (32), and (33), we now write a pseu-
docode for the procedure in above, based on the index of the
syndromes , . In the pseudocode, the fol-
lowing variables are used.

To store the index of the rightmost column
in which has a pivot position on or above the

-slanted diagonal.

To store the coefficient vector with which
the th column of is a partial linear
combination of its previous columns up to the

th component .
To store the pivot value to be used to update the
coefficient vector to eliminate the th
entry .
To store the linear combination coefficient vector

associated with the pivot in above to be used
to update the coefficient vector to eliminate the

th entry .
To store the linear combination coefficient vector

temporarily for later use.

Since the algorithm begins in searching for a nonzero entry (i.e.,
a pivot position) in the first column of the augmented syndrome
matrix , the initial values of the first four variables are set to be

and (34)

For from 1 to

Calculate of by ;

If and

/ at the end of the last search phase /

;

;

the algorithm stops.

Else if

/ either in a search phase or in an update phase /

[by (33)].

Else if and

/ in an update phase but not in a search phase /

[by (26)];

[by (33)].

Else if and

/ at the overlap of a search & an update phases /

[by
(29)];

[by (33)];

[by (32)];

[by (23)].

The algorithm in above is equivalent to the modified
Berlekamp–Massey algorithm in [2], which is the same as the
conventional Berlekamp–Massey algorithm in [7] and [8] ex-
cept for the detection of an early stop by the conditions
and . However, the distinction between the algorithm
developed in above and the modified Berlekamp–Massey al-
gorithm in [2] stems from the distinction between the refined
FIA in [1] and the conventional Berlekamp–Massey algorithm
in [7] and [8]. Moreover, while Hankel properties of various
syndrome matrices are exploited in [11], the manipulation of
syndrome matrices in [11] remains the style of the conven-
tional Berlekamp–Massey algorithm. While the conventional
Berlekamp–Massey algorithm is shown to be equivalent to a
refinement of FIA in [1], the refined FIA has lower complexity
than the conventional Berlekamp–Massey algorithm as can be
seen in Section VI. Thus, the developed algorithm in above has
lower complexity than the modified Berlekamp–Massey algo-
rithm in [2]. This algorithm will be referred as the ESBM algo-
rithm. From (9) and (10), the algorithm stops at .
Thus, only iterations are needed to be performed in the
ESBM algorithm for the decoding of BCH codes up to errors,
where is the number of errors actually occurred with ,
instead of the constant iterations required in the conventional
Berlekamp–Massey algorithm. Note that in the completion of
the ESBM algorithm, stores the linear combination coeffi-

cient vector and the
error-locator polynomial is

A scenario of the execution of the ESBM algorithm is illus-
trated in Fig. 3, where there are errors actually oc-
curred in the decoding of a codeword from a BCH code with
error-correcting capability . In Fig. 3, the progression of

1138 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 55, NO. 6, JUNE 2007

Fig. 3. Illustrative scenario of applying the ESBM algorithm to the decoding of a BCH code with designed error-correcting capability t = 16 for the case of
e = 10 errors occurred.

the index of the syndrome sequence
is described in an alternative search and update phases manner
and all the pivot positions of the augmented syndrome matrix
are marked by “ .” Suppose further that there are four jumps,
i.e., , occurred at , , , and ,
respectively. Then , ,

, and , and ,
, , .

The first search phase begins at the step of to detect a
nonzero discrepancy up to the step of in the first column
of . Since , i.e., , the first search phase ends at the
step of and then , . The first update phase
is triggered immediately but without doing anything at the step
of , as by setting the initial value of to be 0, since the

-slanted diagonal is above the second column of , i.e., the
second column does not have as an entry. The first update
phase ends at the step of with , where
the execution of an update of the linear combination coefficient
vector depends on whether the discrepancy is zero or not.

The second search phase begins at the step of
to detect a nonzero discrepancy up to the step of

in the th column of . Since
and , the second search phase ends

at the step of and then , . The second
update phase is triggered immediately for updating the linear
combination coefficient vector to eliminate the nonzero leading
entries of the th column of , when the discrepancy

is nonzero, up to the th entry for the step index
from to .

Similar operations are done in the third and the fourth itera-
tions, which are from the step of to the step of
and from the step of to the step of respectively.
We have , and , , and the fifth
search phase begins at the step of to detect
a nonzero discrepancy up to the step of in
the th column of . Since ,
we detect an early stop of the algorithm such that the number
of errors actually occurred is .

LIU AND LU: VIEW OF GAUSSIAN ELIMINATION APPLIED TO EARLY-STOPPED BERLEKAMP–MASSEY ALGORITHM 1139

It is now clear that the algorithm stops at the step of
which is really six steps earlier than the

conventional Berlekamp–Massey algorithm which stops at the
step of .

V. MINIMALITY OF ITERATIONS

In this section, we are ready to show the minimality of
iterations in the ESBM algorithm, which has been an open

problem presented in the Conclusion of [2]. We also draw a
wider picture of the minimality of iterations within the
context of simultaneous error correction and detection.

As suggested in [2], the answer to this question is related to
the augmented syndrome matrices for ,

...
...

. . .
...

...

(35)

Note that each is an upper-left submatrix of the max-
imal augmented syndrome matrix . We first con-
sider the case that the number of errors actually occurred is no
greater than . Then all the pivot positions of must be within
the principal submatrix of , which is also a principal sub-
matrix of the matrix , and the th column of
is the first column of which is a linear combination of its pre-
vious columns in by Corollary 2. This implies that the th
column of is the first column of which
is a linear combination of its previous columns in
with the same linear combination coefficients in above, and from
Corollary 2, the obtained linear combination coefficients are just
the coefficients of the error-locator polynomial. Thus, the ma-
trix has the same structural properties as those of the
matrix in Section III if , and the Berlekamp–Massey
algorithm can be early stopped by the detection conditions of

and as developed in Section IV. The final
iteration index is , i.e., only iterations are needed.

On the other hand, we consider the case that the number
of errors actually occurred is greater than but no greater

than with . Since the matrix has one more
columns than rows, there exists at least one column of
which has no pivot positions, and since the matrix is
an upper-left submatrix of the matrix , the execution of the
Berlekamp–Massey algorithm on the matrix is exactly the
same on the matrix up to the detection of the first
column of to have no pivot positions by the condi-
tions of and . Thus, the ESBM algorithm
with detection conditions of and will make
a decoding error by claiming an error-locator polynomial of de-
gree no greater than . We summarize the above discussion in
the following theorem.

Theorem 10: For the decoding of a BCH code with -
error-correcting capability, the Berlekamp–Massey algorithm
with the early-stopped detection conditions of and

, , can correct up to errors but has

a decoding error if the number of errors actually occurred is
greater than and no greater than .

From the above theorem, it is now clear that the early-stopped
detection conditions should be set to and
in order to correct up to errors. Thus, the conjecture of the
minimality of iterations raised in [2] is affirmed by the
following corollary.

Corollary 11: To decode a BCH code up to its error-cor-
recting capability , the minimal number of iterations to be per-
formed in the Berlekamp–Massey algorithm is , where is
the number of errors actually occurred.

Again, consider the case that the number of errors actually
occurred is greater than , but no greater than . As stated in
Theorem 10, the ESBM algorithm with detection conditions of

and cannot detect this error pattern. How-
ever, if we keep checking after the early-stopped con-
ditions are detected, we must find a violation, i.e., an with

, within steps (actually steps). Otherwise,
we find the first column of the matrix which has no pivot po-
sitions and the number of errors is, thus, no greater than , a
contradiction. We state the above discussion in a more general
setting in the following theorem.

Theorem 12: Let . For a -error-correcting
BCH code, the Berlekamp–Massey algorithm with the early-
stopped detection conditions of and and
with up to extra steps to check can correct up
to errors and detect up to errors simultaneously.

Theorem 12 is more efficient than the results in [6, Theorem
7.5.3] where the early-stopped detection conditions are not
adopted.

VI. COMPLEXITY ANALYSIS

The conventional Berlekamp–Massey algorithm takes con-
stant steps to use syndromes to determine the coefficients
of the error-locator polynomial, while the ESBM algorithm
takes only steps to use syndromes without
requiring extra computation efforts. Thus, the ESBM algorithm
can save both the processing time and the computational power.
In this section, we will analyze the multiplicative complexity
of the ESBM algorithm and compare it with those of the
conventional Berlekamp–Massey algorithm and a variant of the
Gaussian elimination in [10].

As shown in Section IV, the discrepancy should be cal-
culated at each th step in the ESBM algorithm. We first note
that in the first search phase, no finite-field multiplications are
needed to calculate since , and
at most finite-field multiplications are needed to
calculate at each th step in the first update phase except at
the overlap with the first search phase, i.e., .
This is because that the linear combination coefficient vector

for in has nonzero components only
in the right positions, excluding the rightmost posi-
tion where the component is always 1. Now for the th iteration
with , the number of finite-field multiplications needed to
calculate is when the th step is in the th search phase,
i.e., , by (17), and the number of finite-field
multiplications needed to calculate is when the th step
is in the th update phase, except , i.e., ,

1140 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 55, NO. 6, JUNE 2007

by (22). Thus, the total number of finite-field multiplications
to calculate discrepancies is upper bounded by

by

where we define and for convenience. Since
by (15) and by an extension of

(13), we have . Thus, we have

(36)

Additional finite-field multiplications should be performed in
each update phase for updating the linear combination coeffi-
cient vector. In the first update phase, there is no multiplication
to be done at since . However, one multiplication
is needed for the calculation of for each
if . Now if the th step is in the th update phase, ,
with , then and finite-field mul-
tiplications are needed for and for
by (20) and (21), respectively. Thus, the total number of
finite-field multiplications for updating the linear combination
coefficient vector is upper bounded by

(37)

since and , where equality holds when
every discrepancy is nonzero in each update phase. Since

, ,
and by (14) and (15), each of the first
three terms of the upper bound in (37) has the maximum value
when , i.e., and .
The worst case is shown in Fig. 4, where the discrepancy is
nonzero for and is zero for .
Note that the multiplicative complexity of calculating the
discrepancies in this worst case reaches the upper bound
in (36). Now the total number of finite-field multiplications
for updating the linear combination coefficient vector is upper
bounded by

(38)

Combining (36) and (38), the multiplicative complexity
of the ESBM algorithm is

(39)

Since the conventional Berlekamp–Massey algorithm cannot
stop earlier, additional steps are needed to check the
discrepancies , for from to , which must be

Fig. 4. Worst case with the maximum number of finite-field multiplications in
the ESBM algorithm, where the pivot positions are marked by “�.”

zeros, the multiplicative complexity of the conventional
Berlekamp–Massey algorithm is upper bounded by

(40)

where the upper bound is reached by the worst case
shown in Fig. 4.

We must address here that the upper bound of in (40)
is owing to the equivalence of the conventional Berlekamp–
Massey algorithm to the refined FIA shown in [1]. In the classical
presentation of the conventional Berlekamp–Massey algorithm,
for example, please see the flow chart in [6, Fig. 7.5], the coef-
ficients of the backup polynomial in this flow chart are
normalized before being stored in a shift register. This is equiv-
alent to multiplying the vector by before storing the
vector at the first step of each th update phase, i.e., ,
without storing for later use as in the pseudocode of the
ESBM algorithm. Thus, the normalization operation introduces
additional finite-field multiplications. The case shown in Fig. 4
is still the worst case for the classical presentation of the conven-
tional Berlekamp–Massey algorithm. Thus, the multiplicative
complexity of the classical presentation is upper bounded by

(41)

where the additional one finite-field multiplication is from the
initialization of as shown in [6, Fig. 7.5]. Comparing
(41) with (40), the refined FIA presentation of the conventional
Berlekamp–Massey algorithm is superior in the computational
complexity.

LIU AND LU: VIEW OF GAUSSIAN ELIMINATION APPLIED TO EARLY-STOPPED BERLEKAMP–MASSEY ALGORITHM 1141

TABLE I
UPPER BOUNDS OF FINITE-FIELD MULTIPLICATIVE COMPLEXITY FOR THE

ESBM ALGORITHM, THE VARIANT OF GAUSSIAN ELIMINATION IN [10]
AND THE CONVENTIONAL BERLEKAMP–MASSEY ALGORITHM

Note that the exact multiplicative complexity of decoding a
specific codeword depends on the codeword itself and the error
pattern occurred. Thus, an exact analysis of the multiplicative
complexity is intractable. However, by our experience in doing
computer simulation, the worst case event as described in Fig. 4
occurs with very high probability so that the worst case com-
plexity analysis we conducted in above is able to address the
expected performance of the early-stopped and the conventional
Berlekamp–Massey algorithms.

In Table I, we list the upper bounds of finite-field multiplica-
tive complexity of the ESBM algorithm, in (39), the
conventional Berlekamp–Massey algorithm, in (40), and
a variant of Gaussian elimination, taken from [10]. All the
three algorithms requires exactly finite-field inversions within
a decoding cycle. As demonstrated in Table I, the variant of
Gaussian elimination in [10] is more efficient than the ESBM
algorithm only in the case of . They have the same
multiplicative complexity when or ,
and the ESBM algorithm is superior to this variant of Gaussian
elimination in any other case. The variant of Gaussian elimina-
tion is more efficient than the conventional Berlekamp–Massey
algorithm when or 2 with . They have the same
multiplicative complexity when , 2 or when .
However, when , the conventional Berlekamp–Massey al-
gorithms are superior to this variant of Gaussian elimination.

VII. CONCLUSION

In this paper, we have presented an exposition from a re-
stricted Gaussian elimination to several aspects of the ESBM
algorithm. It can be seen that the prominent features of the
Berlekamp–Massey algorithm can be fully reached naturally
by operating a restricted Gaussian elimination on an appro-
priate syndrome matrix which has structural properties. The
formulation taken in this paper makes the deep insights of the
Berlekamp–Massey algorithm crystal clear. With this formula-

tion, we have justified the minimality of iterations in the
ESBM algorithm and related it to the subject of simultaneous
error correction and detection. We have been able to derive
the exact upper bound of the multiplicative complexity of the
ESBM algorithm and have shown that except for a trivial case,
the ESBM algorithm is the most efficient algorithm for the
determination of the error-locator polynomial.

APPENDIX I
PROOF OF LEMMA 3

With (5) and by induction, the th column , ,
of the original matrix is a linear combination of the first
columns , , of the left-reduced matrix

(42)

where , , are constants and dependent on the
column index .

Now assume that the left-reduced matrix of has a pivot
at the th position. Then as stated in (6), column of
is a partial linear combination of its previous columns up to the

th entry. Suppose that column of is also a partial
linear combination of its previous columns up to the th entry,
i.e., there exist such that

(43)

Then, by recursively using (42) from to , we have

(44)

for some constants . Thus, column of the left-
reduced matrix can be replaced by the column vector

(45)

by a series of left-column replacement operations. Since the first
entries of the resulted column in (45) are all zeros by (44)

and (43), the leading nonzero entry of column of the left-
reduced matrix can be eliminated by such a series of left-
column replacement operations, which is a contradiction to the
definition of a left-reduced matrix. Thus, column of cannot
be a partial linear combination of its previous columns in up
to the th entry.

Conversely, we assume that column of is a partial linear
combination of its previous columns up to the th entry but
not to the th entry. With similar argument as in the last para-
graph, the first entries of column of the left-reduced
matrix must be all zeros, otherwise the leading nonzero entry
of column can be eliminated by a series of left-column re-
placement operations on , a contradiction. Thus, the leading
nonzero entry of column must be below the th coordi-
nate, if exists. However, if the leading nonzero entry of column

is below the th coordinate or does not exist, then column
of is a partial linear combination of its previous columns

at least up to the th entry by (5), which is a contradiction too.
Thus, column has a leading nonzero entry at the th coordi-
nate, i.e., the left-reduced matrix has a pivot at the th
position. This completes the proof of this lemma.

1142 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 55, NO. 6, JUNE 2007

APPENDIX II
PROOF OF LEMMA 4

The lemma is trivial if is a zero matrix. Now let be a
nonzero square symmetric matrix. We shall produce a
sequence of square symmetric matrices ,

, by iteration as follows. Let and for
. By assuming that the square symmetric matrix

is given, we construct the next square sym-
metric matrix by considering the following two cases.

1) The first (i.e., the leftmost) column of is a zero vector,
i.e., for all . Then there does not exist

any pivot position in the first column of , and by the
symmetry of , the first (i.e., the topmost) entry of
each column , , is zero and then there does not
exist any pivot position in the first row of . Let
be the submatrix of by deleting the first column and
the first row from . It can be seen that the execution of
a left-column replacement operation on the matrix is
equivalent to that on the matrix . Note that
is an square symmetric matrix. We let

.
2) The first (i.e., the leftmost) column of is a nonzero

vector. Let be the first nonzero entry of column 1.

Then by Lemma 3, has a pivot position at the th
entry. Again by the symmetry of , we have

for all and and then
has a pivot position at the th entry also by Lemma 3.
Now, we can eliminate first the th entries with

to zeros via left-column replacement operations by
using the th column, , and then,
second, the th entries with by using
the first column, . Let

be the resulted matrix after all of the above left-column
replacement operations have been done on . Then, the

th entry of with or is shown in (46)

if and

if and

if and

if and .

(46)
Since the matrix is symmetric, i.e., , and by

(46), we have , if or . This fact
implies that the submatrix of by ignoring the first column,
first row and the th column, th row is symmetric. For example,
consider the following 5 5 symmetric matrix

(47)

with . Since is the first nonzero entry of the first column
and of the first row, the matrix has two pivot positions at the
(3, 1)th and the (1, 3)th entries respectively. After applying left-
column replacement operations on with these two pivots,
we have the resulted matrix as follows:

It can be seen that the further execution of left-column replace-
ment operations on the matrix to find other pivot positions
is equivalent to that on the matrix and furthermore, equiva-
lent to that on the submatrix of by ignoring the first and third
columns and the first and third rows. We now let to be
this submatrix. For the given example, the matrix is

As claimed before, is readily an square
symmetric matrix, where if and

otherwise.
By iteration, we generate a sequence of square sym-

metric matrices , , from the square symmetric
matrix . Since the dimension of these matrices decreases
strictly as increases, this iteration process must be terminated,
says at . By the construction of matrices ,

, in the above, we have the following two properties.
1) A pivot position in the matrix , , corre-

sponds to a pivot position in the matrix .
2) A diagonal position in the matrix , ,

corresponds to a diagonal position in the matrix and
a pair of transposed positions in the matrix correspond
to a pair of transposed positions in the matrix , and
each corresponding pivot position in the matrix to
a pivot position in the matrix is neither in the first
column nor in the first row of the matrix .

Let the matrix , , be the last nonzero matrix in
the sequence. Then by the construction in above, has ei-
ther a pivot position at a diagonal entry, the (1, 1)th position, or
two pivot positions at a pair of transposed entries, the th
and the th positions for some . This shows that
the matrix satisfies this lemma, i.e., has a pivot po-
sition at the th entry if and only if it has a pivot position
at the transposed th entry. By the two properties in above,
the matrix has either a pivot position at a corresponding
diagonal entry or two pivot positions at a corresponding pair of
transposed entries, each of which is neither in the first column
nor in the first row of the matrix . If Case 2 above is
applicable, the matrix has either an additional pivot po-
sition at the (1, 1)th entry or two additional pivot positions at
the th and the th entries for some .

LIU AND LU: VIEW OF GAUSSIAN ELIMINATION APPLIED TO EARLY-STOPPED BERLEKAMP–MASSEY ALGORITHM 1143

This shows that the matrix satisfies this lemma. By in-
duction, all of the matrices , , in the sequence
satisfy this lemma. In particular, the first matrix sat-
isfies this lemma. This completes the proof.

ACKNOWLEDGMENT

The authors would like to thank the anonymous referees for
their valuable comments and suggestions that helped improve
the presentation of this paper.

REFERENCES

[1] G.-L. Feng and K.-K. Tzeng, “A generalization of the Berlekamp–
Massey algorithm for multisequence shift-register synthesis with ap-
plications to decoding cyclic codes,” IEEE Trans. Inf. Theory, vol. 37,
no. 5, pp. 1274–1287, Sep. 1991.

[2] C.-L. Chen, “High-speed decoding of BCH codes,” IEEE Trans. Inf.
Theory, vol. IT-27, no. 2, pp. 254–256, Mar. 1981.

[3] K.-K. Tzeng, C. R. P. Hartmann, and R.-T. Chien, “Some notes on iter-
ative decoding,” in Proc. 9th Annu. Allerton Conf. Circuit and System
Theory, 1971, pp. 689–695.

[4] W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes, 2nd
ed. Cambridge, MA: MIT Press, 1971.

[5] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. Amsterdam, The Netherlands: North-Holland, 1977.

[6] R. E. Blahut, Theory and Practice of Error Control Codes. Reading,
MA: Addison-Wesley, 1983.

[7] E. R. Berlekamp, Algebraic Coding Theory. New York: McGraw-
Hill, 1968.

[8] J. L. Massey, “Shift-register synthesis and BCH decoding,” IEEE
Trans. Inf. Theory, vol. IT-15, no. 1, pp. 122–127, Jan. 1969.

[9] D. Gorenstein and N. Zierler, “A class of error-correcting codes in p
symbols,” J. Soc. Ind. Appl. Math., vol. 9, pp. 207–214, Jun. 1961.

[10] J. Hong and M. Vetterli, “Simple algorithms for BCH decoding,” IEEE
Trans. Commun., vol. 43, no. 8, pp. 2324–2333, Aug. 1995.

[11] K. Imamura and W. Yoshida, “A simple derivation of the
Berlekamp–Massey algorithm and some applications,” IEEE Trans.
Inf. Theory, vol. 33, no. 1, pp. 146–150, Jan. 1987.

Chih-Wei Liu (M’03) was born in Taiwan, R.O.C.
He received the B.S. and Ph.D. degrees in electrical
engineering from National Tsing Hua University,
Hsinchu, Taiwan, in 1991 and 1999, respectively.

From 1999 to 2000, he was an Integrated Circuits
Design Engineer at the Electronics Research and Ser-
vice Organization (ERSO) of Industrial Technology
Research Institute (ITRI), Hsinchu. Then, near the
end of 2000, he joined SoC Technology Center (STC)
of ITRI as a Project Leader. He eventually left ITRI
at the end of October 2003. He is currently with the

Department of Electronics Engineering and the Institute of Electronics, National
Chiao Tung University, Hsinchu, as an Assistant Professor. His current research
interests are SoC and VLSI system design, processors for embedded computing
systems, digital signal processing, digital communications, and coding theory.

Dr. Liu received the Best Paper Award at APCCAS in 2004 and the Out-
standing Design Award at ASP-DAC in 2006.

Chung-Chin Lu (S’86–M’88) was born in Taiwan,
R.O.C. He received the B.S. degree from National
Taiwan University, Taipei, Taiwan, in 1981, and the
Ph.D. degree from University of Southern California,
Los Angeles, in 1987, both in electrical engineering.

Since 1987, he has been with the Department
of Electrical Engineering, National Tsing Hua
University, Hsinchu, Taiwan. He is currently a Pro-
fessor. His current research interests include coding
theory, digital communications, bioinformatics, and
quantum communications.

