
Journal of VLSI Signal Processing 47, 281–296, 2007
2007 Springer Science + Business Media, LLC. Manufactured in The United States.

DOI: 10.1007/s11265-007-0053-x

An Efficient Code Generation Algorithm for Non-orthogonal
DSP Architecture

YI-HSUAN LEE AND CHENG CHEN

Department of Computer Science and Information Engineering, National Chiao-Tung University,
1001 Ta Hsueh Road, Hsinchu, Taiwan 300, People_s Republic of China

Received: 19 September 2006; Accepted: 29 January 2007

Abstract. To meet strict speed and power requirements for embedded applications, many high-end digital

Signal Processors (DSPs) commonly employ non-orthogonal architectures that are typically characterized by

irregular data paths, heterogeneous registers, and multiple memory banks. Obviously to harvest the benefits

provided by this non-orthogonal architecture sufficient compiler support is necessary and important. However,

the complexity of such architectures presents a great challenge to compiler design and the usual compilation

techniques for general-purpose CPUs do not adapt well to the irregularity of DSP. The entire code generation

process must include the following phases: intermediate representation, code compaction, instruction

scheduling, memory bank assignment (or variable partition), and register/accumulator assignment. Much

related research only considers some phases, which is inadequate. In this paper, we present an effective code

generation algorithm named Rotation Scheduling with Spill Codes Predicting (RSSP) to maximally exploit the

benefits of non-orthogonal architectures. It contains six parts that cover almost the entire phases of the code

generation process. As well as introducing the detailed principles and algorithms of the proposed RSSP, we use

an analytic model to evaluate its preliminary performance. Evaluation results clearly demonstrate the

effectiveness of the proposed method. Furthermore, we also present some preliminary ideas to generalize

RSSP, which can make it more practicable and suit various DSPs with similar architectural features.

Keywords: DSP, non-orthogonal architecture, code generation

1. Introduction

To meet ever-increasing demands for higher perfor-

mance a Digital Signal Processors (DSPs) with

sophisticated architecture are being designed and

produced to better match the target applications [1–5].

Such architecture typically has a non-orthogonal
architecture, which can be characterized by irregular

data paths containing heterogeneous register sets and

multiple memory banks [6]. In the data path, this

architecture lacks a large number of centralized

general-purpose homogeneous registers. Instead, it has

multiple small register sets where different sets are

dedicated to different functional units. In addition, this

architecture employs multiple memory banks con-

nected through independent data buses. Therefore,

variables in programs can be partitioned into separate

banks and accessed simultaneously. A number of

embedded DSPs, such as Analog Device ADSP2100,

Motorola DSP56000, and NEC uPD77016, are based

on this architecture.

Although parallel access, which is enabled by

multi-bank memory, is useful to explore the potential

of higher memory bandwidth, it gives rise to the

problem of how to partition the variables into the

multiple memory banks [1, 5–16]. Similarly, using

heterogeneous register sets can decrease the archi-

tectural complexity but increases the difficulty of

deciding which register set to use for a certain

instruction [6, 7]. Obviously, to harvest the benefits

provided by this non-orthogonal architecture ade-

quate compiler support is necessary and important [3,

4]. However, it is well known that compilation

techniques for general-purpose CPU do not adapt

well to the irregularities of DSP. Therefore, many

researches seek to design code generation methods

for specific DSP architectures to fully use their

features.

The complete code generation process must

include many phases, such as intermediate represen-

tation, code compaction, instruction scheduling,

memory bank assignment (or variable partition),

and register/accumulator assignment [7]. We previ-

ously proposed two scheduling methods for multi-

bank memory architecture that cover all phases

except register/accumulator assignment [11]. There-

fore, in this paper, we present a new method named

Rotation Scheduling with Spill Codes Predicting
(RSSP) to consider this phase and further improve

overall execution performance. Unlike previous

similar work, we predict the occurrence of register

and accumulator spills and generate corresponding

spill codes before code compaction. This enables

these spill codes to be scheduled in parallel with the

other operations, which can prevent extension of the

schedule length. As well as introducing detailed

algorithms for RSSP, we use an analytic model and

some DSP applications to evaluate its preliminary

computational performance. According to these

evaluation results RSSP clearly outperforms other

related methods, including our previous studies.

Furthermore, because RSSP is designed only for

specific target architecture, its practicability is really

limited. Hence, we also present some preliminary

ideas to generalize RSSP, which suits for various

DSPs with similar architectural features.

The remainder of this paper is organized as

follows. Section 2 surveys the fundamental back-

ground and related work. An overview of the

Motorola DSP56000 architecture and our motiva-

tions are also presented in this section. Design

principles, detailed algorithms, and preliminary gener-

ations of proposed RSSP are introduced in Section 3.

Section 4 contains evaluation results from experi-

ments with an analytic model. Finally, our conclu-

sions and plans for future work are presented in

Section 5.

2. Fundamental Background

In this section, we first model the given program and

briefly survey some fundamentals. Then, an over-

view of the Motorola DSP56000 architecture and

related work are presented. Finally, we briefly

summarize previous studies and describe the moti-

vation for designing the new method.

2.1. Modeling the Given Program

Because multimedia and DSP applications usually

contain repetitive groups of operations, they can be

easily represented by uniform nested loops. A Multi-
dimensional Data Flow Graph (MDFG) is common-

ly used to model uniform nested loops. We define a

MDFG is slightly differently from previous studies

[5, 11] as follows.

Definition 2.1 A Multi-dimensional Data Flow

Graph (MDFG)G= (V, E, X, d, P) is a node-weighted
and edge-weighted direct graph, where V is the set of

computation nodes; E � V � V is the edge set that

defines the precedence relations over nodes in V; X(e)
represents the variable accessed by an edge e; d(e) is
a function from E to Zn representing the multi-

dimensional delays between two nodes, where n is

the number of dimensions; P(v) represents the type of
node v (see Fig. 1c).

Nodes in the data flow graph include both arith-

metic logic unit (ALU) operations (multiplications

and additions) and other operations (memory accesses

and register transfers). An edge label X(e) indicates a
variable that is accessed by a memory access through

edge e. Note that edges that do not involve a memory

access do not have a label. Figure 1 shows an example

of nested loop and its corresponding MDFG.

A MDFG is realizable if there exists a schedule
vector s such that sIdQ 0, where d are its loop-carried

dependencies [17]. An iteration is equivalent to the

execution of each node in V exactly once. The period

during which all nodes in an iteration are executed,

according to data dependencies and without resource

constraints, is called a cycle period. Clearly, the cycle

period will dominate the execution time of a nested

loop. Note that many MDFGs can represent a single

282 Lee and Chen

DSP application, depending on its representation by

nested loops.

2.2. Retiming

Retiming [18] is a popular technique used in loop

scheduling that redistributes nodes in consecutive

iterations to enhance the execution performance. A

multi-dimensional retiming vector r is a function

from V to Zn that redistributes nodes in consecutive

iterations, where n is the number of dimensions. The

retiming vector r(v) represents the offset between the

original iteration and that after retiming. A new

MDFG Gr = (V, E, X, dr, P) is created after applying

r such that each iteration still has one execution of

each node. The difference between G and Gr is only

the delay vectors, which change to preserve the

original dependencies.

A prologue is the set of instructions moved in each

dimension that must be executed to provide neces-

sary data for the iterative process. An epilogue is the
complementary instruction set that is executed to

complete the process. If the nested loop contains

sufficient iterations, the time required to run pro-

logue and epilogue are negligible.

2.3. Motorola DSP56000 Architecture

Our target architecture consists of multiple memory

banks and a heterogeneous register set. Associated

with each memory bank is an independent set of

address bus, data bus, and address generation unit

(AGU). The Motorola DSP56000 [19] is an exam-

ple of such an architecture with two memory banks,

therefore used it in our method design and experi-

ments.

As shown in Fig. 2, the DSP56000 architectural

units of interest are the Data ALU, Address General

Unit (AGU),and X/Y memory banks. The Data ALU

consists of four input registers called X0, X1, Y0, and
Y1, and two accumulators, A and B. The source op-

erands for all ALU operations, except multiplication,

must be input registers or accumulators and the des-

tination operand must always be an accumulator. For

multiplication, two source operands must always be

input registers. Two buses XDB and YDB permit two

input registers or accumulators to be read or written

in conjunction during execution of an ALU operation.

Therefore, up to two move operations (including mem-

ory access, register transfer, and immediate load) and

one Data ALU operation may be executed simulta-

neously in one cycle.

Two independent move operations executed in the

same cycle are called parallel moves. However, due
to the nature of the DSP56000 architecture, not all

pairs of move operations can be performed in

parallel. Detailed parallel move conditions can be

found in [6, 7, 19]. In this paper we especially

consider the following conditions: (1) the two move

operations reference data in different memory banks;

(2) the two destination registers are different; (3) the

X memory access loads into restricted locations X0,

X1, A, or B; and (4) the Y memory access loads into

restricted locations Y0, Y1, A, or B.

2.4. Related Work

In the architecture with multiple memory banks and

a heterogeneous register set, a complete code

generation algorithm must include five phases:

intermediate representation, code compaction, in-

struction scheduling, memory bank assignment (or

variable partition), and register/accumulator assign-

ment [7]. These five phases can be performed in

various sequences. Moreover, because these phases

are extremely dependent, some code generation

algorithms are designed by simultaneously perform-

ing more than one phase. However, these algorithms

with tightly coupled phases are very time consuming,

for i = 1 to m
for j = 1 to n

D[i, j] = B[i-1, j] C[i-1, j-2] ;
A[i, j] = D[i, j] 0.5 ;
B[i, j] = A[i, j] + 1 ;
C[i, j] = A[i, j-1] + 2 ;

 end
end

a

b

P(v) Meaning

M Multiplication

A Addition

L Load variable

S Store variable

T Register transfer

C Load constant

c

C

(1, 2)

11

0 1

2

B C

3

4

6

D

7

D

A

8 9

5

(0, 1)

12 13

A A

14 15
10

B

(1, 0)

Multiplication

Addition

Load constant

Load variable

Store variable

Figure 1. a Nested loop, b corresponding MDFG, c node types.

An Efficient Code Generation Algorithm 283

in this paper we do not design our method using this

mechanism.

A number of papers have investigated the use of

multi-bank memory to achieve maximum instruction

level parallelism [1, 5–16]. Among these previous

studies, only two methods in [6–9] contain all five

phases. Methods in [1, 5, 10, 11] contain all phases

except for register/accumulator assignment, and

others in [12, 13] are simply variable partitioning

mechanisms. For heterogeneous register sets, [14–16]

present specific register allocation algorithms to fit

their irregularity. In addition, because nested loops

are the time-critical sections in DSP applications,

their execution time will dominate the entire com-

putational performance. However, in most previous

works code is generated per basic block, which

cannot explore the embedded parallelism of between

different iterations [1, 6–10, 12, 13].

2.5. Motivations

After surveying previous methods, we briefly sum-

marize them and introduce our motivation for design-

ing the new method. First, memory bank assignment

can be performed before or after code compaction. In

the architecture with multiple memory banks, mem-

ory accesses involved in a parallel move must

reference variables in different banks [6, 7, 19]. If

variables are partitioned after code compaction, such

as the algorithms proposed in [6, 7], memory

accesses are scheduled without information of

memory bank assignment. Therefore, two memory

accesses may be assumed to be executed in parallel

but in fact, they cannot be. In this situation, an extra

cycle (spill code) would be required to access them.

If spill codes occur frequently, clearly the computa-

tional performance is degraded. On the other hand, if

variables are partitioned before code compaction,

spill codes will not occur. In our method, we use the

later method to avoid the occurrence of spill codes.

Apart from location conflict for parallel moves,

spill codes can possibly also occur in the register/

accumulator assignment phase. All previous code

generation algorithms that consider register/accumu-

lator assignment perform this phase last [6, 7]. That

is, during the code compaction phase, variables are

stored in unlimited symbolic registers/accumulators.

However, the capacities of the registers and accumu-

lators are strictly limited in DSP. Therefore, spill

codes are required when register and accumulator

spills occur, and their spill costs may be more than one

extra cycle. In our method, we propose mechanisms to

predict the occurrence of register and accumulator

spills and generate corresponding spill codes before

code compaction. Then, in the code compaction phase,

these spill codes can be scheduled in parallel with

other operations, this can decrease the spill costs.

3. Rotation Scheduling with Spill Codes
Predicting (RSSP)

In this section, we introduce our proposed method

named Rotation Scheduling with Spill Codes Pre-
dicting (RSSP). Section 3.1 contains some prelimi-

naries concerning our assumptions and scheduling

Figure 2. The datapath of Motorola DSP56000 architecture.

284 Lee and Chen

principles. Detailed scheduling steps of RSSP are

introduced in Section 3.2 and its subsections. Note

that although our RSSP is designed and experimen-

tally tested on the Motorola DSP56000 architecture

it can be extended to an architecture with a homo-

geneous register set or more memory banks. In

Section 3.3 we list preliminary ideas to generalize

RSSP, in order to deal with various DSPs with

similar architectural features.

3.1. Preliminaries

To correctly execute a MDFG, its data dependencies

cannot be violated. Under the restricted constraint of

a heterogeneous register set, registers and accumu-

lators should be used very carefully to preserve data

dependencies. Corresponding to the nature of

DSP56000 architecture, we list conditions for a

correct schedule as follows:

1. For an operand opi loaded from memory to regi,
regi cannot be loaded with another operand opj
before opi is read.

2. For an operand opi transferred from accumulator

acci to regi, regi cannot be loaded with another

operand opj before opi is read.
3. For an ALU result rti stored in accumulator acci,

acci cannot store another ALU result rtj before rti
is stored back in memory.

4. For an ALU result rti stored in accumulator acci,
acci cannot be stored with another ALU result rtj
before rti being transferred to register regi.

5. For an ALU result rti stored in accumulator acci,
acci cannot store another ALU result rtj before rti
is read as an operand.

From the above conditions and the limited quantity

of registers/accumulators, we conclude five schedul-

ing principles that a correct schedule must satisfy.

Assume that the DSP architecture consists of 2m input

registers and n accumulators. Furthermore, for

convenience, we only permit a variable loaded from

memory to be stored in an input register.

1. For an edge eij of a MDFG with zero delay, if

P(vi) =L/C and P(vj) =M/A, vj must be executed no

later than the next m node (in the same memory

bank as vi) with type L/C/T.
2. For an edge eij of a MDFG with zero delay, if

P(vi) = T and P(vj) =M/A, vj must be executed no

later than the next m node (in the same memory

bank as vi) with type L/C/T.
3. For an edge eij of a MDFG with zero delay, if

P(vi) =M/A and P(vj) = S, vj must be executed no

later than the next n ALU operations.

4. For an edge eij of a MDFG with zero delay, if

P(vi) =M/A and P(vj) = T, vj must be executed no

later than the next n ALU operations.

5. For an edge eij of a MDFG with zero delay, if

P(vi) =M/A and P(vj) =M/A, at most nj1 ALU

operations can be executed between vi and vj.

These five scheduling principles and the above five

conditions are one-to-one. That is, the scheduling

principles are designed to satisfy the conditions and

generate a correct schedule. In the next section, we

propose a new scheduling method based on these

principles.

In DSP applications, operands of ALU operations

may be constants. Intuitively these constants can be

loaded using immediate load operations but, because

of the parallel move conditions, the immediate load

is rarely executed in parallel with other independent

move operations. Therefore, in our method we use

load constant instead of immediate load. Assuming

the constants are stored in memory at specific

locations in advance, the load constant is essentially

equivalent to the original load variable operation,

which will load constants directly from specific

address. We also assume that all constants are stored

in both memory banks. Therefore, the load constant

operations can be scheduled for any memory bank to

increase performance.

3.2. Detailed Algorithms of RSSP

From the above related fundamentals and prelimi-

naries, we introduce our proposed method as shown

in Fig. 3. We divide the overall algorithm into six

main parts: MDFG construction, TDAG construc-

tion, TDAG modification, ALU operation schedul-

ing, other operation scheduling, and initial schedule

retiming. Detailed description of each part is in the

following subsections.

3.2.1. MDFG Construction. In previous research

[1, 6–8], the intermediate representation phase is not

included. That is, these methods need another tool to

generate uncompacted symbolic intermediate code

An Efficient Code Generation Algorithm 285

from the high-level language. On the other hand, the

methods in [5, 11] use the MDFG directly generated

from high-level language. In this paper, we use the

same mechanism to construct the MDFG as in our

previous study [11]. This mechanism directly uses

memory to store temporarily variables. That is, an

ALU instruction in high-level language corresponds

to four nodes in the MDFG, and three of these are

move operations. This mechanism appears burden-

some but is really used in some DSP compilers, be-

cause the number of registers is limited in DSP and

memory is the only safe repository. For example,

Fig. 1b shows the MDFG of the nested loop in Fig. 1a.

Except for constructing the MDFG, in the first part

we also assign variables to the X and Y memory

banks. Three variable partitioning mechanisms,

proposed in [5, 11], can be chosen. Note that if we

choose the mechanisms proposed in [11], the MDFG

must be unfolded or tiled according to the number of

memory banks.

3.2.2. TDAG Construction. Many operations with

type L and S are contained in the MDFG, because it

stores the ALU result to memory and reloads it into

the register only when required for use. If we

schedule operations according to this MDFG, obvi-

ously register and accumulator spills will not occur.

However, this MDFG seems too complete to degrade

the computational performance, because ALU results

can be temporarily stored in registers or accumu-

lators instead of directly written back to memory.

Therefore, in the second part of proposed method,

we construct a Translated Data Acyclic Graph
(TDAG) defined as follows from the original MDFG;

this is proposed to remove possible unnecessary

memory accesses.

Definition 3.1 A Translated Data Acyclic Graph

(TDAG) G= (V, E, X, P) is a node-weighted and

edge-weighted direct graph, where V is the set of

computation nodes; E � V � V is the edge set that

defines the precedence relations over nodes in V; X(e)
represents the variable accessed by an edge e; P(v)
represents the type of node v (see Fig. 1c).

The algorithm for constructing the TDAG is shown

in Fig. 4. For a given MDFG, the first step of the

TDAG construction is removing edges with non-zero

delays. Then, for an ALU result written back and

reloaded in the same iteration, it can be temporarily

stored in an accumulator to remove the corresponding

operations of type L and S. However, if an ALU

results will be used in latter iteration, its corre-

sponding store variable operation must be retained.

In addition, because both source operands of a multi-

plication must always be registers, a register transfer

is added between two ALU operations. Figure 5a

shows two cases of removing memory accesses, and

Fig. 5b is the corresponding TDAG of the MDFG in

Fig. 1b. Note that in this TDAG construction

algorithm we simply assume that numbers of registers

and accumulators are unlimited.

3.2.3. TDAG Modification. As described above,

we wish to avoid register and accumulator spills by

predicting their occurrence in advance. In the third

part of RSSP description, we analyze and modify the

TDAG to predict accumulator spill, and register spill

will be dealt with in the fifth part.

Three main steps are required for this TDAG

modification: insertion of register transfers, analysis

of TDAG, and insertion of memory accesses.

Because we do not consider the limited number of

accumulators when constructing the TDAG an ALU

operation with type M or A may have many

immediate successors with type A in the TDAG. As

shown in Fig. 6a, the ALU result rti of vi stored in

accumulator acci is an operand of all additions vj1 to
vjm. However, if the architecture only consists of one

ALU and n accumulators, rti may be recovered

1. Gc = Construct MDFG;

2. Partition variables to X and Y memory banks;

3. Unfold or tile Gc if necessary;

4. Gt = Construct TDAG;

5. Modify TDAG Gt;

5.1. Gt = Insert register transfer nodes (Gt);

5.2. (Gop, Gpr) = Construct DAG Gop and Gpr (Gt);

5.3. Gop = Mark_edge (Gop, Eop);

5.4. Gop = Mark_edge (Gop, Epr);

5.5. Gop = Check_cycle (Gop, Gt);

5.6. Gt = Insert memory access nodes (Gop, Gt);

6. S = Schedule ALU operations (Gop);

7. S = Schedule other operations (S, Gt);

8. S = Retime the initial scheduling result (S);

Figure 3. The overall scheduling algorithm of RSSP.

286 Lee and Chen

before finishing execution of all additions vj1 to vjm if

m > n. To resolve this situation, rti must be trans-

ferred to an input register and reside in it until vj1 to
vjn have finished execution. Figure 6b contains the

TDAG after inserting vk with type T, and the

algorithm to insert register transfer operations is

listed in Fig. 7.

Then, in the analyzing TDAG step, we analyze

TDAG topologies to predict the occurrence of

accumulator spill. Two intermediate DAGs Gop and

Gpr defined as follows are constructed using algo-

rithm listed in Fig. 8. Initially we set S(e) =F for all

edges in Gop and Gpr, which means no accumulator

spill will occur. After applying algorithms listed in

Figs. 9 and 10, some edges in Gop will be set S(e) = T
to indicate the occurrence of accumulator spill.

Mark_Edge and Check_Cycle algorithms are pro-

posed based on our analyses of TDAG topologies.

That is, they are only designed for the architecture

consisting of one ALU and two accumulators, such

as the DSP56000. We leave for future research the

design of general algorithms for different numbers of

ALUs and accumulators. Figure 11 shows two Gop

fragments with accumulator spill that will be

checked by algorithms Mark_Edge and Check_Cycle,
respectively.

Definition 3.2 A DAG Gop= (V, E, S) is a direct

graph, where V is the node set representing ALU

operations; E � V � V is the edge set that defines the

precedence relations over the nodes in V; S(e) is an
edge mark that represents two nodes that must be

scheduled at separate control steps or not.

Figure 4. The TDAG constructing algorithm.

a b

C

0 1

2

B C

6

D

11 9

5

12

13

A

14

15

10

B

16

7

A

M/A

S

L

A

M/A

A

M/A

A S

M/A

S

L

M

M/A

M

T

M/A

M

T S

Figure 5. a Two cases of removing memory accesses, b TDAG

of Fig. 1b.

a

vj1

vi

vj2 vjm

P(vi) = M or A

P(vji) = A, for 1 ≤ i ≤ m

P(vk) = T

vj1

vi

vj2 vjm

vk

b

Figure 6. a A TDAG fragment, b after inserting the register

transfer vk.

1. Input: G = (V, E, X, P), n;

2. Output: Gt = (Vt, Et, Xt, Pt);

3. Gt = G;

4. Suppose that vi ∋ Vt and Pt(vi) = M or A;

5. If (vi has more than n immediate successors v1,…, vn with type A)

Delete edges ei1,…, ein from Et;

Insert nodes vx into Vt (set Pt(vx) = T);

Insert edges ex1,…, exn into Et;

6. Return Gt;

Figure 7. The register transfer inserting algorithm.

An Efficient Code Generation Algorithm 287

Definition 3.3 A DAG Gop, corresponds to an

undirected DAG Gpr = (V, E, S) with the same

topology and characteristics.

Finally, the third step of the TDAG modification

part is to insert memory accesses. For an edge in Gop

with S(e) = T, two operations of type S and L are

inserted into the TDAG at the corresponding loca-

tions. The algorithm for inserting memory accesses is

listed in Fig. 12.

After applying all of proposed algorithms for

TDAG modification we have introduced in this

subsection in the sequence shown in Fig. 3, the

modified TDAG can be scheduled without any

accumulator spill.

3.2.4. ALU Operation Scheduling. In this and next

parts of our proposed RSSP, all operations in the

modified TDAG are scheduled considering the

nature of DSP56000 architecture. In this part, we

first describe scheduling rules for ALU operation

scheduling.

List Scheduling is simply used to schedule ALU

operations based on Gop (V, E, S). For an edge

eijZE, its edge mark S(eij) may be F, T, or X, which
indicates different rules for scheduling vi and vj.
Assume that viZV is scheduled at control step i, and
the ALU result rti of vi is stored in accumulator acci.
If S(eij) =F and X, vj must be scheduled at control

step i+1 or i+2 to prevent rti being recovered before

being used. Conversely, if S(eij) =T, vj can be sched-

uled at control step later than i+2, because rti will be
transferred to register regi. In addition, if S(eij) =X and

vj is scheduled at control step i+1, an idle control step

is inserted between vi and vj for scheduling register

transfer operation further. Because we have already

considered the occurrence of accumulator spill, all

ALU operations can be scheduled exactly according

to the above three rules. Essentially, these rules are

equivalent to the fifth scheduling principle listed in

Section 3.1. Figure 13b shows the scheduling result

1. Input: G = (V, E, X, P);

2. Output: Gop = (Vop, Eop, S), Gpr = (Vop, Epr, S);

3. Vop = {v | v ∋
∋ ∋
∋
∋

 V, P(v) = M or A};

4. Eop = {eij | eij E, vi, vj Vop};

5. Epr = {eij | eji Eop};

6. S(e) = {F | e Eop and Epr};

7. Return (Gop, Gpr);
Figure 8. The Gop and Gpr constructing algorithm.

Figure 9. The Mark_Edge algorithm.

Figure 10. The Check_Cycle algorithm.

A

 i, P(vi) = M or A
v1 v2

v3

v4 v5

v6

v7 S(e) = T

v1

v2

v3

v4

S(e) = T

Figure 11. Two Gop fragments with accumulator spill.

288 Lee and Chen

of the ALU operations only for the TDAG shown in

Fig. 13a.

3.2.5. Other Operation Scheduling. After schedul-

ing ALU operations, other operations, including

memory accesses and register transfers, are scheduled

based on the modified TDAG Gt. Meanwhile, we

consider the limited number of registers during

scheduling, therefore no extra action is required to

check and deal with the occurrences of register spill.

Two variables, reg_x(t) and reg_y(t), are used to

record the number of registers used at control step t for
X and Y memory banks, respectively. These two

variables are dynamically maintained during this

scheduling. Obviously, if we can generate a schedule

where reg_x(t) and reg_y(t) do not exceed the quantity

of registers for all control steps register spill will not

occur. Therefore, in the fifth part of the proposed

method we design appropriate rules for other opera-

tions scheduling to satisfy the conditions above.

To determine the scheduling rules we analyze the

time interval that an operand must reside in a register

for a correct schedule. If a variable (or constant) is

loaded from memory at control step i and used at

control step j, it will occupy the register from control

step i to jj 1. Similarly, an ALU result must occupy

a register from control step i to jj 1 if it is

transferred from an accumulator at control step i
and used at control step j. For scheduling rules, we

conclude as follows:

1. According to the execution sequence of ALU

operations, schedule their predecessors as soon as

possible.

2. Scheduling principles 1õ4 listed in Section 3.1

must be satisfied, and reg_x(t) and reg_y(t)

cannot exceed the number of registers for any

control step.

3. If a variable is stored and loaded at consecutive

control steps, the two memory accesses can be

replaced by a single register transfer operation.

4. If a memory access or register transfer operation

cannot be scheduled successfully, due to insuffi-

cient registers, a variable currently residing in a

register should be overwritten and reloaded again

when required.

5. If an overwritten variable is not used after transfer-

ring from the accumulator, the corresponding regis-

ter transfer is replaced by a store variable operation.

From the scheduling rules above, all other oper-

ations can be successfully scheduled. Figure 13c

shows the scheduling result of the TDAG shown in

Fig. 13a. Finally, because we have alredy considered

accumulator and register spills, an appropriate

assignment of physical accumulators and registers

exists for scheduling.

3.2.6. Initial Schedule Retiming. After generating

the initial scheduling result, we use the retiming

technique to explore potential parallelism among the

1. Input: G = (V, E, S), G1 = (V1, E1, X1, P1);

2. Output: Gt = (Vt, Et, Xt, Pt);

3. Gt = G1;

4.

A

 eij ∋ E such that S(eij) = = T

Delete edge eij from Et;

Insert nodes vs, vl into Vt (set Pt(vs) = S, Pt(vl) = L);

Insert edges eis, esl, elj into Et (set Xt(eis) = t, Xt(elj) = t, where t is a

temporary variable);

5. Return Gt;

Figure 12. The memory access inserting algorithm.

Figure 13. Scheduling results, a TDAG, b ALU operations only,

c initial schedule, d after retiming.

An Efficient Code Generation Algorithm 289

iterations. Note that the retiming technique will

redistribute nodes in consecutive iterations. Hence,

in loop scheduling it can be used to explore the

instruction-level parallelism between different iter-

ations, which is beneficial to fully utilize system

resources and shorten the scheduling results. In our

previous studies, retimed operations are rescheduled

as soon as possible to reduce the schedule length.

However, this time we also consider the usage of the

accumulators and registers, the retimed scheduling

result cannot exceed their limited numbers. Assume

that the length of the initial schedule is l. In the

following we present conditions so that a retimed

operation can be rescheduled at control step i.

1. A retimed operation with type L or C must occupy

a register from control step i to l, because this value
of constant will be used for a later iteration.

2. A retimed operation with type T must occupy a

register from control step i to l, because this ALU
result will be used in a later iteration. In addition,

the fourth scheduling principle listed in Section 3.1

has to be satisfied.

3. Rescheduling a retimed operation with type S
must satisfy the third scheduling principle listed

in Section 3.1.

4. Rescheduling a retimed operation with type M or

A must satisfy scheduling principles 1, 2 or 5

listed in Section 3.1. In addition, reg_x(t) and

reg_y(t) are updated after rescheduling this ALU

operation.

In this scheduling part, we reschedule a retimed

operation at the earliest control step that satisfies

above conditions. Because we store constants in both

memory banks in advance, a load constant operation

can be rescheduled for any memory bank to achieve

higher performance. Besides, in order to guarantee

the assignment of physical accumulators and regis-

ters still exists for the retimed scheduling result, the

limited number of registers cannot be exceeded

during rescheduling. Figure 13d shows the retimed

scheduling result of Fig. 13c.

3.3. The Preliminary Generalization of RSSP

In above subsection we have introduced proposed

RSSP in some detail. We expect it is an effective

method, and also efficient enough. However, because

algorithms Mark_Edge and Check_Cycles used to

predict accumulator spills only designed for target

architecture with one Data ALU and two accumu-

lators, the practicability of RSSP becomes much

limited. Therefore, in this subsection, we discuss the

preliminary generalization of RSSP.

About the general version of RSSP, we hope it

can handle target architectures with various num-

bers of Data ALUs, accumulators, and registers.

The proposed mechanism for avoiding register spill

in RSSP can be readily extended to cover archi-

tectures with various numbers of registers. Hence,

we only have to design new algorithm to predict

accumulator spills. Figure 14 lists the pseudo code

used for architecture with one Data ALU and m
accumulators. For every node v of the input Gop, we

use a variable count(v) to record the required num-

ber of accumulators when v is executed. If there exists
any count(v) greater than m, corresponding spill codes

must be inserted. Detailed steps for inserting spill

1. Input: Gt = (Vt, Et, X, P), Gop = (Vop, Eop, S), m;

2. Output: Gt‘ = (Vt’, Et’, X’, P’), Gop’ = (Vop’, Eop’, S’);

3. Gt‘ = Gt; Gop‘ = Gop;

4.

A
A

 v

∋

∋

∋

∋ Vt’, count(v) = -1; // Initialize

5. count(v) = 1, v Vt’ and v doesn’t have any predecessor;

6. While (∃
∃

∃

 count(v) = = -1)

6.1. eij Et’, such that vi is the only predecessor of vj

6.1.1. If (vi has successors other than vj) count(vj) = count(vj)+1;

Else count(vj) = count(vi);

6.1.2. If (count(vj) > m) Insert corresponding spill codes;

6.2. eik, ejk Et’, such that vk has two predecessors of vi and vj

6.2.1. If (both vi and vj have successors other than vk)

If (count(vi) = = count(vj)) count(vk) = count(vi)+2;

Else count(vk) = Max(count(vi), count(vj))+1;

Else if (only vi has successors other than vk)

count(vk) = Max(count(vi)+1, count(vj));

Else if (only vj has successors other than vk)

count(vk) = Max(count(vi), count(vj)+1);

Else if (count(vi) = = count(vj)) count(vk) = count(vi)+1;

Else count(vk) = Max(count(vi), count(vj));

6.2.2. If (count(vk) > m)

If (both vi and vj have successors other than vk)

Insert corresponding spill codes;

Else if (both vi and vj have only one successor vk)

Insert corresponding spill codes;

Else Insert corresponding spill codes;

7. Return (Gt‘, Gop‘);

Figure 14. Pseudo code to predict accumulator spills for

architecture with one Data ALU and m accumulators.

290 Lee and Chen

0
2
4
6
8

10
12
14
16
18
20
22
24

10x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50
Number of iterations

E
xe

cu
tio

n
tim

e
(1

00
0

cy
cl

es
) Cho Malik & Shiue

RSSP RSF

0

4

8

12

16

20

24

28

32

10x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50
Number of iterations

E
xe

cu
ti

on
 ti

m
e

(1
00

0
cy

cl
es

) Cho Malik & Shiue
RSSP RST

0

10

20

30

40

50

60

70

80

10x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50
Number of iterations

E
xe

cu
ti

on
 ti

m
e

(1
00

0
cy

cl
es

) Cho Malik Shiue
RSSP RSVR

0

3

6

9

12

15

18

21

24

27

30

10x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50
Number of iterations

E
xe

cu
ti

on
 ti

m
e

(1
00

0
cy

cl
es

) Cho Malik & Shiue
RSVRRSSP

Figure 15. Experimental results.

An Efficient Code Generation Algorithm 291

0
2

4
6

8
10

12
14

16
18

20

10x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50
Number of iterations

E
xe

cu
tio

n
tim

e
(1

00
0

cy
cl

es
) Cho Malik & Shiue

RSSP RSVR

0
5

10
15
20
25
30
35
40
45
50
55

10x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50
Number of iterations

E
xe

cu
ti

on
 ti

m
e

(1
00

0
cy

cl
es

) Cho Malik & Shiue
RSSP RSVR

0

10

20

30

40

50

60

70

80

90

10x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50
Number of iterations

E
xe

cu
ti

on
 ti

m
e

(1
00

0
cy

cl
es

)

Cho Malik Shiue
RSSP RST

0
5

10
15
20
25
30
35
40
45
50
55

10x10 8x15 15x10 20x20 30x15 15x30 30x30 20x50 50x25 40x40 25x65 60x30 30x80 70x35 50x50
Number of iterations

E
xe

cu
ti

on
 ti

m
e

(1
00

0
cy

cl
es

) Cho Malik Shiue
RSSP RSVR

Figure 16. Experimental results.

292 Lee and Chen

codes we have not completed yet. From this pseudo

code, we can find it is much more complicated than

those algorithms introduced in Subsection 3.2.3.

Besides, predicting results obtained by this pseudo

code are not accurate enough, because count(v) is

usually greater than the actually required number of

accumulators when v is executed. In the future we

will continue to complete and improve this pseudo

code.

As for the target architecture contains k Data

ALU, we plan to partition the input Gop into k
subgraphs. Then, each subgraph is allocated to one

Data ALU, and pseudo code listed in Fig. 14 can be

used to schedule nodes of it. Detailed graph partition-

ing mechanism is still under our design. In addition,

we also want to propose a single algorithm to predict

accumulator spills for architecture with k Data ALU

and m accumulators. After replacing the new pre-

dicting algorithm into RSSP, we will have a general

code generation method which suits for various DSPs

with similar architectural features. In the future we

will continue to work on related research.

4. Performance Studies

Because nested loops used in DSP applications

usually have a depth of two, in this paper we only

experimented with our method on two-dimensional

MDFGs. Nevertheless, RSSP can be easily extended

to cover nested loops with depths greater than two.

The following methods are all evaluated: Cho [6],

Sudarsanam and Malik [7], Shiue [8], RSVR [5],

RSF [11], RST [11], RSSP (with RSVR mechanism),

RSSP (with RSF mechanism), and RSSP (RST

mechanism). Last three are derived from the pro-

posed RSSP, which apply different variable parti-

tioning mechanisms. The target architecture is the

same as Motorola DSP56000, which consists of one

ALU, two memory banks, two accumulators, and

four registers (two for each memory bank). All

operations can be completed in one control step.

For a retimed (nested) loop, its execution process

contains three parts prologue, repetitive pattern, and

epilogue. Prologue and epilogue are instruction sets

that must be executed before and after repetitive

pattern, respectively. The repetitive pattern will be

iterated many times, which will dominate the entire

computation performance of the given loop. There-

fore, we first focus on a single iteration in the

repetitive pattern to compare above methods. Table 1

lists scheduling results of all applications. From

these results it is clear that methods scheduled from

TDAG, including Cho [6] and RSSP, outperform

methods scheduled from MDFG. The intuitive

Table 1. Experimental results (for a single iteration in the repetitive pattern).

[1] [2] [3] [4] [5] [6] [7] [8] [9]

Wave digital filter 7 9 9 8 6 8.5 6 5 5.5

Filter 8 13 13 11 11 10 6 5.5 5

IIR2D 20 29 33 25 28.5 28 16 16 16

Forward-substitution 7 12 12 9 9.5 10.5 5 5.5 5

THCS 6 8 8 6 7 6 4 4 4

Discrete Fourier transform 14 21 21 18 20.5 18 13 12.5 13

Floyd–Steinberg 20 36 37 30 32 30 18 17.5 17

Transmission line 15 20 21 16 20 20 12 12 12

[1] Cho et al. [6]

[2] Sudarsanam and Malik [7]

[3] Shiue [8]

[4] RSVR [5]

[5] RSF [10]

[6] RST [10]

[7] RSSP (with RSVR mechanism)

[8] RSSP (with RSF mechanism)

[9] RSSP (with RST mechanism)

An Efficient Code Generation Algorithm 293

reason is that we remove additional memory ac-

cesses during construction of the TDAG in advance

of processing. Furthermore, schedule lengths ob-

tained by RSSP with various variable partitioning

mechanisms are all shorter than those reported by

Cho [6], Sudarsanam and Malik [7], and Shiue [8].

This is because the retiming technique is applied to

compact the initial schedule, which can explore the

potential instruction-level parallelism between succes-

sive iterations. The effectiveness among three cases of

RSSP for most applications is very similar. This

indicates that RSSP is sufficiently flexible and can

obtain reasonable execution results using various

mechanisms for memory bank assignment.

In the following, we evaluate above methods in

view of the entire nested loop. Many previous studies

introduce the time required to run prologue and

epilogue are negligible while the nested loop

contains sufficient iterations. However, if an unsuit-

able schedule vector is used, prologue and epilogue

may still occupy considerable part of the overall

execution time. In [11] we have already designed an

analytic model to calculate the overall execution

time of a two-dimensional MDFG scheduled using

methods RSVR, RSF, and RST. Their proposed

formulas are listed as follows, which can be directly

used in experiments on RSSP.

Assumption:

1. A nested loop with depth two, and its loop

bounds of outer and inner loops are m and n
2. The nested loop can be tiled directly

3. The target architecture contains Nmemory banks

4. Schedule vector (s1, s2)

Variables:

1. length, prologue, and epilogue to represent

corresponding schedule lengths

2. list is the schedule length of a single repetitive

iteration produced by the List Scheduling
3. d is the number of iterations must be moved

into the prologue and epilogue

4. half (k, N) is the schedule length of k original

iterations under N memory banks

Formula 1: (used for RSSP with RSVR mechanism)

overall execution time

¼ length� m� s2dð Þ n� s1dð Þ
þ prologueþ epilogueð Þ
� s1mþ s2n� s1s2 � 2ds1s2ð Þ
þ list� s1s2d d þ 1ð Þ

Formula 2: (used for RSSP with RSF mechanism)

overall execution time

¼ length� m� s2dð Þ n=Nb c � s1dð Þ
þ prologueþ epilogueð Þ
� s1mþ s2 n=Nb c � s1s2 � 2ds1s2ð Þ
þ list� s1s2d d þ 1ð Þ
þ half nmod N;Nð Þ � m

Formula 3: (used for RSSP with RST mechanism)

overall execution time

¼ length� m=Nb c � s2dð Þ n� s1dð Þ
þ prologueþ epilogueð Þ
� s1 m=Nb c þ s2n� s1s2 � 2ds1s2ð Þ
þ list� s1s2d d þ 1ð Þ
þ half mmodN;Nð Þ � n

Figures 15 and 16 show the overall execution time

of every application calculated by above formulas.

For methods proposed in [11] and RSSP, we only

sketch the best results among using three variable

partitioning mechanisms. In this figure, it is clear that

294 Lee and Chen

as the size of nested loop increases, the difference in

execution times between all methods increases. That

is, the methods proposed in this paper can save more

execution time in larger problem sizes.

5. Conclusions and Future Work

In this paper, we propose a method named RSSP to

schedule nested loops in a Digital Signal Processor

with multiple memory banks and a heterogeneous

register set. It contains six parts to schedule all

operations while considering the limited resources

and applies a retiming technique to explore the

potential parallelism between iterations. With vari-

ous variable partitioning mechanisms, three schedul-

ing results are derived from RSSP. An analytic

model and DSP applications were used to evaluate

its computational performance. Evaluation results

shows that the proposed RSSP is very effective

compared with other published research. Further-

more, in order to make RSSP suit various DSPs with

similar architectural features, we also present some

preliminary ideas for designing its general version.

Apart from the features described above there

remain several promising issues for future research.

At first we will continue to design the general

version of RSSP as presented in Section 3.3. Then,

based on the parallel move conditions listed in [19],

a special addressing mode also must be satisfied

when simultaneously executing multiple memory

accesses. Moreover, each memory access may be

performed only if an address register is available that

points to the correct memory location. However, in

our proposed method, we have not considered the

memory offset assignment of each variable and the

address register allocation. Therefore, to make our

proposed method more complete, we will extend our

method to include this. Finally, in addition to high

data throughput, low power consumption is another

significant factor in DSP architecture. Some instruc-

tion level power models and related scheduling

methods are proposed, in order to reduce the power

consumption from the point of view of software. In

the near future, we will study instruction level power

models and try to design energy-efficient code

generation algorithms, which can optimize both

schedule length and power consumption as well.

References

1. Z. Wang and X. S. Hu, BPower Aware Variable Partitioning

and Instruction Scheduling for Multiple Memory Banks,^
Proc. of Design, Automation and Test in Europe Conference
and Exhibition, vol. 1, 2004, pp. 312–317.

2. J. Eyre and J. Bier, BThe Evolution of DSP Processors,^ IEEE

Signal Process. Mag., vol. 17, no. 2, 2000, pp. 43–51.

3. P. Lapsley, J. Bier, A. Shoham, and E. A. Lee, DSP Processor
Fundamentals: Architectures and Features, Berkeley Design

Technology, Inc., 1996.

4. V. K. Madisetti, VLSI Digital Signal Processors: An Intro-
duction to Rapid Prototyping and Design Synthesis, Butter-

worth-Heinemann, 1995.

5. Q. Zhuge, B. Xiao, and E. H.-M. Sha, BExploring Variable

Partitioning for Dual Data-memory Bank Processors,^ Proc.
of 34th International Symposium on Microarchitecture, 2001,

pp. 45–52.

6. J. Cho, Y. Paek, and D. Whalley, BEfficient Register and

Memory Assignment for Non-orthogonal Architectures via

Graph Coloring and MST Algorithms,^ Proc. of ACM Joint

conference LCTES-SCOPES, 2002, pp. 130–138.

7. A. Sudarsanam and S. Malik, BSimultaneous Reference

Allocation in Code Generation for Dual Data Memory Bank

ASIPs,^ ACM Transact. Des. Automat. Electron. Syst., vol. 5,

no. 2, 2000, pp. 242–264.

8. W.-T. Shiue, BEnergy-efficient Backend Compiler Design for

Embedded Systems,^ Proc. of 10th International Conference

on Electrical and Electronic Technology, vol. 1, 2001,

pp. 103–109.

9. C. Kessler and A. Bednarski, BOptimal Integrated Code

Generation for Clustered VLIW Architectures,^ Proc. of

ACM Joint conference LCTES-SCOPES, 2002, pp. 102–111.

10. M. A. R. Saghir, P. Chow, and C. G. Lee, BExploiting Dual-

memory Banks in Digital Signal Processors,^ Proc. of 7th
International Conference on Architecture Support for

Programming Language and Operating Systems, 1996,

pp. 234–243.

11. Y.-H. Lee and C. Chen, BEfficient Variable Partitioning and

Scheduling Methods of Multiple Memory Modules for DSP,^
Proc. of 10th Workshop on Compiler Techniques for High-

Performance Computing, 2004, pp. 80–89.
12. M. A. R. Saghir, P. Chow, and C. G. Lee, BTowards Better

DSP Architectures and Compilers,^ Proc. of International

Conference on Signal Processing Applications and Technol-

ogy, 1994, pp. 658–664.
13. R. Leupers and D. Kotte, BVariable Partitioning for Dual

Memory Bank DSPs,^ Proc. of International Conference on

Acoustics, Speech, and Signal Processing, 2001, vol. 2,

pp. 1121–1124.

14. J. M. Daveau, T. Thery, T. Lepley, and M. Santana, BA

Retargetable Register Allocation Framework for Embedded

Processors,^ Proc. of ACM SIGPLAN/SIGBED, 2004,

pp. 202–210.

15. B. Scholz and E. Eckstein, BRegister Allocation for Irregular

Architectures,^ Proc. of ACM Joint conference LCTES-

SCOPES, 2002, pp. 139–148.

An Efficient Code Generation Algorithm 295

16. X. Zhuang, T. Zhang, and S. Pande, BHardware-managed

Register Allocation for Embedded Processors,^ Proc. of ACM

SIGPLAN/SIGBED, 2004, pp. 192–201.
17. L. Lamport, BThe Parallel Execution of DO Loops,^ Comm.

ACM (SIGPLAN), vol. 17, no. 2, 1974, pp. 82–93, Feb.

18. C. E. Leiserson and J. B. Saxe, BRetiming Synchronous

Circuitry,^ Algorithmica, vol. 6, no. 1, 1991, pp. 5–35.
19. DSP56000/DSP56001 Digital Signal Processor User_s Man-

ual, Motorola Inc., Phoenix, AZ.

Yi-Hsuan Lee is a Ph.D. candidate in Computer Science and

Information Engineering at National Chiao Tung University,

Taiwan, R.O.C. She received her B.S. degree in Computer

Science and Information Engineering at National Chiao Tung

University, Taiwan, R.O.C. in 1999. Her current research

interests include computer architecture, parallelizing compiler

techniques, multiprocessor scheduling problem, and schedul-

ing problem in DSP architecture.

Cheng Chen is a professor in the Department of Computer

Science and Information Engineering at National Chiao Tung

University, Taiwan, R.O.C. He received his B.S. degree from

the Tatung Institute of Technology, Taiwan, R.O.C. in 1969

and M.S. degree from the National Chiao Tung University,

Taiwan, R.O.C. in 1971, both in Electrical Engineering. Since

1972, he has been on the faculty of National Chiao Tung

University, Taiwan, R.O.C. From 1980 to 1987, he was a

Visiting Scholar at the University of Illinois at Urbana

Champaign. During 1987 and 1988, he served as the Chairman

of the Department of Computer Science and Information

Engineering at the National Chaio Tung University. From

1988 to 1989, he was a Visiting Scholar of the Carnegie

Mellon University (CMU). Between 1990 and 1994, he served

as the Deputy Director of the Microelectronics and Informa-

tion Systems Research Center (MISC) in National Chiao Tung

University. His current research interests include computer

architecture, parallel processing system design, and parallel-

izing compiler techniques.

296 Lee and Chen

	An Efficient Code Generation Algorithm for Non-orthogonal DSP Architecture
	Abstract
	Introduction
	Fundamental Background
	Modeling the Given Program
	Retiming
	Motorola DSP56000 Architecture
	Related Work
	Motivations

	Rotation Scheduling with Spill Codes Predicting (RSSP)
	Preliminaries
	Detailed Algorithms of RSSP
	MDFG Construction
	TDAG Construction
	TDAG Modification
	ALU Operation Scheduling
	Other Operation Scheduling
	Initial Schedule Retiming

	The Preliminary Generalization of RSSP

	Performance Studies
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

