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Abstract—The min-sum algorithm is the most common method
to simplify the belief-propagation algorithm for decoding low-den-
sity parity-check (LDPC) codes. However, there exists a per-
formance gap between the min-sum and belief-propagation
algorithms due to nonlinear approximation. In this paper, a
self-compensation technique using dynamic normalization is thus
proposed to improve the approximation accuracy. The proposed
scheme scales the min-sum algorithm by a dynamic factor that can
be derived theoretically from order statistics. Moreover, applying
the proposed technique to several LDPC codes for DVB-S2 system,
the average signal-to-noise ratio degradation, which results from
approximation inaccuracy and quantization error, is reduced to
0.2 dB. Not only does it enhance the error-correcting capability
of the min-sum algorithm, but the proposed self-compensation
technique also preserves a modest hardware cost. After realized
with 0.13- m standard cell library, the dynamic normalization
requires about 100 additional gates for each check node unit in
the min-sum algorithm.

Index Terms—Belief-propagation, dynamic normalization, iter-
ative decoding, low-density parity-check (LDPC) codes, min-sum
algorithm, self compensation.

I. INTRODUCTION

LOW-DENSITY parity-check (LDPC) codes, first intro-
duced by Gallager [1] in 1963, had been almost forgotten

until the rediscovery [2], [3] of these capacity-approaching
codes [4]–[7] in the late 1990s. The simple arithmetic computa-
tions and implicit parallelism of the LDPC decoding algorithms
facilitate low-complexity and high-speed hardware implemen-
tations. Due to these superior properties, many applications,
such as DVB-S2 [8] and IEEE 802.16e [9], have adopted LDPC
codes as the forward error correction (FEC) technique for
high-speed and reliable data transmission.

An LDPC code, also a linear block code, can be characterized
by a sparse parity check matrix which has only a small frac-
tion of nonzero entries, and the sparseness of inherently re-
duces the computations in decoding. Moreover, has a graph-
ical representation [10], [11] where the rows and columns are as-
sociated to check nodes and bit nodes, respectively. The number
of nonzero entries of each row or column is related to the degree
of the corresponding check node or bit node. An LDPC code has
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the same check node degree and bit node degree is called a reg-
ular LDPC code. Otherwise, it will be referred to an irregular
LDPC code.

LDPC codes can be decoded by the message-passing algo-
rithm, or called the belief-propagation (BP) algorithm [1], [11],
that maximizes the a posteriori probability. The erroneous bits
in a codeword can be corrected iteratively by exchanging the
probabilistic messages among the check nodes and bit nodes.
The messages passed around are often represented by log-like-
lihood ratios (LLR) where the multiplications can be replaced
by additions. This approach leads to a much simpler LDPC de-
coder; however, some nonlinear operations are introduced.

In order to approximate the nonlinear operation and, hence,
to further reduce the decoding complexity, some fast algorithms
are proposed [11]–[22]. The min-sum algorithm [12], [11], one
of the simplified versions, suggests that all the nonlinear op-
erations in the BP algorithm can be averted. However, there
would be approximation inaccuracy between the BP algorithm
and the min-sum algorithm. To compensate this performance
loss, the designers often apply the min-sum algorithm with a
correction term which can be either an offset [14]–[16], [20],
[21] or a scaling normalization [17]–[22]. The latter, referred
to the normalized-BP algorithm, sometimes outperforms the
former since scaling by a constant is equivalent to providing an
offset adaptive to the results of the min-sum algorithm. Con-
stant normalization factors are applied to normalized-BP al-
gorithms in [17]–[21], which provide error performance close
to the BP algorithm for regular LDPC codes. As for irregular
LDPC codes, Zhang et al. [22] proposed the 2-D normaliza-
tion that further compensates the gap between BP and normal-
ized-BP algorithms. This 2-D scheme normalizes both check
node and bit node outputs. Furthermore, a node of different de-
gree will be applied with a different normalization factor.

However, it is still difficult to find an adequate constant factor
for all nodes when their degrees are given. Hence, we proposed
the dynamic normalization in [23]. From order statistics, we
provide a theoretical derivation for the dynamic normalization
factors in this paper. Additionally, considering the tradeoff be-
tween the approximation accuracy and the implementation cost,
some realization approaches are presented. The annealing ap-
proach, one of our proposed schemes, scales the min-sum algo-
rithm only at some specific decoding iterations to prevent over-
compensation as well as to achieve a more power-efficient de-
coder design. As compared to constant normalization approach,
the average degradation in SNR is reduced from 0.5 to 0.2 dB
according to our simulation results.

This paper is organized as follows. In Section II, the be-
lief-propagation (BP) algorithm for decoding LDPC codes
will be introduced, including several reduced-complexity BP

1053-587X/$25.00 © 2007 IEEE
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Fig. 1. Parity check matrix and the corresponding Tanner graph.

algorithms. In Section III, the proposed dynamic normalization
scheme will be addressed, and the derivation of the normaliza-
tion factors will be given by theoretical analysis. Accordingly,
the self-compensation technique using dynamic normalization
will be presented in Section IV. In Section V, the proposed
scheme is applied to several LDPC codes defined in DVB-S2
[8], [24] for performance comparisons, and a conclusion will
be given in Section VI.

II. DECODING LDPC CODES

An -bit LDPC code can be defined by an parity
check matrix , for ,
where denotes the entry on the th row and th column
of . For simplicity, only binary LDPC codes will be consid-
ered hereafter. The aim of decoding is to search for the most
likely codeword subject to .
An LDPC code can be represented by a Tanner graph [10].
Fig. 1 is an illustrative example of a 3 6 parity check matrix

and its corresponding graphical representation. There are six
bit nodes, , representing the 6-bit code-
word and three check nodes, ,
and , representing the three parity check equations of .
Moreover, is the set that check nodes
connected to , and denotes the
bit nodes connected to . The number of edges connected
to a node is referred to the degree of the node. By definition, a
regular LDPC code has equal check node degree and bit node
degree, whereas the ones with different check node and bit node
degrees are referred to irregular LDPC codes.

The belief-propagation (BP) algorithm [1], [11] provides an
efficient and powerful approach to decode LDPC codes. Let
be the event that the parity check equation for is satis-
fied. In each decoding iteration, the check node updates
its outgoing message by the probability , for
all and . After the bit node re-
ceives all the messages from the check nodes in , the bit
node updates its message according to the probability

, where and is the value received
from the channel. Each bit node can accumulate more reliable
information from the others by iteratively exchanging informa-
tion between bit nodes and check nodes. The iterative decoding
process proceeds until a valid codeword is found or the decoding
iteration exceeds a predefined number. If the probabilistic mes-

sages are represented by log-likelihood ratios (LLR), the be-
lief-propagation (BP) decoding can be described as follows.

1) Initialization: Under the assumption of equal priori,
, the decoder calculates

, the intrinsic information of , by

The message from to , denoted by , is ini-
tialized by , while the message from to

, denoted by , is set to zero.
2) Iterative Decoding:

a) Bit node updating: updates the message to
by

(1)

where the set contains all elements in
excluding . Meanwhile decodes the th

bit by

if

otherwise

The decoding process stops when a valid codeword
is found, i.e., ; other-

wise, the decoding moves toward the Check Node Up-
dating. If the iteration number exceeds a predefined
value, the decoder claims a decoding failure and ter-
minates the decoding procedure.

b) Check node updating: updates , the mes-
sage sent to , according to the messages received
from in which is excluded

(2)

where

(3)

As shown in (2), should be obtained from the nonlinear
function . Fig. 2 illustrates the magnitude part of (2), where

are the check node input magnitudes
for all . The nonlinear function not only has high
computation complexity, but also suffers from quantization loss
while implementing in finite-precision computation. Thus,
some approximation schemes had been proposed to facilitate
circuit implementation.

The min-sum algorithm [12], [13] discards the
smaller terms in the summation of (2) to approximate the check
node updating by

(4)
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Fig. 2. Architecture of the magnitude part of BP algorithm in (2).

However, there exists a performance gap between the min-sum
algorithm and the BP algorithm since the min-sum algorithm
always over-estimates the check node output magnitude. Sev-
eral low-complexity approximations using a correction factor
have then been introduced to compensate the performance loss
[14]–[23]. The compensation modifies the min-sum algorithm
into the forms

(5)

(6)

where and are correction factors with and ,
that can be determined either empirically or theoretically.

For LDPC codes of long block length, density evolution [4],
[5], [14], [19]–[22], [25] can be applied to determine the correc-
tion factor that is optimized for the channel parameter. However,
density evolution is a technique to trace the message distribution
in message-passing decoding, where the input messages of bit
nodes and check nodes are assumed independent. For relatively
shorter LDPC codes, there are usually more short cycles that re-
sult in correlated message distributions [21]. Other approaches,
averaging the difference between the min-sum approximation
and the BP decoding for example, were proposed to provide al-
ternatives in deriving the compensation amount. The normal-
ization factor in [17] is determined by averaging the ratio of
messages in min-sum and BP algorithms. In [18], the correction
factor is chosen such that the mean square error of approxima-
tion is minimized.

In either (5) or (6), the constant correction factors are not al-
ways sufficient to provide performance improvement. For irreg-
ular LDPC codes, [22] suggests the 2-D normalizaton to reduce
the performance gap between the constant normalized-BP and
BP algorithms. Both the bit node and check node output mes-
sages are normalized, and distinct factors will be applied for
nodes of different degrees. Besides, we have shown in [23] that
the correction factor for normalized-BP algorithm is a function
of the check node inputs; adapting the correction factor with the
inputs can improve the performance. Thus, a self-compensation
scheme is proposed to improve the approximation accuracy of
the min-sum algorithm.

III. DYNAMIC NORMALIZATION TECHNIQUE

The proposed technique performs normalization by a scaling
factor that can be determined as a function of the check node in-
puts. Since the check node updating in normalized-BP algorithm
comprises sorting all the check node inputs, order statistics can
be used to derive the distribution of these sorted input messages.
The derived factors can then be applied to a recursive procedure
to trace the message distribution at different decoding iteration.

A. Derivation of the Dynamic Normalization Factors

We suppose a check node of degree has independently
and identically distributed (i.i.d.) inputs that have probability
density function (pdf) and cumulative distribution func-
tion (cdf) . Let be the sorted
check node input magnitudes, then any of these ranked random
variables will have the pdf [26]

(7)

for all .
According to (6), the output magnitude of check node up-

dating in normalized-BP algorithm can be rewritten as

if
otherwise

(8)

The smallest two input magnitudes and will be scaled
by two distinct normalization factors and , respectively.
Comparing (2) and (8), we approximate the normalization fac-
tors by

(9)

(10)

We can perceive that and are functions of the check
node inputs. Notice that the function decays rapidly
as increases, and, therefore, smaller in the numera-
tors of (9) and (10) dominate the values of and . Thus,
parts of the summations in (9) and (10) can be further ap-
proximated by their expected values. Consequently, we can
define the -dimensional approximation for and by
(11) and (12), shown at the bottom of the next page, such that

and are -dimensional functions when the
smallest are given and have the values .
The conditional means and

can be calculated by the
distributions derived in (7). That is

(13)
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(14)

Note that the integral in the above equations start from and
, and (13) and (14) become functions of and .

As the check node inputs are sorted in ascending order, only the
values greater than or need to be considered when
the smallest values are given. The parameter only affects
the complexity in determining and dynamically. However,
the check node updating is still based on (6) to avoid nonlinear
computation.

B. Message Distribution Under Iterative Decoding

In Section III-A, the normalization factors for a check node
can be derived when the degree and the input distributions are
known. However, the check node inputdistributions vary with the
decoding iterationundermessage-passingalgorithm.Arecursive
procedure to calculate the message distributions during iterative
decoding will be presented subsequently. Because the sign and
themagnitudeofachecknodecanbeupdatedseparately, it ismore
convenient to represent the pdfs of the messages and
in (1) and (2) by the sign-magnitude representation. That is, the
message pdfs and corresponding to a bit node and
a check node will be represented by 2-D quantities
and , where the notation and stand for all
and . The terms and represent the probability of and

having positive signs, which are calculated by

and

Thesecond term and are thepdfsof themagnitude
of and , which can be derived by

and

for and .
Furthermore, it has been proved that the performance of an

LDPC decoder is independent of the codeword as long as the
symmetry conditions are satisfied [4]. Hence, we assume an

all-zero codeword is transmitted to reduce the compu-
tation complexity in tracking the message distributions during
iterative decoding. In the following analysis, the zero vector is
assumed to be transmitted through an additive white Gaussian
noise (AWGN) channel and corrupted by a noise vector ,
a sequence of independent Gaussian random variables with
variance and zero mean. In binary phase-shift keying (BPSK)
signaling which maps the all-zero codeword to an all-one se-
quence, the received signal is also a sequence of
independent Gaussian random variables with unity-mean and
variance . Thus, the initial message of bit node becomes

,
a Gaussian random variable with mean and variance equal to

and . With these assumptions, the distribution
of messages and the normalization factors of the th decoding
iteration can be acquired recursively through the following
procedure.

• Step 1 [Output distribution of a bit node]: For a bit node of
degree that updates the message, denoted as , according
to (1), the output distribution can be calculated by its input
distribution , which is also the overall output
distributionof thechecknodesat the th iteration.Con-
sequently, thepdf and its sign-magnituderepresentation

that correspond to the bit node’s output message
can be derived according to Appendix A.

• Step 2 [Input distribution of the check nodes]: The pdf of the
check node’s input, denoted by , is a mixture of the pdfs

derived from Step 1, and where
denotes the probability that the check node’s inputs are sent
from a bit node of degree , and . According to
Appendix B, the sign-magnitude representation of will

be .
• Step 3 [Output distribution of a check node]: The output

distribution of a check node will be calculated after its input
distribution is derived at Step 2. For a check node
of degree , the sign of the check node’s output is determined
according to the sign operation in (2), and all the inputs are
assumed to be i.i.d. random variables, the probability
that the output sign is positive will be

(11)

(12)
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According to (8), the check node has only two output
magnitudes and

. Then the pdfs of
and , denoted by and , will be

expressed by the pdfs ; and the cdfs

for . That is

(15)

for all such that
and

(16)

for all such that
. A detail deriva-

tion of and is presented in Appendix C.
Furthermore, we can see from (8) that only one of the
output messages will have magnitude , and the
others will have magnitude . The check node output
magnitude will have the distribution

(17)

• Step 4 [Input distribution of the bit nodes]: The input dis-
tribution of a bit node can be calculated by a mixture of the
pdfs for check nodes of different degrees. That is

where is the output distribution of a check
node of degree , denotes the probability of the messages
comingfromachecknodeofdegree ,and .Based
onAppendixB, the inputdistributionofabitnodecanbecal-
culated by , and can
be used for the analysis of the th iteration.

Hereafter, repeat from Steps 1 to 4 and the distribution of the mes-
sagesand thenormalizationfactorsofeachdecoding iterationcan
be derived.

As the channel condition is given, the normalization factors
of a specific LDPC code can be analyzed by (11)–(14) and the

Fig. 3. Normalization factors � (m ) and � (m ) of the rate (3=5),
64 800-bit LDPC code specified in DVB-S2. The value of K is 1. The normal-
ization factor increases with the SNR and the decoding iteration. (a) � (m );
(b) � (m ).

four-step procedure as mentioned above. Figs. 3 and 4 illustrate
the normalization factors of the 64 800-bit, LDPC
code specified in DVB-S2 [8] BPSK signaling under AWGN
channel. Fig. 3 illustrates for at different decoding
iteration and SNR while Fig. 4 plots for at the first
iteration and dB. Note that large or will
require larger normalization factors. Furthermore, it can also be
observed in Fig. 3 that increases with the iteration number and
the channel SNR.

IV. PROPOSED SELF-COMPENSATION SCHEME FOR MIN-SUM

ALGORITHM USING DYNAMIC NORMALIZATION

Section III presents a means to estimate the normalization
factors for each decoding iteration by a recursive analysis.
However, applying different normalization factors at different
decoding iteration will be costly in hardware implementation.
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Fig. 4. Normalization factors � (m ;m ) and � (m ;m ) at the first de-
coding iteration for the rate (3=5), 64 800-bit LDPC code specified in DVB-S2.
K = 2 and the SNR = 2:2 dB. (a) � (m ;m ); (b) � (m ;m ).

Therefore, the derived normalization factors for different iter-
ation will be averaged to provide the compensation amounts
for the proposed low-complexity self-compensation scheme.
Moreover, the approximation accuracy at the first few decoding
iterations dominates the overall decoder error performance.
Thus, the normalization factors can be chosen by averaging
the factors at the first few iterations. That is, when given the
channel SNR, the normalization factors become functions of the

smallest check input magnitudes
[see (18) and (19), shown at the bottom of the page], where

and are

Fig. 5. Average of the normalization factors that are illustrated in
Fig. 3. (a) Average of � (m ). (b) Average of � (m ).

the normalization factors for the th decoding iteration;
and are the

probabilities of the check node having its smallest
input magnitudes equaling to at the th
decoding iteration. Fig. 5 illustrates the averages of (18) and
(19) corresponding to Fig. 3. As shown in Fig. 6 which exhibits
(8), the proposed self-compensation scheme will compensate
min-sum algorithm by the dynamic normalization factors based
on (18) and (19). Additionally, three proposed normalization
approaches with different complexities will be presented.

(18)

(19)
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Fig. 6. Magnitude of the check node updating by normalized-BP algorithm.

Fig. 7. Architectures of different realization of dynamic normalization. (a) Di-
rect-mapping approach. (b) Adaptive-� approach. (c) Annealing approach for
K = 1.

1) Direct mapping approach: As shown in Fig. 7(a), the nor-
malization is implemented by two look-up tables (LUTs)
where are directly mapped onto

and . This approach provides a simple and
highly precise approximation of the nonlinear function.
However, there exists overhead of storage requirement for
the LUTs.

2) Adaptive- approach: This scheme confines the choice
of and to candidates, which are de-
noted as and for .
Moreover, let and denote the range of the
check node input magnitudes, which are also par-
titioned into parts where and

. For all , and
, the corresponding and

will be assigned as and that minimize the
average scaling error

(20)

where denotes the average of . By simulation,
can provide a good approximation of (2). Thereafter,

single- approach and double- approach will represent
the approaches corresponding to and

, respectively. For double- approach,
the normalization factors and can be determined
by

if
otherwise

(21)

if
otherwise

(22)

where and can be derived by uniformly partitioning
the input range and adjusting empirically after the normal-
ization factors are determined.

3) Annealing approach: Sometimes the min-sum algorithm
could be compensated incorrectly due to the finite preci-
sion and limited candidates of normalization factors. On
one hand, the normalization factors in (18) and (19) are
averaged to the iteration number. However, the normal-
ization factors tend to increase with iteration, the check
node outputs may be over-normalized and the messages are
equivalently scaled by a smaller factor. On the other hand,
min-sum algorithm always over-estimates the check node
updating; the check node output is equivalent to scaling by
a factor that is greater than 1. To prevent error accumulating
with decoding iteration, normalization may not be neces-
sarily required every iteration. That is, normalization can
be applied intermittently. For example, given an integer
and the iteration number , normalization is applied only
when . It is equivalent to scaling the cor-
rect check node outputs by another factor , when

. For a check node of degree can
be estimated to be

(23)

where is the number of available s. Besides, this an-
nealing approach equivalently provides more choices of
in finite precision representation; we can derive other nor-
malization factors by properly defining and when
and are given. That is, the effect of scaling by should
be balanced by the following iterations. Therefore,
the normalization factors at the iterations are equiv-
alent to and , where

(24)

and

(25)

for all . When , then and
. Accordingly, more choices of are avail-

able by varying when is restricted to finite number
of candidates. Thus, a finer resolution of can be real-
ized without increasing the message bit-widths. Moreover,
the annealing normalization reduces computation and fa-
cilitates a more power-efficient implementation. Fig. 7(c)
illustrates this annealing approach where the controller de-
cides if the dynamic normalization should be applied ac-
cording to the current iteration number .
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Except for the direct-mapping approach, the values and
are restricted to such that the normalization circuit

can be implemented by few shifters and adders. The following
example will demonstrate and derivation for different
realization approaches.

Example: The - , 64 800-bit LDPC code in DVB-S2
[8].

1) Parameters for analyzing the normalization factors: There
are 64 800 25 920 check nodes. Only one of
the check node has degree 10 and the rest 25 919 check
nodes have degree 11. Let denote the probability that
a messages coming from a check node of degree . Then

and . Moreover, the probability of a bit
node connecting to check nodes is represented by

, where is the number of bit node of de-
gree , is the total number of bit nodes, and .
Hence, the probability defined in Section III can be cal-
culated by .
In this example, 64 800 and . There-
fore, , and ,
leading to the following results:

, and .
Therefore, the normalization factors can be derived for dif-
ferent iterations based on the analysis in Section III, and
averaged to the decoding iteration according to (18) and
(19). Moreover, we only consider the case in this
example.

2) Determine the normalization factors: The nor-
malization factors will be restricted in the set

for simple implementation.
Besides, we only consider finite precision message
representation that represents the maximum magnitude
by 4.0.

a) Single- approach: and .
b) Double- approach: The input is uniformly divided

into two regions. Thus, the threshold and
. Then the normalization factors that mini-

mize (20) will be
.

c) Annealing, single- approach: for .
By (24) and (25), and can then be deter-
mined to be and

, which will be mod-
ified into 0.5 and 0.75.

d) Annealing, double- approach: for .
Similarly, , and will be 0.375, 0.625,
0.625, and 0.75, respectively.

For the Annealing approach with single- and is
1.558 according to (23) where
and . With (24) and (25), and can then
be determined to be and

and modified into 0.5 and
0.75, the closest candidates in . Furthermore, the of the
Annealing double- approach is 1.621 according to (23),
and the normalization factors, , and will
be 0.375, 0.625, 0.625, and 0.75, respectively.

Fig. 8 illustrates two implementation approach for this example,
the direct-mapping approach and the double- normalization.

Fig. 8. Architectures of the direct-mapping and the double-� approach for rate
(3=5), 64 800-bit LDPC code in DVB-S2. (a) 2-D LUT direct-mapping ap-
proach for K = 2. (b) Adaptive-� approach for K = 1; N = 2.

Fig. 9. Implementation results of the 2-D LUT, double-� approach, and
min-sum algorithm for rate (3=5), 64 800-bit LDPC code. The gray portion
is the overhead introduced by the normalization circuit. (a) Gate count.
(b) Timing.

The normalization scheme in Fig. 8(a) is realized by a 2-D LUT,
whereas the constant multiplications in Fig. 8(b), and

, are performed by shifters.
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TABLE I
MINIMUM WORKING SNR OF BP-FP AND MIN-SUM ALGORITHM

TABLE II
PARAMETERS OF FIXED-� AND ADAPTIVE-� APPROACHES

In terms of area and timing, Fig. 9 compares the circuit over-
heads in Fig. 8(a) and (b) to that of the min-sum algorithm.
The check node unit that has degree 11 and 5-bit messages is
synthesized with the 0.13- m cell library in either area crit-
ical or timing critical conditions. The gray portions in Fig. 9
also present the additional gate count and timing contributed by
the normalization circuit. Both figures show that the 2-D LUT
direct-mapping normalization occupies about 50% of the gate
count and 30% of the critical path delay due to the large LUT
growing in quadratic with the bit-width of the messages. How-
ever, the double- approach requires only additional shifters and
adders, leading to 5% area (with 68 and 107 additional gates for
each constraint) and 17% delay increases. It will be shown in
next section that similar error performance can be achieved by
these two schemes, however.

V. SIMULATION RESULTS

The 64 800-bit LDPC codes defined in DVB-S2[8] are sim-
ulated. For each coding rate, Rate, more than 3000 frames of
LDPC codes, which equals to 3000 64 800 Rate = 19.44

Rate 10 bits, are simulated for each point, where Rate
refers to the coding rate. The belief-propagation algorithm with
floating-point messages, abbreviated to BP-FP, is simulated
as the baseline performance. Besides, several normalization
approaches presented in Section IV are compared. In the fol-
lowing, the adaptive- approach with will be
referred to single- approach; the adaptive- approach with

will be referred as double- approach; normal-
ization by a constant will be referred to fixed- approach. The
simulation channel is modeled as AWGN, and the randomly
generated binary data is modulated by QPSK signaling before
transmission, where the LDPC decoder can be initialized by
the same method of BPSK. The maximum decoding iteration
number is limited to 50. Note that the SNR in the simulation
is defined as the logarithm of the ratio of the modulated signal
power and the noise power. In addition to BP-FP, all the mes-
sages for different normalization approaches are represented by
finite-precision; the bit-width of all messages are quantized to 6

bits. Considering low-complexity implementation, the normal-
ization factors are restricted in the set
such that only few shifters and adders will be required.

A. Comparison of BP-FP and Min-Sum Algorithm

Table I compares the minimum working SNRs of BP-FP
and min-sum algorithms, defined by the minimum SNR for
bit error rate (BER) below . The finite precision formate

means that bits represent one message;
where bits correspond to the integer part, bits correspond
to the fractional part and one extra bit is for the sign of the
message. Different combinations for for
has been simulated and the format will contribute to
the lowest error rate for min-sum algorithm for all rates. The
term is the SNR difference between the min-sum
and BP-FP algorithms. According to Table I, is
kept within 0.3 dB for since the codes work in
better channel conditions such that min-sum algorithm yields
a good approximation. However, more accurate approximation
is necessary to improve the performance when .
The proposed dynamic normalization will effectively reduce
the performance loss caused by min-sum algorithm for those
codes working at low SNR environments.

B. Comparison of Dynamic Normalization Approaches

As shown in Table I, and corre-
spond to the largest SNR loss. Therefore, a discussion focused
on the LDPC code will be presented for there is
larger room of improvement. The results of BER versus SNR for
different normalization approaches are compared in Fig. 10. All
the corresponding parameters resulting in the best working SNR
for different approaches are listed in Tables II and III. Note that
the 2-D LUT direct-mapping approach outperforms all the other
normalization schemes, but has a great storage overhead. The
double- approach in Fig. 10 has a comparable performance
while requiring few additional logics for normalization.

In Fig. 11, the limited maximum decoding iteration for dif-
ferent normalization approaches are compared. When the itera-
tion number exceeds this maximum value, the iterative decoding
terminates whether the codeword is decoded correctly or not.
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TABLE III
PARAMETERS OF THE ANNEALING ADAPTIVE-� APPROACHES

Fig. 10. Comparison of error performance of the rate (3=5), 64 800-bit LDPC
code applied with different normalizing techniques. The simulation parameters
and finite-precision message formats are referred to in Tables II and III.

The proposed double- normalization outperforms the fixed-
approach while the former requires maximum 20 decoding iter-
ations and the latter requires maximum 50 decoding iterations to
achieve BER at similar SNR. Moreover, comparing the
double- normalization with the min-sum algorithm, the former
requires maximum 12 iterations and the later requires maximum
50 iterations to achieve BER under the same SNR con-
dition. Fig. 11 shows that when the decoding complexity and
speed are both critical, the proposed dynamic normalization im-
proves the decoding speed of fixed- and min-sum algorithm by
about 60% and 76%, respectively.

In Table IV, the performance of several normalization
schemes are compared for all codes with . The
measurement of improvement is defined as

%

where is the difference of the minimum working
SNR between these normalized-BP algorithms and
BP-FP, which results from the approximation inaccuracy and
the quantization noise. Similarly, is that between
min-sum algorithm and BP-FP. For code that
should work in low SNR condition, there is no suitable in
the set for the fixed- approach,
leading to . On the contrary, all the other dynamic
normalizations in this case can still compensate about 40%

Fig. 11. Comparisons of maximum decoding iterations for the rate (3)=(5),
64 800-bit LDPC code applied with different normalizing techniques. The sim-
ulation parameters and finite-precision message formats is referred to in Table II.

SNR loss. The average degradation and the average
improvement are also given in Table IV. It shows that
the double- approach outperforms the others on average.
The average SNR loss, , is reduced to 0.2 dB while

of the fixed- approach is 0.5 dB. The average
improvement of double- approach is 72.9%, which is more
than twice averaged IPR of the fixed- approach.

VI. CONCLUSION

A self-compensation technique by dynamic normalization
has been presented from the theoretical analysis to the im-
plementation. With order statistics, the normalization factors
can be obtained as a function of LDPC decoder inputs. The
realization of dynamic normalization, which can be either
single or multiple factors, is considered as a tradeoff between
complexity and error performance. The simulation results
based on the 64 800-bit LDPC codes in DVB-S2 indicate that
at most two normalization factors can provide sufficient perfor-
mance improvement. Furthermore, as compared to the constant
normalization scheme, more than twice SNR improvement can
be achieved. For a check node unit, about 100 additional gates
are needed for the dynamic compensation circuit, which is
about 5% overhead for a check node unit applied with min-sum
algorithm. In conclusion, dynamic normalization precisely
compensates the performance loss of min-sum algorithm and
preserves simple hardware implementation.
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TABLE IV
COMPARISONS OF DIFFERENT NORMALIZATION APPROACHES

APPENDIX A

For independent random variables
with pdfs , the function

can be derived recursively by the cor-
responding sign-magnitude representation of each ,
i.e., , where

, and
for .

1) Let the function denote the process of de-
riving the sign-magnitude representation of the pdf of

, where and
. Besides, let denote the vector

. The pdf of , i.e., , for is

and for

Then, the corresponding sign-magnitude representation
of can be derived by and

for .
2) For , the sign-magnitude representation for

the pdf of can be derived recursively by

where .

APPENDIX B

Let denote the sign-magnitude
representation of the pdf of a random variable , i.e.,

. Then, the corresponding sign-magnitude represen-
tation for the mixture of the pdfs will be

, which can
be verified by definition.

APPENDIX C

are independent random variables and
is a -dimensional function of . Let

the pdfs and cdfs of , be denoted
as and . The pdf of the random variable

will be derived in the following.
Let be one set
of the solutions to . Thus, for

are fixed, is a function of only. Then,
for all and the given , the pdf of can be
expressed by the pdf of as

Therefore, for all solutions to ,
the pdf will be
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