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Modeling and Diagnosis of 
IVIotion Error of IViulti-Axis 
IVIachines Using a Ball Bar Test 
The contouring accuracy of a multi-axis machine has a critical effect on the quality 
of many advanced technology products. One of the best approaches to assessing the 
contouring performance of machine tools is through double ball bar measurement. 
During circular interpolation motion, the machine traverses, with two axes at a time, 
a circular trajectory, with each axis subject to sinusoidal changes in acceleration, 
velocity, and position. The motion error is measured by detecting the relative distance 
between a point on the spindle nose and another point on the machine table and 
plotting this distance in polar coordinates. The present paper derives mathematical 
models and diagnosis procedures for first and second-order motion error resulting 
from the active degrees of freedom of a multi-axis machine. The theoretical results 
are verified by both computer simulation and double ball bar testing experiments. 

1 Introduction 
Many types of measuring tools, such as coordinate measuring 

machines and laser interferometers, can be used for precision 
measurement. Coordinate measuring machines essentially con­
sist of a means of moving a probe or part within a three-dimen­
sional rectilinear coordinate system. They accurately establish 
and record the spatial coordinate location of selected contact 
points. Laser interferometers are commonly used to determine 
the accuracy of machine tool elements. 

The DBB (double ball bar) measurement system is less ex­
pensive than the above measuring tools and more suitable for 
quick-check purposes. The error patterns obtained from the 
DBB measurement involve not only individual leadscrew inac­
curacy but also geometric error, such as Abbe enor (Zhang, 
1989), and improper dynamic characteristics in the servo-loops 
(Poo, 1972; Koren, 1980). Bryan (1982) presented an error 
diagnosis method for measuring geometric error based on a 
magnetic double ball bar. Knapp (1983) studied the relation 
between the contouring error and the motion error sources. 
Kunzmann (1983) developed a two-dimensional characteristic 
matrix including squareness and longitudinal parameters to de­
scribe motion error. Kakino (1987) described various types of 
motion error using the notation of error vectors. 

However, all of these methods are either too abstract or too 
incomplete to analyze motion error. In addition, a feasible diag­
nosis procedure has yet to be proposed in the literature. In 
this paper, we derive a complete mathematical model for most 
significant motion error with the DBB measuring tool. This 
mathematical model can be used as a basis for classifying indi­
vidual error sources. In addition, we develop an innovative 
diagnosis procedure to determine the motion errors of multi-axis 
machines. Through different experimental setups, the diagnosis 
procedure can be used to analyze the motion error by incorporat­
ing both time domain and frequency domain data. Finally, the 
least-squares fitting method (Strange, 1980) is used to classify 
the individual motion error of a multi-axis machine. 

The analysis and diagnosis procedures presented in this paper 
are mainly based on the XY trace. Alternatively, the traces on 
the ZX and YZ planes can also be used without much difficulty. 
In general, we employ the standard notation in (ASME B5.54, 
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1992). However, notation that is inadequate for double ball bar 
measurement has been redefined. 

2 Mathematical Modeling of Motion Error 

In DBB measurement, as shown in Fig. I, the LVDT in the 
extension bar is used to detect the relative distance between the 
two ends of the balls. Applying circular interpolation motion 
with radius ro, the contouring error AL is measured by sub­
tracting the length of the extension bar Li between the fixed 
socket on the spindle node and the moving socket on the posi­
tioning table from the reference length La of extension bar. 

In the following, two different mathematical models, a linear 
model and a nonlinear model, to describe the motion error due 
to a faulty guideway system are provided. The linear model is 
based on a first-order approximation. In the linear model, the 
guideways are assumed to be linear, so deflection of the 
guideways will be ignored. In the nonlinear model, which uses 
a second-order approximation, the guideways are allowed to 
deflect. 

As shown in Fig. 2(a) , the total motion error can be seen 
as a combination of the error from the controller coordinates, 
through the guideway coordinates, to the world coordinates. In 
this paper, the superscript ' is used to denote the guideway 
coordinates and superscript " is used to denote the controller 
coordinates. 

Linear Model. Since we assume that the x and y guideways 
are linear, we can describe the geometric motion error with the 
Euler angles for each individual guideway given in the pitch-
yaw-roll (or 4>~6-ip) sequence. 

In the guideway coordinate system, the x', y', and z' axes 
are aligned with the x-guideway, )»-guideway, and spindle axis, 
respectively. Without loss of generality, as shown in Fig. 1, we 
let the X guideway be mounted on top of the y guideway. For 
the DBB measurement, it is convenient to let the z axis of the 
world coordinate system coincide with the z' axis (spindle 
axis), and the y axis of the world coordinate system lie on 
the z-y' plane. The x axis of the world coordinate system can 
subsequently be obtained by applying the right-hand principle. 

In order to let the y axis lie on the z-y' plane, we let the yaw 
angle dy be zero. As shown in Fig. 3, the relation between the 
unit vectors for the y' and y axes can be derived as follows: 

y' = R(,iPy)R(4>y)y ( l a ) 

Similarly, for the x guideway mounted on top of the y guideway. 
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X-Y Plotter Console 

Fig. 1 Configuration for the circular contouring test experiment 

the relation between the unit vectors x' and x can be expressed 
as follows: 

x' = R(<^,)R(<^,)R((pJR(ejR(</.,)x (lb) 

The origin O of the world coordinate system is chosen to be 
the center of the fixed socket of the DBB, as shown in Fig. 1. 
The origin O' of the guideway coordinate system is chosen to 
be the projection of O along the z axis to the x'-y' plane. 
Rearranging Eq. (la) and Eq. ( l i ) , we can express the mapping 
from the guideway to the world coordinate system in matrix 
form as follows: 

(2a) 

where h denotes the height of the center of the fixed socket 

X 

y 
z 

= R 
x' 
y' 
0 

+ 
0 
0 

-h 

circular interpolation commands 

i Controller 
(controller coordinate 0"-x"y") 

X 
Machine Table 

(guideway coordinate O'-x'y'z') 

Measuring Device 
(world coordinate O-xyz) 

T 
circular contour with contouring error 

F ig . 2 ( a ) 

the true 
guideways 

second-order 
approximation of 
X guideway 
(nonlinear model) 

circular contour 

Fig. 2(6) 

Fig. 2 (a) The coordinate transformations between different coordinate 
systems. (i>) Top view of the iocal approximation scheme (view along 
the z axis). O coincides with O', and the y axis <;oincides with the y' 
axis. O" is the center of the circular motion. 

from the center of the moving socket in the z direction. The 
rotational transformation matrix R can be derived as follows: 

R = 
c o s d:t c o s (<Py + 4>x) 0 0 

cos(t>yS'mdx + sm(l)yC0ti9xSin(ipy + ipx) cos4>y 0 
sin</), sin ̂ ^-cos (̂ y cos 0, sin ((^, + </);() sin 4>y 1 

(2b) 

When all the Euler angles are equal to zero, the rotational matrix 
R yields an identity matrix. According to Eq. (2b), a ball bar 
measurement is subject to two limitations in: I) ify and (l>x are 
coupled and cannot be measured individually, and 2) the roll 
angle ip^ of the x-axis cannot be determined when the height of 
the moving socket is neglected. 

Nomenclature 

x-y-z = world (absolute) coordinate 
system 

x'-y'-z' = guideway coordinate system 
x"-y"-z" = controller coordinate system 

e^. By = center-offset error of ;c and y 
axes, respectively 

h = height of the center of the 
fixed socket from the machine 
table 

Lo = reference distance between 
fixed and moving sockets 

Px,Py = screw pitch of the x and y ball 
screw 

Xf, r„ = world coordinate of the fixed 
socket and the moving socket 

x"n = controller coordinates of r„ 
Sx, Sy = nominal scaling factor at x 

and y axes, respectively 

i/f = closed-loop phase angle mis­
matching error 

4>x,^y= pitch angle error of the x and y 
axes for the linear model 

ipx, ipy = roll angle error of the x and y 
axes for the linear model 

0x<6y = yaw angle error of the x and y 
axes for the linear model 

8x, 6y — nominal backlash in the x and y 
axes, respectively 

Kfoii = roll motion constant of the y-
guideway for the nonlinear 
model 

V'ir.roii = initial roll angle of the y 
guideway for the nonlinear 
model 

;̂t,yaw = initial yaw angle of the x 
guideway for the nonlinear 
model 

;c .pitch 

^: y .pitch 

^j:,yaw i t^y,yaw 

Px .pitch) Py .pitch 

= initial yaw angle of the 
x guideway for the non­
linear model 

= initial yaw angle of the 
y guideway for the non­
linear model 

= radius of curvature of 
the x and y axes for yaw 
motion error 

= radius of curvature of 
the x and y axes for 
pitch motion error 

yx = rotation angle of the 
motor and encoder at x 
guideway 

^ = rotation angle of the 
circular motion 

532 / Vol. 118, SEPTEMBER 1996 Transactions of the ASME 

Downloaded From: http://dynamicsystems.asmedigitalcollection.asme.org/ on 04/28/2014 Terms of Use: http://asme.org/terms



AL Lo (7) 

roll ^-^ 

M / " u ' "^ -^T: 

* V) -^— 
1 ^»® ^ y* 

Note: I. Numbers in the circles indicate the rotation sequence. 
2. x' and y' are parallel to x and y, respectively, before rotation. 

Fig. 3 The roll, pitch, and yaw angles of the guideways 

If the measurement equipment is not set up properly, the 
origin of the guideway coordinate system may fail to coincide 
with the origin of the controller coordinate system by the offset 
distance ex in the x direction and e,, in the y direction, as shown 
in Fig. lib). Therefore, the mapping between the controller 
coordinates and guideway coordinates may be expressed as fol­
lows: 

/ = S,{y" - e,) 

x' = Sxix" - e j 
(3) 

where S^ and 5^ denote the nominal scale factors that may be 
induced by mismatching of the closed-loop gain. 

Substituting Eq. (3) into Eq. (2a) and rearranging, we obtain 
the following mapping between controller coordinate system 
and world coordinate system: 

R 
s. 
0 
0 

0 0 
Sy 0 
0 1 

x" - e^ 
y" - ey 

0 
+ 

0 
0 

-h 
(4) 

The world coordinates and the controller coordinates of the 
moving socket are denoted by r^ and r^ , respectively. The 
trajectory of moving socket r „ with circular motion is defined 
as follows: 

Tm = 

ro co s C, 
ro sin t, 

0 
(5) 

where Lo is the reference length of the ball bar, expressed as 
follows: 

Lo = M + h' (8) 

The characteristic functions of geometric motion errors may be 
obtained by using the Taylor series expansion of Eq. (7). In 
the following, we specify the types of geometric motion errors 
that may occur and derive their characteristic functions. 

A. Center-Offset Error. If the measurement apparatus 
has been calibrated improperly, center-offset error, e;̂  =̂  0 or ê  
=̂  0, may be induced. According to Eq. (7), the contouring 
error AL for the center-offset error e^ in the x direction, denoted 
by ALoffseu. may be expressed as follows: 

ALoffteu = -Jrl + h^ + el - le^ro cos ^ - Lo (9a) 

From the Taylor series expansion of the above equation around 
e^ = 0, the first-order term of the contouring error AL is as 
follows: 

ALoffseu ' ^ — COS L, 
Lo 

{9b) 

Similarly, the contouring error AL due to center offset e, in 
the y direction, denoted by ALoftsetj., can be obtained as follows: 

AL 'offset̂ ' sin ^ (10) 

B. Positioning Scale Error. The positioning scale error 
is induced mainly by the mismatching of ball screw scales or 
the mismatching of closed-loop gains. According to Eq. (7) , the 
contouring error due to positioning scale error may be linearly 
approximated as follows: 

ALs, 
rl(Sx- 1) 1 +C0S2C 

Lo ' 2 
(11) 

The contouring error ALSFJ due to the position scale error S, 
can be obtained in a similar manner. 

C. Squareness Error. When the x and y guideways are 
not perpendicular, i.e., the x' axis is no longer perpendicular to 
the y' axis, squareness error occurs. The contouring error for 
infinitesimal 9x can be obtained as follows: 

ALP —— Sin 2 L 
2Lo ^ 

(12) 

D. Perpendicular Error (Squareness Error Associated 
With Z Axis). In this paper, the squareness error between 
the x' and z axes or between the y' and z axes is called the 
perpendicular error. The contouring error AL due to the perpen­
dicular error about the x' and z axes, <̂^ -i- I/Ĵ , * 0, can be 
obtained as follows: 

where ro denotes the input command of the nominal radius of 
the circular motion and C, denotes the angle of the circular 
motion. Both of these parameters are fed into the NC controller 
as the command input. By substituting Eq. (5) into Eq. (4) , 
we can obtain the position of the moving socket rm in world 
coordinates: 

R 
Sx 
0 
0 

0 0 
5,, 0 
0 1 

ro cos C, -
ro s in C, -

0 

- ex 
e. + 

0 
0 

- / 
(6) 

Since the fixed socket is located at the origin of the world 
coordinate system, the contouring error, denoted by AL, can 
be derived as follows: 

Lo 
(13) 

Compared with Eq. (12) and Eq. (13), the characteristic func­
tion for perpendicular error differs from that for the squareness 
error. Similarly, the contouring error associated with the perpen­
dicular error about the y' and z axes, 4>y + 0, can be obtained 
using the same procedure. 

Nonlinear Model. In the nonlinear model, the guideways 
are allowed to deflect. Consequently, the Euler angles are func­
tions of the position of measurement, In order to clearly describe 
the deflective guideways, we use different parameters and nota­
tion. The yaw, pitch, and roll motion errors, for the deflective 
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' " .X guideway 

y guideway" 

Fig. 4 Model for the yaw motion error of the x guideway 

i" ..X guideway 

Fig. 5 The schematic diagram for pitch motion error of the x guideway 

guideways are used instead of the squareness error and perpen­
dicular error in the linear model. 

A. Yaw Motion Error—Guideway Bending in XY 
Plane. When the guideway bends in the Xy plane, the motion 
error induced is called yaw motion error. In Fig. 4, the x 
guideway is modeled by a circular arc with two independent 
parameters: the radius of curvature, denoted by Px.yaw, and the 
initial yaw angle, denoted by d^^^^, which corresponds to the 
offset of the center of curvature Ô .yaw from the y axis. During 
the circular motion, the world coordinates of the moving socket 
Fm can be directly formulated as follows: 

sin î,yaw + sin 
/•Q cos t, 

/ „ (To cos C „ \ \ . ,. 
0*.yaw COS O^^y^^ - COS ^^.y.^ + TQ Sin Q 

\ \ P;t.yaw / / 

(14) 

Taking Eq. (14) into Eq. (7) and using the Taylor expansion 
around p;c,yaw = °° and 6'̂ ,yaw = 0, we can approximated the 
contouring error AL due to x yaw motion error, denoted by 
ALvvaw. as follows: 'X.yaw 

AZ-xyaw =« -—""—r sin ^ cos^ ^ 
rie^ 'x .yaw 

U 
sin ^ cos ^ (15) 

The first term of Eq. (15), a third-harmonic function, appears 
to be a special characteristic not found in the expressions for 
the motion errors. Comparing the second term of Eq. (15) with 
Eq. (12), we find that the initial yaw angle ĵ̂ .yaw of the nonlinear 
model and the yaw angle d^ of the linear model possess the 
same characteristic function. 

When the y guideway bends about Oy.yaw, the contouring error 
ALyyaw can be derived in a manner similar to that used to derived 
Eq. (15). Recall that in the linear model we aligned the world 
coordinates so that the yaw angle By would be zero. Similarly, 
in order to eliminate the rotational d.o.f. in the nonlinear model, 
we can rotate the world coordinate system so that Sy.yaw = 0. 

B, Pitch Motion Error—Guideway Bends Toward Z 
Axis. As shown in Fig. 5, in this case the x guideway bends 
toward the center of curvature 0,,pi,ch and the world coordinates 
of the moving socket r^ can be derived as follows: 

534 / Vol. 118, SEPTEMBER 1996 

/•Q COS ^ 
- ^x .pitch P;..pitch ( s in </>̂ ,pitcii + s in 

ro s i n ^ 

Px.r>iKt. I c o s < ;̂t.pitch - c o s ( ——^-^ - ( ĵ-.piich ) I - /* 
V V Px.y 

jT.yaw 

(16) 

where Py.pitch denotes the radius of curvature and (̂ j;,pitoh> corre­
sponding to the offset of the center of curvature Oj.pitch from 
the z axis, denotes the initial pitch angle. Using the Taylor 
expansion around Px.puch = °° and (l>x,pitch = 0, we can write the 
contouring error AL due to this type of motion error, AL^pitch. 
as follows: 

AL. 
-hrl 

'Xpitch 
2^^ : .pitch Lo 

COS^ C + 
hro<^. A,pitch 

i o 
COS ^ (17) 

Comparing the above equation with Eqs. (11) and (13), we 
find that the first term of the above equation has the same 
effect as the positioning scale error ALSF. The second term is 
equivalent to the perpendicular error ALpxz described in the 
linear model. The contouring error ALj-pitch due to the y 
guideway bending about Oy,pi,ch may be derived in a similar 
manner. 

C. Roll Motion Error—Guideway Twist Error. As 
shown in Fig. 6, let the guideway twist be modeled by two 
independent parameters, the twist constant «:,oii (radian/m) on 
the y guideway and the initial twist angle ipy^mw '• 

Fig. 6 Model for the roll motion error along the y guideway 
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segment I 

segment I I I ' ^ g 

Fig. 7(a) 

motor 
shaft 

fnooder 

Fig. 7(b) 

Fig. 7 (a) Distortion of the circular trajectory due to clearance error. 
[b) Scliematic diagram of the indexing error. 

fy.toW — '<^ron>'0,roll (18a) 

where the intermediate parameter yo^,ou denotes the shift distance 
of the parallel axes. According to the geometry defined in Fig. 
6, the contouring error AL due to the roll motion error, denoted 
by ALfroii. can be linearly approximated by 

ALĵ jQii «i —:;-;— sin 2L, '-^^— cos ^ 
2U U 

(18i>) 

The contouring error shown in Eq. {Mb) illustrates an effect 
similar to that of squareness error and perpendicular error in 
the linear model. Recall that in the linear model the roll angle 
(fy cannot be decoupled from the pitch angle <px. Similarly, in 
the nonlinear model ipy,m\\ cannot be decoupled form (̂ ;t,pitch-
Without loss of generality, we take ^Py,,o\\ to be zero in the later 
diagnosis procedures. 

Other Motion Errors. In the following, we will derive the 
characteristic functions for the other types of motion errors. 
These motion errors may be incorporated within both the linear 
model and the nonlinear model. 

A. Clearance Error. The clearance error may occur for 
a number of reasons, such as leadscrew backlash, lost motion 
of the driving system, and clearance in the guideways. The 
contouring error due to the clearance 6^ in the x direction may 
be analyzed by counter-clockwise (CCW) and clockwise (CW) 
tracing. When CCW tracing is used, as shown in Fig. 7(a) , the 
contouring error under the existing clearance (5, may be divided 
into four segments: 

Segment I: 0° s ^ s 180 deg; r^ moves along the right 
circle. There is no contouring error in this segment. 

ALcLR, = 0 (19fl) 

Segment II: 180 deg *: ^ is 180 deg + ^CLR: r^ remains 
unchanged. The contouring error is 

ALcLR. = VrS + rl sin^ C + ^ ' - •̂ o (19fe) 

Segment III: 180 deg + ^CLR ^ C ^ 360 deg; the trajectory 

switches into another circular path. This effect is similar to the 
center-offset error. 

ALcLR. = ylrl + 6l + h^ - IrA cos C - U (19c) 

Segment IV: 360 deg < ^ =s 360 + C, 
cLR- m̂ remains un­

changed. After this period, the tracking path re-enters the right 
circular path the same as in segment I. During this small period, 
the contouring error is 

ALcLR. = V(ro - 6,Y + rl sin^ t^ + h'- U il9d) 

By taking the Taylor series expansion around 6^ = 0, the con­
touring error AL for the ^CLR S ^ < 180 and 180 deg + (̂ CLR 
< ^ s 360 deg regions may be linearly approximated by 

ALc 

0 

-ro6, 

CcLR s i; s 180 deg 

cos C 180 deg + CCLR S C S 360 deg 

(20) 

In a similar manner, the contouring error ALCLR^ for the clear­
ance error S^ with CW tracing and the contouring error ALCLR>. 
for the clearance error Sy at the y axis with different directions 
of circular tracing may also be obtained. 

B. Indexing Error. This error may occur because of mis­
alignment between the encoder and motor shafts or pitch error 
in the screw driving system. In Fig. 7(b), the universal joint 
mechanism is used to illustrate indexing error. The input angle 
of the rotation of the motor is given by ^moior.!, and the output 
angle is given by 6„otoi,yx- The relationship between the input 
and output angle can be expressed aS 

= tan ' (6'mo,or̂ . cos 7^) + int 
27r 

(21) 

where y^ denotes the angle of misalignment of the encoder 
along the x guideway. Without going through the details, we 
present the contouring error as follows: 

—p^royl COS ̂  sin 

ALE 

4nro COS C, 

STTLO 
(22) 

where p^ denotes the pitch of the x screw. According to the 
above equation, the indexing error induces the motion error 
with fairly high frequency compared with all other types of 
motion errors. In addition, the maximum motion error due to 
indexing error is less than 1 fim when the angle of misalignment 
is as large as 3° withp;, = 5 mm and ro = LQ = 150 mm. Hence, 
in order to simplify the diagnosis process, this motion error can 
be ignored. 

C. Mismatching of the Closed-Loop Phase Angles. As­
sume that the closed-loop response for the x and y servo driving 
system has no magnitude difference but that the phase differ­
ence is as follows: 

x" = ro cos (uit + sgn (w)!/',) 

= To cos (C, + sgn (w)i/f) 

ly" = ro sin (ujt + sgn (a;)iA,) = ro sin t, (23) 

where C, = ojt + sgn (a;)i/fj, and if) = ij/^ — ijjy. ipx and ipy denote 
the phase angles of the x servo driving response and y servo 
driving response, respectively. From the above equation, the 
contouring error ALPA can be linearly approximated as follows: 
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Table 1 The characteristic functions of different motion errors 

Error 

Center-offset 
ALoffsetx 
ALoffsety 

Squareness 
ALpxy 

Perpend. 
ALpzx 
ALpyz 

Clearance 
ALcLRx 
ALcLRy 

Phase Angle 
Mismatching 

ALpA 
Pes. Scale 

ALsFx 
ALsFy 

Roll motion 
ALvroU 

Pitch motion 
ALxpitch 

ALvpitch 

Yaw motion 
ALxyaw 

ALvyaw 

Characteristic Function 

1 -X Bx cos^ 
1 -X Cy sin^ 

-X Bx ro sin2C / 2 

J -X h (ltlx+9y) COŜ  
I X h ijiy sin^ 

[ - Xsgn((o)5xcos^ or 0 
1 Xsgn(co)8ySin5 or 0 

-Xsgn((o)ro>csin2^ / 2 

f X ro (Sx - 1) cos2C 
I X r o (Sy - l ) s i n 2 ^ 

-Xh ro KroU sin2^ / 2 

+ Xh (Pv.roll cosC 

r -Xhro cos2^ / 2px,pitch 
J +Xhij)x,pitchCOS? 

Xhrosin2^/2py,pitch 
L -Xh (|)y,pitch sin^ 

r-Xro2sinCcos2C / 2px,yaw 
1 +Xroex,yawSin2^/2 

L-Xro^sin^^cos^ / 2py,yaw 

Harmonic 
Older 

1 
1 

2 

1 
1 

1* 
1* 

2 

0 ,2 
0 ,2 

2 
1 

0,2 
1 

0,2 
1 

1,3 
2 

1,3 

LJependency 
ll sgn(co) 

V 

V 

V 

V 

V 

model 
linear nonl. 

•1 

•J 

•1 

V 
V 

V 

•J 
V 

V 

V 
V 

V 

•1 
V 

V 

V 
V 

V 

V 

Note: X = 
Lo 

1*: the fundamental harmonic function in certain regions. 

A L p 
-sgn {Lo)rlip 

2Lo 
sin 2C, (24) 

Equation (24) indicates that we may detect only the relative 
phase angle i// in the contouring error. The servo-loop phase 
response of each individual axis cannot be obtained from DBB 
measurement. 

3 Experimental Setup 
Table 1 summarizes the characteristic functions of the various 

motion errors described above. According to Table 1, the char­
acteristic functions for both the center-offset error and perpen­
dicular error share the fundamental harmonic function of ^. 
Similarly, the positioning scale error and pitch-motion error 
both include second-harmonic function of C,. Because the cen­
ter-offset error and the positioning scale error are independent 
of h, while the perpendicular error and the pitch motion error 
are not, we can perform two experiments with different values 
of h to identify these motion errors. 

The squareness error and mismatching of the closed-loop 
phase angle are both independent of h and demonstrate the same 
harmonic function. Fortunately, the two motion errors may be 
identified by two circular tracings with different directions of 
rotation, because the contouring error of mismatching of the 
closed-loop phase angle is a function of the direction of circular 
tracing. 

In summary, the individual motion errors in the linear model 
can be completely classified by either varying h or varying the 
direction of circular tracing. Hence, we conclude that when the 
linear model is used, two circular contouring tests are enough 
to distinguish all the motion errors. 

Experiment #1: A circular test is performed to measure the 
contouring error with h = 0 and CCW tracing. 

Experiment #2: A circular test is performed to measure the 
contouring error with h * 0 and CW tracing. 

In the nonlinear model, three types of motion errors, 6,,yaw, 
ijj, and Kroii, are coupled with the second-harmonic function, sin 
2C,. In order to classify these motion errors, one extra experi­
ment is necessary: 

Experiment #3: Repeat experiment #2 but with CCW trac­
ing. 

During the circular testing, the clearance error and stick-slip 
motion will enhance the complexity of the contouring error in 
the regions near ^ = 0, 90, 180, and 270 deg. In order to 
facilitate the data processing and the corresponding analysis, 
the experimental data for these regions will be ignored. 

Least-Squares Method. According the characteristic func­
tions shown in Table 1, the problem of diagnosing the motion 
errors from various contouring error patterns can be transformed 
into a parameter estimation problem based on the least-squares 
method. For convenience, the estimated parameters may be re­
written in c symbols as shown below. 

For the linear model, the fitting function may be expressed 
as follows: 

y = (ci cos ^ -I- C2 sin ^ + Cs/i''' cos C, — £4/?*'' sin C, 

— Cs [sgn (w''') cos ^ or 0] — C(, [sgn (w*'') sin C, or 0] 

- Cjr^'^ cos^ ^ - Cgri" s'm^ C, + c<,r^'^ sin 2^ 

+ C|or^"sin2^1 ; = 1, 2, . . . (25) 

where the index (' indicates the ith experiment. The coefficients 
of the fitting function correspond to the motion errors as follows: 

e.t = C| , e,, = C2, 0 j + i^y = C3, 

Ipy = C4, 5 , = C5, 6y = Cf, 

S^ = CT + 1, Sy = Cs + 1, 9^ = 2cg, i/f = 2 c , 0 . 

Similarly, the fitting function for the fifteen estimated param­
eters in the nonlinear model is 

C| cos ^ + C2 sin ^ — C3[sgn (a;''') cos ^ or 0] 

— C4[sgn (a;*'-') sin ^ or 0] - Csr},'^ cos^ ^ 

— C(,r^'^ sin^ C, + CyrJ''̂  sin^ C, cos C, 

- Cgr̂ '*̂  sin C, cos^ ^ + Cgh^'^r^'^ cos^ C, 

- c,o/!<'V^'' sin' i; - cn/j"' cos ^ - CijA "̂ sin ^ 

+ Ci3r^'' sin 2^ + Cu sgn (w"')r^'' sin 2^ 

+ Ci5/!<" sin 2C,] i = 1, 2, 3, . . (26) 

The coefficients of the fitting function correspond to the motion 
errors as follows: 

e^ = c i , ey = C2, 5^ = C3, 6y = C4, 

S^ = Cs + 1, Sy = C(, + 1, 

Pj.yaw = 1 / ( 2 C 7 ) , yŜ yaw = 1 / ( 2 C 8 ) , 

PJ : .pitch 

1 / ( 2 C 9 ) , p^,pj,ch = l / ( 2 C i o ) , 

•Pjt.pitch = C|i , <P>i.pitch — C|2, C'jt.yaw ~ C13, 

ijj = 2Ci4, K,a» = 2C |5 . 

4 Computer Simulation 
Consistency between the two different models is verified by 

the two sets of simulation reported in Table 2(a) and Table 
2(b). Comparing the results shown in Table 2(b), we find that 
the errors estimated by both models are reasonably close to 
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Table 2(a) Data settings in software simulation for error patter genera­
tion 

Input Error 
Pattern 

#1 
#2 
#3* 

Height 
(mm) 
0.000 
30.000 
30.000 

Radius 
(mm) 

150.000 
146.969 
146.969 

Tracing 
Direction 

CCW 
CW 

CCW 

Note: #3 is used only with the nonlinear model. 

Table 2{b) Diagnosis of motion error using input error patterns gener­
ated by simulator 

Error 
Causes 
ex (nm) 

ev (^un) 
8x (tim) 

5v (nm) 

Sx 
Sv 
V 

()lX + <Pv 
lt)V 

Ox 
px.vaw (m) 

Pv.vaw (m) 
Px.Ditch (m) 

Pv.oitch (m) 

KroU (rad/m) 

(rad) 

*x.oitch (rad) 

it'v.Bitcb (rad) 

Simulation 
(Given) 

-2.0 

-3.0 
1.0 
2.0 

0.99999 
1.00002 
0.002" 

0" 
0° 
0* 
oo 

oo 

oo 

oo 

0 0 
0.0 
0.0 
0.0 

Linear 
Model 

-2.005447 
-2.992325 
1.0011293 
2.015433 
0.99999 
1.00002 

0.002014" 
-0.000006" 
-0.000006" 
-0.000015" 

Nonlinear 
Model 

-2.005480 
-2.992323 
1.0U372 
2.015377 
0.99999 
1.00002 

0.0020136" 

1.03998e8 
-5.35248e8 

-79563.4 
115158 

1.49217e-9 
-2.58813e-7 
1.02698e-7 
-1.08139e-7 

the prescribed error quantities. The numerical accuracy for the 
center-offset error and the backlash error of both models is 
within 0.01 ^m. The numerical accuracy for perpendicular error 
or squareness error is around 0.00001 deg, which results in only 
a 0.01 /xm difference in contouring error. 

5 DBB Experiments 
The experimental setup consisted of an industrial double ball 

bar on an industrial CNC machine center, as shown in Fig. 8. 
Contouring error data were collected in accordance with the 
procedures described above and plotted on polar or linear dia-

Flg. 8 Setup of the ball bar on the CNC machine tool. 
Key: 
1 Ball bar transducer 
2 Ball joint (center mount) 
3 Magnetic center cup 
4 Magnetic tool cup 
5 Extension bar 
6 Magnetic center mount 
7 Tool holder 

Scale: 2 nm/div 
- Measured pallern 1 

Measured pattern 2 
. . . . . Calculated pattern 1 
— - Calculated pattern 2 

Fig. 9(a) 

10 

fc 

-10 

Measured pattern 1 
Measured pattern 2 
Estimatedjattern 1 

— - - Estimated pattern 2 

180 

C(deg) 

Fig. 9(6) 

Fig, 9 Recognition of contouring error patterns based on linear model, 
(a) Polar diagram; (b) linear diagram. 

grams. Figure 9 and Fig. 10 show the experimental data and 
diagnosis results based on the linear and nonlinear model, re­
spectively. The linear model required only two experiments, 
whereas the nonlinear model required at least three. Since the 
discrepancies are difficult to distinguish in the polar diagrams, 
auxiliary linear diagrams are also provided in the figures. 

Table 3 shows the numerical results of the diagnosis for both 
linear and nonlinear models. All the motion errors determined 
by the two models agree with each other, except for the center-
offsets. Note that the roll-pitch-yaw motion error is significant 
compared with the data in Table 3. Consequently, a certain 
amount of contouring error has mistakenly been transferred to 
the components of the center-offset error in the linear model, 
which has less freedom for curve fitting. However, the maxi­
mum difference between the linear and nonlinear model is less 
than 0.3 /xm of the center-offset error, so consistency in the 
diagnosis results for the two models is again obtained. 

Because the characteristic functions of the motion errors are 
harmonic functions, much information is included in the fre­
quency domain. Table 4 lists the magnitudes of the frequency 
responses at certain frequencies. Because the diagnosis is de­
rived from the time domain, there is a certain amount of devia­
tion between the experimental and the estimated patterns for 
the frequency components. 

Comparisons Between Linear Model and Nonlinear 
Model. The hnear model, which assumes that the guideways 
are straight, is independent of the position of measurement. In 
contrast, diagnosis results based on the nonlinear model will be 
a function of the position of measurement. 

The advantage of the linear model is that the corresponding 
diagnosis may require as few as two input patterns with different 
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Table 3(a) Settings in DBB experiment Table 4 Frequency amplitude at certain frequencies 

Input Error 
Pattern 

#1 
#2 

#3* 

Height 
(mm) 
0.000 

144.568 
144.568 

Radius 
(mm) 

150.000 
40.000 
40.000 

Tracing 
Direction 

CCW 
CW 

CCW 
Note: #3 is used only with the nonlinear model. 

Table 3 (b) Diagnosis from DBB experimental data using linear and non­
linear models 

Error 
Causes 
Sx (tim) 
Sv (lim) 
ex(|im) 
ev(nm) 

Sx 
Sv 
V 

(t)x + (pv 
<l>v 

Ox 
Px.vaw (m) 
Pv.vaw (m) 
Px.Ditch (m) 
Pv.nitch (m) 
Kroll (rad/m) 
Sx.vaw (rad) 
i|>x,pitch (rad) 
<|iv,Ditch ( f a d ) 

Linear 
Model 

0.814081 
6.094524 
0.466008 
0.002037 
1.000006 
0.999995 
0.003217' 
-0.000147" 
-0.000069° 
-0.003739" 

Nonlinear 
Model 

0.943694 
5.965104 
0.171443 
-0.285577 
1.000006 
0.999995 
0.004068" 

-13811.22 
13484.75 

-4708.9162 
4680.379 

1.589521e-4 
-7.87587e-5 
6,342634e-7 
-3.087036e-7 

Scale: 2 [nn/div 

— Measured pattern 1 
Measured pattern 2 

Measured pattern 3 
- — - Calculated pattern 1 
— - Calculated pattern 2 
»>.«» Calculated pattern 3 

Fig. 10(a) 

i 0 

Measured pallem 1 
- Measured pauem 2 

Measured pauem 3 
••••'•"•"-•'Calculatedpauem \-

- - Calculated pauem 2 
.Calculated pattern 3 

T 

360 

Fig. 10(ft) 

Fig. 10 Recognition of contouring error patterns based on the nonlinear 
model, (a) Polar diagram; (i>) linear diagram. 

Measured Pattern 1 

Estimated Pattern 1 

(by Linear Model) 

Estimated Pattern 1 

(by Nonlinear Model) 

Measured Pattem 2 

Estimated Pattem 1 

(by Linear Model) 

Estimated Pattem 2 

(by Nonlinear Model) 

Measured Pattem 3 

Estimated Pattem 3 

(by Nonlinear Model) 

xOo) 

48.4 dB 

47.3 dB 

47.1 dB 

15.9 dB 

25.3 dB 

25 dB 

37.9 dB 

37.6 dB 

X Im 

53.3 dB 

52.2 dB 

52.2 dB 

39.4 dB 

40.1 dB 

406 dB 

38.9 dB 

39.8 dB 

X2(0 

51.9 dB 

52.3 dB 

52.3 dB 

47.7 dB 

47.8 dB 

48.1 dB 

41.9 dB 

43.3 dB 

x3(0 

24.0 dB 

18.4 dB 

29.7 dB 

24.7dB 

14.18 dB 

23.7 dB 

24.5 dB 

21.7 dB 

h and motion directions. Moreover, the linear model is less 
sensitive to numerical truncation error than the nonlinear model. 
The nonlinear model needs at least three input patterns and 
provides better estimation with a smaller variance in applica­
tions subject to a relatively large amount of motion error. 

For practical applications, if the contouring error measured 
by the circular contouring test instrument is relatively small, 
then to minimize computing time as well as avoid numerical 
truncation error, the linear model is recommended. On the other 
hand, when the contouring error is sufficiently large or the 
contouring error induces a significantly large third-harmonic 
component in the frequency spectrum, the nonlinear model is 
preferred. 

6 Conclusion 
The characteristic functions for most NC motion errors have 

been modeled and analyzed using a linear and a nonlinear 
model. An analysis method and diagnosis procedures for the 
circular contouring test have also been introduced. With the 
diagnosis procedures, a variety of motion errors can be detected 
by means of the circular contouring test. The models described 
in this paper have been validated by tests on over twenty CNC 
machines at the R.O.C. Industrial Technology Research Institute 
(ITRI) and local CNC manufacturers. An average of 50 percent 
improvement in precision has been achieved using this modeler. 
Dynamic effects, such as the stick-slip effect, current loop gain, 
and velocity loop gain, which are neglected this paper, are likely 
to be the dominant factors in the unsolved 50 percent error. 
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