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SUMMARY

Recently, the performance of Java platforms has been greatly improved to satisfy the requirements for
game development. However, the rendering performance of Java 1.1, which is still used by about one-third
of current Web browser users, is not sufficient for high-profile games. Therefore, practically, Java game
developers, especially those who use applets, have to take this into consideration in most environments.
In order to solve the above problems, this paper proposes a portable window toolkit architecture called
the CYC Window Toolkit (CWT) with the ability to: (1) reach high rendering performance particularly in
Java 1.1 applications and applets when using DirectX to render widgets in CWT; (2) support AWT/Swing
compatible widgets, so hence the CWT can be easily applied to existing Java games; (3) define a general
architecture that supports multiple graphics libraries such as AWT, DirectX and OpenGL, multiple virtual
machines such as Java VM and .NET CLR, and multiple operating systems (OSs) such as Microsoft
Windows, Mac OS and UNIX-based OSs; (4) provide programmers with one-to-one mapping APIs to
directly manipulate DirectX objects and other game-related properties. The CWT has also been applied
to an online Java game system to demonstrate the proposed architecture. Copyright c© 2006 John Wiley &
Sons, Ltd.
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INTRODUCTION

Since modern computer game development is becoming progressively more complex, many
commercial games are made by large teams, typically ranging from 20 to 50 members [1].
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The productivity of programming teams plays a very important role of reducing the time to market,
and this has influenced the mainstream languages of the game industry.

Before 1990, most games had been developed mainly in assembly languages to boost
performance [2]. In the 1990s, the C language with relatively high productivity became popular in
the game industry, since hardware and compiler technologies continuously improved the performance
of the C language. For example, in 1993, ID Software Inc. [3] developed the game Doom in which
most code was written in C. Furthermore, when compared with C, the C++ language increases
the productivity with little loss of performance owing to the features of object orientation, such as
maintainability and reusability.

Since Sun Microsystems (abbreviated as Sun) released the Java language [4] in 1995, Java has
become increasingly popular owing to its higher productivity and portability than C/C++. A report [5]
from IDC in 1998 showed that writing the code in pure Java instead of C++ increased the overall
productivity by a factor of 30% and the coding phase alone by 65%. Since that study was made
using Java Development Kit (JDK) 1.0.2, these figures could be greater today owing to the improved
capabilities of the modern Java 2 Platforms Standard Edition (J2SE). Phipps [6] also presented a similar
result, and concluded that Java was 30–200% more productive than C++. With the growth of the
Internet, the Java applet together with its high portability—write once, run anywhere—has become
popular on the Internet. These advantages have caused Java to become a candidate for one of the
mainstream languages for game development. For example, Yahoo! Games [7], ArcadePod.com [8],
CYC games [9–11] and RuneScape [12] use Java.

However, most of the above Java games are low profile games‡, because Java programs normally
have lower performance, especially in graphic user interface (GUI) components, also called widgets,
which has made game developers hesitant to use it for high-profile games. In general, the performance
of programs written in Java 1.0 is about 20 to 40 times slower than in C/C++ [13]. After several
significant revisions in the Java Virtual Machine (JVM), the tweaked Java programs using J2SE 1.4 ran
on average only about 20–50% slower than the tweaked C/C++ programs [13]. Unfortunately, the GUI
part of early Java programs still performed slowly. Since most game programs, especially high-profile
games, have intensive GUI operations, such as animation or complex scenes, it is critical to reach high
rendering performance.

For high rendering performance, DirectDraw and Direct3D of Microsoft DirectX (or DirectGraphics
in DirectX 7.0 and beyond) [14] or OpenGL (Open Graphics Library) [15] are commonly used to access
specialized hardware features, such as direct access to the video memory in graphics cards, constructing
3D scenes and writing shader code. Thus, an important topic for high-profile game programs in Java is
to incorporate DirectX or OpenGL into Java GUI design.

The earliest GUI mechanism in Java is Abstract Window Toolkit (AWT) [16]. In order to keep the
cross-platform capability of Java, the AWT was designed to provide a common set of widgets which
use the peer architecture [17] to maintain the look-and-feel in native operating systems (OSs), such
as Win32 windows components [18] in Microsoft Windows and Motif [19] in UNIX-based OSs.
Such widgets are called heavyweight components [20]. However, the GUI designed on one platform
may look different on other platforms, and AWT widgets cannot satisfy the requirements of

‡Low profile and high profile games are defined in [13].
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applications that require more complex widgets, such as trees and tables, and advanced graphics
functionalities, such as pattern filling and color management.

In order to solve the above problems of AWT, Sun announced Java Foundation Classes (JFC) [21] in
1998, which includes Swing and Java 2D. Swing provides more complex widgets based on lightweight
support of Java AWT 1.1 that does not rely on the native widgets of the underlying OSs. Java 2D
enables advanced 2D graphics functionalities, imaging, text and printing.

Although the functionalities of the JFC are generally good for applications requiring more complex
widgets or advanced graphics, its implementation suffers from poor rendering performance when
compared with heavyweight components. In order to improve rendering performance, Sun started
to access specialized hardware features via DirectX in J2SE 1.4 [22] and OpenGL in J2SE 5.0
(or 1.5) [23]. However, the OpenGL-based Java 2D pipeline (abbreviated OpenGL pipeline) of J2SE
5.0 brings more bugs and is not usable in real applications. In order to resolve this problem, Java SE
6.0 introduces a newly designed OpenGL pipeline that provides much better stability and performance
than that in J2SE 5.0 [24].

Although rendering performance in J2SE 1.4 and beyond has been greatly improved, many hardware
acceleration features, disabled by default, need to be configured carefully. Unless users explicitly
configure proper properties in the Java control panel, the applet games will not fully benefit from
hardware acceleration [25]. Thus, it is inconvenient for applet game users, especially for those without
permission granted, to modify the system properties. Although signed Java applets can modify the
system properties, the modifications also influence other Java programs running on the JRE.

Considering past work also related to the rendering performance issue, IBM’s Standard Widget
Toolkit (SWT) [26] is an alternative to AWT/Swing which produces a more native-like appearance and
a higher performance than the early Java versions, since all its widgets are designed as heavyweight
ones. However, SWT does not completely take advantage of specialized hardware features for game
applications, so it may perform inefficiently for high-profile games. In contrast to the native widget
approach, other solutions incorporate DirectX or OpenGL into Java GUI design. Bellotti et al. [27]
designed a set of APIs named DirectJ, which can directly access DirectX via the Java Native Interface
(JNI), and thus achieved significant graphics performance improvement in J2SE. The OpenGL for
Java (GL4Java) [28] wraps OpenGL APIs via JNI. However, the GL4Java has been outdated since
the last release in 2001. Java binding for OpenGL API (JOGL) [29] is also a one-to-one mapping to
the OpenGL APIs. The Lightweight Java Game Library (LWJGL) [30] is another library specifically
tuned for writing games. Both JOGL and LWJGL are still in active development now. Java 3D [31]
is a high-level API, which has OpenGL and DirectX implementations, for creating, rendering and
manipulating 3D scene graphs. Using these libraries can greatly improve the rendering performance of
Java. However, these solutions still suffer from the two problems discussed as follows.

First, although both DirectX and OpenGL have good rendering performance, they do not provide
their own widget systems. Consequently, when mixing other widget systems, such as Win32 window
components, with DirectX or OpenGL, the performance is still limited to that of the widget systems
(or is even worse). In addition, the native widgets typically control their repainting timing and process,
which may cause some undesired effects, such as flicking.

Second, many of the above solutions are supported on the Java 2 platforms only. Unfortunately,
Microsoft Java Virtual Machine (MSVM) [32], which is in Java 1.1.4, is currently used by about
31.0% of browser users (calculated from the statistical data in [33] during the latest two months),
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while the percentages of JRE 1.4.x and JRE 1.5.0 are 24.5% and 41.8%, respectively. Thus, for game
programmers, it is still important that applet games can be played in most environments.

Other reasons for using Java 1.1 are that:

• many applet games based on Java 1.1 were developed in the past when Microsoft Internet
Explorer only supported Java 1.1.4 (for example, CYC games [9–11] still keep using the past
MSVM for compatibility of their code);

• the J# language in .NET supports Java 1.1 only;
• most PDAs or mobile phones using Personal Java support Java 1.1 only.

In this paper, our approach is to enhance the graphics performance of Java 1.1 by using DirectX or
OpenGL to render all widgets, figures, images and texts. We propose a window toolkit called the CYC
Window Toolkit (CWT), a fast-rendering lightweight GUI toolkit that renders all its widgets via native
graphics libraries. The CWT can automatically switch the hardware acceleration features in runtime, so
users do not need to manually set the properties. In addition, the CWT also has the following features:

• it supports AWT/Swing compatible widgets, and, hence, the CWT can be easily applied to
existing Java games;

• it defines a general architecture that supports multiple graphics libraries (Java AWT, DirectX and
OpenGL), multiple virtual machines (JVM and .NET CLR) and multiple platforms (Windows,
Mac OS, UNIX-based OSs, etc.);

• it provides programmers with extra APIs to directly manipulate DirectX objects and other game-
related properties, and, therefore, advanced programmers can control abilities of the DirectX
without waiting for functionalities supported by Sun.

The rest of this paper is organized as follows. First, the architecture of the CWT is defined. Then,
our implementation strategy and current status of the CWT are given, followed by experimental results
and performance analysis, including a real application of the CWT. Finally, conclusions of our work
are presented.

THE ARCHITECTURE OF THE CWT

Figure 1 shows the architecture of the CWT, which is designed to use various graphics libraries, such
as Java AWT, DirectX and OpenGL, to build AWT/Swing compatible widgets. For Java AWT, the
CWT accesses it via a simple wrapper, identified as CWT-AWT. This is used when neither DirectX nor
OpenGL is supported by the underlying OSs.

For DirectX, the CWT accesses DirectX 3.0, which is supported in MSVM via a wrapper identified
as CWT-DX3, and DirectX 9.0, which is supported in .NET J# [34] via a wrapper identified as
CWT-DX9. Both together are also called CWT-DX.

For OpenGL, the CWT accesses it via a wrapper, identified as CWT-GL. There are several candidate
libraries: GL4Java (supporting OpenGL 1.3), JOGL and LWJGL (supporting OpenGL 2.0). All these
libraries are available in various OSs, including Microsoft Windows, Mac OS, Linux and Solaris.
However, these libraries have problems that the development of the GL4Java is stopped, and Both
JOGL and LWJGL only work in J2SE 1.4 and beyond. However, the CWT is also required to support
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Figure 1. The architecture of the CWT.

old Java VMs as mentioned above. In order to resolve these problems, we can choose to use JNI to
access OpenGL via a wrapper, identified as CWT-JNI.

Two methods for graphics library selection are provided. First, the CWT can detect the available
graphics libraries and choose one in runtime automatically. Second, programmers can also designate
an implementation to use. If designated libraries are unavailable, the CWT uses CWT-AWT instead.

In the following subsections, we will introduce the following four design topics: the component
design; the event model; the painting model; and design issues for game applications.

Component design

For components, the hierarchy of the CWT is similar to that of Java AWT. The Composite pattern [35]
is the key design of Java AWT that allows programmers to build the complex GUI hierarchy by
recursively composing objects in a tree-like manner. Two abstract classes—Component and Con-
tainer—are the key classes of the entire hierarchy. Component is the root class of all the widgets.
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Figure 2. Four top containers of the CWT.

Container is a special component which can contain other components, including Container itself, and
can arrange and resize the components inside.

All heavyweight components of Java AWT except for the four containers, Window, Frame,
Dialog and Applet, as shown in Figure 2, are redesigned as lightweight components in the
CWT. The lightweight components need the canvas of a heavyweight one at the top level to draw.
The first three containers wrap the corresponding AWT components and use the wrapped components
for painting. When clients initiate these containers, the wrapped AWT components are created and
shown on the screen. However, the CWT Applet is designed in a different way from the above
three. The CWT Applet directly inherits Applet of Java AWT, since the browsers can only accept
Applet of Java AWT.

The wrapped heavyweight AWT containers act not only as canvases but also as bridges to pass
native events, such as window, mouse and keyboard events, from the AWT heavyweight containers to
the CWT components, as explained in the following subsection.

Event model

The CWT follows a delegation-based event model [36] used in Java 1.1 and beyond. However, the
event processing flow is slightly different from AWT. The four heavyweight containers mentioned in
the previous subsection can get native events from OS and process them immediately. The lightweight
components rely on the four heavyweight ones to get native events. In order to dispatch events to
the proper components, the CWT has an EventManager class that analyzes the original events,
regenerates new events, puts the new events into the internal event queue and then dispatches the events
to the proper components. Figure 3 illustrates an event processing example in the following steps.

1. A mouse moving event occurs in a wrapped Frame. Then EventManager implementing the
mouse motion listener receives this event.
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Figure 3. Event flow in the CWT.

2. The EventManager gets the mouse position from the event object and finds out which
lightweight components in Frame the mouse is on.

3. The EventManager generates a new CWT mouse event with translated position and puts it
into EventQueue.

4. The thread EventDispatchThread retrieves the event and dispatches it to the component
where the mouse is.

Painting model

The painting model is the key for rendering, and it is especially important for games. The CWT
follows the design of both Java AWT and Swing, which uses a callback mechanism for painting [20].
Two callback methods to be overridden in Component are paint and update. Programs place
the rendering code in the two methods and use the Graphics parameter object for drawing on
the component. The Graphics has several states to be configured: color, font, translation and clip
rectangle.

In order to improve the rendering speed, it is very important to re-implement Graphics to use
DirectX or OpenGL APIs. For example, in CWT-DX3, the drawImage methods of Graphics
are implemented by the blt method of DirectX. Both the fillRect and clearRect methods of
Graphics are implemented by the bltColorFillmethod of DirectX. Since the DirectX does not
provide text and figure rendering APIs, the Windows graphics device interface (GDI) is used instead.

Like Swing, the widgets of the CWT except for the four containers are all lightweight. To support
efficient lightweight painting and game-related features, the CWT follows the design of Swing.
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Figure 4. Five abstract classes that enable multiple implementations.

Many Swing features are applied to the CWT components. The most important features are
transparency, double buffering and the optimized repaint process [20].

The painting part of the CWT has five abstract classes, EventManager, Toolkit,
Graphics, Image and FontMetrics, as shown in Figure 4, in order to support implementations
for different graphics libraries. Any implementation (for painting) has to inherit and implement the five
classes. Note that, in contrast, these different implementations share the same code of the component
and event parts in the CWT. The EventManager, which is an additional class to the Java AWT, transfers
events from the Java AWT containers to the CWT, as illustrated in Figure 3. Other classes perform the
same tasks as those in the Java AWT.

Design issues for game applications

For high rendering performance, game programmers usually put pre-rendered images and textures into
the video memory of the graphics cards, so that the graphics cards can directly access them. However,
since the size of the video memory is limited, programs may not be able to put all the images into the
video memory. Therefore, some of the offscreen images will stay at the system memory. Practically,
programmers may need to put frequently used offscreen images into the video memory and move those
used infrequently to the system memory. Carefully managing the video memory resource can improve
the overall rendering performance.

There exist different approaches to the storing and accelerating of offscreen images among different
Java versions [37]. In Java 1.0 and 1.1, Windows GDI functionalities are used to accelerate offscreen
images. In J2SE 1.2 and beyond, the Windows GDI functionalities are discarded for outputting equal
rendering quality on different platforms. However, without hardware acceleration, this results in lower
rendering performance than Java 1.0 and 1.1 in some aspects such as text and figure rendering.
Since J2SE 1.4, new images, also called volatile images (whose class name is VolatileImage),
are designed to store image data into video memory, if possible. For example, on Microsoft Windows
platforms, the volatile images are implemented by DirectX or OpenGL. Furthermore, a new type of
image called a managed image is also introduced from J2SE 1.4. The managed images are stored in the
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system memory and can be automatically cached in the video memory for performance optimization
according to access types and frequency [37].

For most game applications, programmers want to control all the details for high rendering
performance. In order to give programmers such flexibilities, the CWT allows programmers to decide
the memory location when creating images, and allows them to copy images between the video memory
and system memory. The CWT-DX3 also supports direct access to DirectX 3.0 API of MSVM.
For example, programmers can get DirectDraw surfaces by calling the getDDSurface method
of Image of CWT-DX3. Using Toolkit, programmers can get DirectDraw objects for advanced
operations.

However, using DirectDraw, programmers may encounter the surface lost problem, which occurs
when users change the screen resolution or simply switch to another window. If surfaces are lost, the
image data are gone and must be restored or re-rendered [37]. The CWT tries to rebuild the lost surfaces
if the images are loaded directly from image files. Otherwise, if images are created and maintained by
programmers, CWT sets a flag ‘contentLost’ in the image objects, as the design of volatile images
since J2SE 1.4 [37].

DirectX and OpenGL both support high performance for 2D image rendering, but text and figure
rendering may still rely on Windows GDI. Game programmers usually use pre-rendered text and
figures, saved as images, to solve this problem. Although DirectX does not support figure drawing,
it can draw rectangles (including horizontal and vertical lines) by filling colors into them, as J2SE 1.4
does [37]. With hardware acceleration, these operations perform better than rendering non-rectangular
shapes.

When using Window GDI to draw texts or figures in a DirectDraw surface, programs need to get a
GDI-compatible device context (DC) handle for the surface. This will lock the surface and thus incur
extra overhead [38]. Thus, it is important to minimize the locking times to reduce the performance
overhead. In order to minimize the times, the CWT does not release the obtained DC handle, until any
of the image-blitting or rectangle-filling methods is invoked.

THE IMPLEMENTATION OF THE CWT

This section introduces our implementation approach and the current state of the implementation for
the CWT. There are two approaches to implement AWT compatible window toolkits: peer extension
and re-implementation.

First, for the peer extension approach, Java uses it to support pluggable look-and-feel on different
OSs by implementing the interfaces in package java.awt.peer. Although these interfaces were
originally designed for cross-platform operation, we can replace the peer implementation by a different
one, such as Charva [39]. With this approach, we need to modify no Java programs but just set the new
toolkit in system properties.

Second, the re-implementation approach is to rewrite the entire set of the java.awt package.
With this approach, programmers have to change all the import statements for ‘java.awt’ and
‘java.applet’ to ‘cwt’, and then recompile their programs.

The re-implementation approach has the following three advantages. First, better algorithms or
mechanisms, such as the RepaintManager in Swing, can be applied to the CWT to improve the
performance outside the peer part. Second, the CWT interface for game development may need to
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Table I. Added methods of the CWT (compared with AWT 1.1).

Classes Added methods

Applet cwt.Image getCwtImage()
cwt.AppletWrapper getAppletWrapper()

Toolkit cwt.Image createImage(. . . , boolean bVram)
com.ms.directX.DirectDraw getDirectDraw()

Component cwt.Image createImage(. . . , boolean bVram)
void setDoubleBufferedEnabled(boolean)
void setOpaque(boolean)

Graphics void flip()

Image boolean contentsLost()
com.ms.directX.DirectDrawSurface getDDSurface()
void transferToVideoMemory()
void transferToSystemMemory()

be extended in the future, but the peer extension approach can hardly achieve this goal. Third, the
CWT interface remains unchanged even when a new Java version adds more methods. With the peer
extension approach, the added methods in new Java versions have to be implemented in the CWT, or
the CWT could not be run in the new versions. For these reasons, our implementation is based on the
re-implementation approach.

The CWT architecturally supports different wrapper implementations, as shown in Figure 1.
Currently, we have implemented two, CWT-AWT and CWT-DX3. CWT-AWT, which is basically
trivial to implement, helps us to keep the portability in different JVMs in different OSs, but the
rendering performance is slightly worse than the original owing to extra wrapping overhead.

CWT-DX3 is implemented by using DirectX 3.0 provided by Microsoft Java SDK [32].
Using Microsoft Java SDK is a quick solution that allows us to access DirectX without building a bridge
via JNI. Although it is the drawback that only old DirectX functionalities are available, since the CWT
only supports 2D rendering now, DirectX 3.0 already performs with sufficiently high performance, as
shown in the ‘Experiments’ section later.

In the future, we will implement CWT-DX9 and CWT-GL. For CWT-DX9, we will simply port
the CWT to J#, which can access the latest DirectX 9.0. For CWT-GL, we will implement our own
OpenGL bindings via JNI (CWT-JNI). The OpenGL version can allow the CWT to be used in various
OSs with hardware acceleration, and is no longer limited to Microsoft Windows.

API Comparison to AWT 1.1

Table I summarizes the APIs that are incompatible with Java AWT 1.1 or are extensions from Java
AWT 1.1. These APIs are as follows.

• Incompatible Applet methods. In the cwt.Applet class, which inherits java.awt.
Applet, a method getAppletWrapper is added for obtaining the wrapped CWT
component. Programmers should use the wrapped component for some operations,
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such as the instanceof cwt.Component test, since the cwt.Applet class
is not a subclass of the cwt.Component (described in the ‘Component design’
subsection). Moreover, the method signature of the getImage method is changed to
‘cwt.Image getCwtImage()’. Programmers should use this method instead of the original
‘java.awt.Image getImage()’ method, since the cwt.Image class is not a subclass of
the java.awt.Image class.

• DirectX object related methods. In the Toolkit class, programmers can access the
DirectDraw object by calling the getDirectDraw method to get full control of rendering.
The DirectDraw object can be used to create offscreen images, query the capabilities of the
graphics card and perform other DirectDraw specific operations, supported by Microsoft Java
SDK [32]. Furthermore, programmers can get DirectDraw surfaces of the CWT images by
calling the getDDSurface method of the Image class to handle the pixels of the images.

• Double buffering related methods. The Component class adds the setDouble
BufferedEnabled method to support double buffering by turning on or off the rendering
strategy. The Graphics class can control the surface flipping by calling the flip method that
switches between the front and back buffers.

• Transparent component related methods. The Component class adds the transparency
support via the setOpaque methods. The CWT supports the rendering ordering and
elimination process for the transparency of the components.

• Offscreen image related methods. In order to achieve the best performance, the
createImage methods of the Component and Toolkit classes include a parameter
to indicate the memory location either in video memory or in system memory.
The image can be transferred between video memory and system memory by calling the
transferToVideoMemory and transferToSystemMemory methods of the Image
class. To deal with the surface lost issues of DirectDraw, the Image class adds a method, called
contentsLost.

• OpenGL related methods. The APIs for OpenGL are omitted since we have not implemented
CWT-GL.

EXPERIMENTS

In this section, we describe the design of a set of test programs as our benchmark to analyze the
rendering performance in different rendering environments, defined in the ‘Rendering environments’
subsection below. All the test programs were run on a personal computer with the following
specification: AMD K7 Barton 2500+CPU, 1 GB DDR400 RAM and an nVidia Geforce 4600 graphics
card with 128 MB VRAM. The driver version of the graphics card was ForceWare 66.93. The machine
ran on Microsoft Windows XP Professional Edition with service pack 2. The display resolution was
1280 × 1024 true color mode and font anti-aliasing was disabled.

Test programs

The test programs open windows with a size of 600 × 300 and render moving images, text and figures
20 000 times in each different rendering environment as follows.
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Figure 5. Transparent and opaque images for testing.

1. Images. These use a (110 × 110)-pixel2 transparent image and a (110 × 110)-pixel2 opaque
image, as shown in Figure 5. The transparent image is mirrored in runtime for the mirrored
image tests.

2. Text. This uses the simple string ‘Running’, with a font size of 12 pixels. Then, four randomly
generated Chinese characters are used each time to simulate a chat system and to test the
efficiency of the text cache mechanism of J2SE 1.4 and beyond.

3. Figures. These fill rectangles with (110 × 110)-pixel2 area and circles with 110-pixel diameter.

In brief, for each rendering environment, we use seven test programs respectively rendering the
following items: (1) transparent images; (2) opaque images; (3) mirrored transparent images; (4) simple
strings; (5) random strings; (6) rectangles; and (7) circles.

Rendering environments

In our experiments, we considered several different rendering environments for our test programs, as
shown in Table II. In order to determine the gap of the rendering performance between Java and C, we
implemented a set of test programs in C directly accessing DirectDraw in DirectX 7.0. The C programs
were built with the optimization of maximal speed (by setting the compiling option /O2) in Microsoft
Visual Studio 6.0 with service pack 6 installed. Such a rendering environment was identified as C-DX.

For the test programs in Java, we considered the following four kinds of Java rendering
environments.

1. The original Java AWT using the normal image objects. In this case, we used different JVMs,
Sun JVM 1.1 to 6.0 and MSVM, whose rendering environments were identified as AWT-J1 to
AWT-J6 and AWT-JM, respectively.

2. The original Java AWT using managed images supported by J2SE 1.4 to 6.0. The tests ran
with default settings, i.e. no system properties were set, which were identified as AWT-J4M to
AWT-J6M. On the other hand, when translucency acceleration was specifically enabled
(by setting both sun.java2d.translaccel and sun.java2d.ddforcevram system
properties to true) [40], we identified them as AWT-J4MS to AWT-J6MS.

3. The CWT with the AWT implementation as described in the ‘Architecture of the CWT’ section.
In this case, we used different JVMs, such as in (1), whose rendering environments were
identified as CWT-J1 to CWT-J6 and CWT-JM, respectively. Similarly to (2), the versions using
managed images were identified as CWT-J4M to CWT-J6M and CWT-J4MS to CWT-J6MS.
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Table II. Rendering times (in milliseconds) for each rendering environment.

Virtual Transparent Opaque Mirrored Simple Random
Language Library machine ID images images images strings strings Rectangles Circles

Java AWT MSVM 5.0.0.3810 AWT-JM 5156 1343 5171 187 312 125 656
JVM 1.1.8 10 AWT-J1 5140 1313 5125 328 1437 125 625
JVM 1.2.2 17 AWT-J2 1062 1078 4469 359 359 515 1828
JVM 1.3.1 17 AWT-J3 1109 1156 3890 375 11 594 531 2125
JVM 1.4.2 11 Image AWT-J4 1375 1359 2656 765 7641 922 1797

Managed AWT-J4M 265 266 2515 1078 7828 125 1031
image AWT-J4MS 266 266 328 1093 8141 125 1000

JVM 1.5.0 6 Image AWT-J5 1390 1375 2656 671 703 937 1812
Managed AWT-J5M 266 265 2516 968 1015 125 1031
image AWT-J5MS 266 265 265 969 1015 125 1046

JVM 1.6.0 b73 Image AWT-J6 1390 1453 2422 656 687 906 1156
Managed AWT-J6M 250 250 2281 953 1000 125 1000
image AWT-J6MS 265 328 266 110 1625 235 1547

CWT-AWT MSVM 5.0.0.3810 CWT-JM 5421 1390 5407 203 406 141 703
JVM 1.1.8 10 CWT-J1 5500 1406 5500 390 1562 141 641
JVM 1.2.2 17 CWT-J2 1312 1328 4719 593 640 750 2093
JVM 1.3.1 17 CWT-J3 1375 1422 4140 609 11 782 765 2406
JVM 1.4.2 11 Image CWT-J4 1657 1656 2953 1046 8609 1218 2109

Managed CWT-J4M 281 281 2734 1109 8578 140 1062
image CWT-J4MS 281 281 359 1110 8157 140 1062

JVM 1.5.0 6 Image CWT-J5 1656 1656 2938 937 984 1219 2109
Managed CWT-J5M 281 281 2735 1000 1062 140 1046
image CWT-J5MS 281 281 281 1000 1063 140 1047

JVM1.6.0 b73 Image CWT-J6 1656 1719 2687 891 937 1171 1422
Managed CWT-J6M 281 266 2500 969 1016 140 1031
image CWT-J6MS 312 359 312 140 1671 266 1562

CWT-DX MSVM 5.0.0.3810 CWT-DX3 266 265 265 203 484 156 1109

C DirectX7 C-DX 234 234 234 187 359 109 937

4. The CWT with the DirectX implementation as described in the ‘Architecture of the CWT’
section. This item was identified as CWT-DX3.

For simplicity, we use the wild card ‘*’ to indicate a group of rendering environments.
For example, AWT-* (or AWT-J*) includes the first and second kinds of rendering environments;
AWT-J*–AWT-J*M* includes the first kind of rendering environment only (excluding AWT-J*M and
AWT-J*MS); AWT-J*M* includes the second kind of rendering environment.

Analysis

The experimental results are shown in Table II. We analyze these results by considering the following
three comparisons: (1) CWT-DX3 versus C-DX; (2) CWT-DX3 versus AWT-*; and (3) CWT-J* versus
AWT-*.

CWT-DX3 versus C-DX

In general, the performance of CWT-DX3 is, on average, about 19.8% (or 64.9 ms) slower than those
in C-DX. The overhead is generally acceptable. Thus, Java game programmers can rely on the CWT
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to reach high performance (close to that in C/C++) without writing native code to get the benefit of
native graphics libraries.

CWT-DX3 versus AWT-*

In this comparison, we discuss the rendering of images, text and figures separately.
For the transparent and opaque images rendering tests, CWT-DX3 generally performs much better

than most of AWT-*. The performance of CWT-DX3 is much faster than that of AWT-J*–AWT-J*M*
by a factor ranging from 4.0 to 19.4 in the transparent and opaque image tests. This is because
CWT-DX3 runs with full DirectX acceleration, while AWT-J*–AWT-J*M* do not. On the other
hand, AWT-J*M* runs −23.8% to 6.4% faster than CWT-DX3 when the managed images are used.
The reason why AWT-J*M* and CWT-DX3 run roughly equally is that they all use DirectX.

The results of the mirrored transparent image tests show that AWT-J*–AWT-J*M* runs much more
slowly than CWT-DX3 by a factor ranging from 9.1 to 19.5, since they do not use DirectX for runtime
created images, such as mirrored and rotated images. AWT-J*MS runs nearly as fast as CWT-DX3
does owing to the new API enabling translucency acceleration for volatile images [23]. Nevertheless,
without proper system properties, AWT-J*M still performs much more slowly than the CWT-DX3 by
a factor ranging from 8.6 to 9.5.

In Table II, several inconsistent results are found: AWT-J4, AWT-J5 and AWT-J6 are 26.1% to 34.8%
slower than AWT-J2 in transparent and opaque image tests. In this paper, this phenomenon is said to be
performance inconsistent when a new version performs much more slowly than an old version. Such a
phenomenon may make programmers confused and therefore it is hard to tune up the performance.

In the text rendering tests, we find more serious performance-inconsistent results. Old Java versions,
such as AWT-JM, AWT-J1, AWT-J2 and AWT-J3, may produce better results than those of newer
versions AWT-J4* to AWT-J6*, excluding AWT-J6MS which produces the best result. For the simple
string tests, the reason for this is that in order to have a similar quality on all platforms, the
J2SE renders the text by itself [37], not by the underlying OSs, which introduces large overheads.
AWT-J*M* excluding AWT-J6MS is very slow, because the CPU has to access volatile images stored
in the video memory, which limits the performance of text drawing. CWT-DX3, AWT-JM, AWT-J1
and AWT-J6MS are the fastest versions. The first three simply use Windows GDI. For AWT-J6MS,
Sun has optimized its text cache mechanism and stored the cached glyphs in video memory [41], so it
generates a good result. AWT-J6M still does not benefit from this mechanism, since the new text cache
needs the translucent acceleration support.

The random string tests can reflect some real applications, such as chat systems. AWT-J3 and
AWT-J4* introduce huge overhead upon caching the text images when first rendering. The caching
mechanism makes them perform much more slowly than CWT-DX3 by a factor ranging from 15.8
to 24.0. Since the cache mechanism of J2SE 5.0 and Java SE 6.0 has been improved [23,41], the
rendering time of AWT-J5* and AWT-J6* is reduced greatly to only 1.4 to 3.4 times slower than that
of CWT-DX3.

The rectangle filling tests show that AWT-JM, AWT-J1, AWT-J*M* and CWT-DX3 all use the
special optimization mentioned in the ‘Design issues for game applications’ subsection to perform this
task. Owing to the non-hardware-accelerated rendering pipeline, AWT-J2 to AWT-J6 fills rectangles
more slowly than CWT-DX3 by a factor ranging from 3.3 to 6.0.
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In the circle filling tests, the performance of CWT-DX3 is slower than those of AWT-JM and
AWT-J1 by a factor of about 1.8, is roughly equal to those of AWT-J6 and AWT-J*M* and is faster
than those of AWT-J2 to AWT-J5 by a factor ranging from 1.6 to 1.9. The performance-inconsistency
still exists in J2SE. These tests show that DirectX does not accelerate figure rendering, so Windows
GDI is used to perform this task. However, mixing DirectX with Windows GDI does not perform as
well as Windows GDI only, which is used in Java 1.1.

The analysis of the comparison can be summarized as follows.

• When compared with AWT-JM and AWT-J1, CWT-DX3 is much faster for rendering images,
but slower for rendering rectangles and circles. In text rendering tests, CWT-DX3 is faster than
AWT-J1, but slightly slower than AWT-JM.

• When compared with AWT-J2 to AWT-J6, CWT-DX3 renders almost all the test items much
faster.

• When compared with AWT-J*M*, the performance of CWT-DX3 is roughly equal for rendering
transparent images opaque images and circles, much faster for strings and slightly slower for
rendering rectangles. If proper system properties are configured, AWT-J*MS and CWT-DX3
run roughly equally when rendering mirrored transparent images; otherwise, AWT-J*M still run
much more slowly than CWT-DX3.

In addition, we also observe a serious problem, performance inconsistency, among AWT-*, especially
for strings and figures.

CWT-J* versus AWT-*

Since the CWT wraps the four native containers to get events, it does introduce extra overheads.
Comparing CWT-J* with the corresponding AWT-J*, we find that the average overhead is 10.3%
(or 154.9 ms).

Real application

We have applied the CWT to one Internet applet game, Mahjong, developed in Java 1.1 by [9–11], and
tested the rendering performance, as shown in Figure 6. The window size of the game is 760 × 580.
The tested game panel consists of about 100 transparent images (half of the images are rotated and
scaled in runtime), about 80 characters, 25 rounded corner rectangles and 10 rectangles. Each of the
tests is performed by rendering the whole game panel 10 000 times.

The results for the benchmark are listed in Table III. CWT-DX3 improves the rendering performance
by a factor of 7.58 when compared with AWT-JM, and by a factor ranging from 3.15 to 5.91 when
compared with the newer JVMs, AWT-J2 to AWT-J6. CWT-DX3 also runs 17%, 6% and 10% faster
than AWT-J4MS, AWT-J5MS and AWT-J6MS, respectively. However, if the system properties are not
set properly, the CWT runs faster than AWT-J*M by a factor ranging from 2.68 to 3.13.

We analyzed the performance in terms of frame rates, since the frame rate is an important criterion
for games. The minimal acceptable frame rate for smooth animation is about 30 frames per second
(FPS). For some highly interactive games such as first person shooting games, the acceptable frame
rate is around 60 FPS. In Table III, the frame rate of AWT-JM is 24.66 FPS, below the acceptable
requirement. In slower computers, the frame rate could be worse. The frame rate of CWT-DX3 is
186.86 FPS. This indicates that CWT-DX3 can maintain acceptable frame rates, even for some slower
computers for the above game application.
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Figure 6. A game screenshot using the CWT.

Discussion

In this subsection, we discuss the issues of performance, deployment and the limitation of the CWT.
From the performance analysis in the previous subsection, CWT-DX3 reaches good rendering

performance and is generally better than AWT-J*. Thus, with the help of the CWT, applet game users
who use MSVM can obtain a rendering performance close to that of using J2SE 1.4 and beyond. Since
MSVM, J2SE 1.4 and J2SE 5.0 cover nearly 97% users [33], this means that applet games with the
CWT can achieve good rendering performance in most applet environments.

A serious problem for Java is performance inconsistency. For example, although Swing components
(AWT-J2) were developed for portability and more GUI functionalities, the performance of text and
figure rendering is worse than that with AWT-J1. Since J2SE 1.4, Sun has tried to use volatile images,
but has made the performance of text rendering even worse. Even though the same Java VM version
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Table III. Benchmark on Mahjong.

ID Milliseconds Factor Frames per second

AWT-JM 405 547 7.58 24.66
AWT-J1 316 328 5.91 31.61
AWT-J2 168 391 3.15 59.39
AWT-J3 170 156 3.18 58.77
AWT-J4 223 375 4.17 44.77
AWT-J4M 167 266 3.13 59.79
AWT-J4MS 62 594 1.17 159.76
AWT-J5 197 234 3.69 50.70
AWT-J5M 145 187 2.71 68.88
AWT-J5MS 56 968 1.06 175.54
AWT-J6 193 140 3.61 51.78
AWT-J6M 143 672 2.68 69.60
AWT-J6MS 58 797 1.10 170.08
CWT-DX3 53 515 1.00 186.86

is used, the performance may be different when different APIs are used and different system properties
are configured. Most importantly, the performance inconsistency makes it difficult for programmers to
predict the overall rendering performance.

For Java AWT/Swing, Sun’s approach is to strenuously enhance the performance of Java
AWT/Swing while still making them general for all programmers. For example, in J2SE 1.4 and
beyond, managed images can be copied automatically into the video memory for performance
optimization according to access types and frequency [37]. However, for most game applications,
programmers need to control all the details for high performance, such as complete DirectX or OpenGL
functionalities, memory location of the images and even the timing of garbage collection. Therefore,
it would be a better approach to create API mappings such as GL4Java, JOGL and LWJGL, and allow
them to work with AWT/Swing with high performance, as the CWT does.

Deployment is another issue in applet game development. For Web applets, programmers have few
choices of setting environment. The JRE of applets may be neither the expected versions nor the
proper configuration. In the case of using unexpected JRE versions, if applet game programmers want
their games to be playable in most environments, the best JRE version at which programmers should
target would be Java 1.1 owing to compatibility. However, the rendering performance is limited in
Java 1.1. In contrast, the CWT can still perform well in this version. In the case of using improper
configuration, although the performance of AWT-J*MS is close to that of CWT-DX3, AWT-J*MS
needs proper system properties to enable some of its hardware acceleration features. Unfortunately,
the settings are disabled by default. Therefore, users need to set them manually. However, in some
computer systems, for example those supported at Internet coffee shops, users are not granted sufficient
system permissions to modify the settings.

Although the CWT reaches good rendering performance in MSVM, it still has some drawbacks.
First, the CWT is not designed for general-purpose applications. Second, when no hardware
acceleration is available, the CWT switches to CWT-AWT implementation, which incurs extra
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overhead (about 10.3%). Third, using the CWT cannot benefit from any additional features supported
by new Java versions but not implemented by the CWT. Finally, in order to access the hardware
acceleration via JNI, applets using CWT need to be signed and acquire permissions from users when
executed in Web browsers.

CONCLUSIONS

This paper designs a portable AWT/Swing architecture, called the CYC Window Toolkit (CWT),
for high rendering performance for Java games development, especially for applet games written in
Java 1.1.

The features of the CWT can be summarized as follows.

(1) High performance is reached in Java 1.1 applications and applets when using DirectX to render
widgets. The CWT performs well in MSVM, which is currently used by about one-third of Web
users. We have demonstrated the performance of the CWT by applying it to a real applet game,
Mahjong [9]. In the benchmark we measured, the performance of the game running in MSVM
was improved by a factor of 7.58, and was about 10% faster than the latest Java SE 6.0 (build 73)
with full hardware acceleration enabled.

(2) AWT/Swing compatible widgets are supported. Hence, the CWT can be easily applied to existing
Java games.

(3) A general architecture that supports multiple graphics libraries such as AWT, DirectX and
OpenGL, multiple virtual machines such as Java VM and .NET CLR, and multiple OSs such
as Microsoft Windows, Mac OS and UNIX-based OSs is defined.

(4) Programmers are provided with one-to-one mapping APIs to directly manipulate DirectX objects
and other game-related properties for advanced programmers.

The contributions of this paper include the following five points: (1) a general and portable widget
architecture for Java game development has been defined; (2) CWT-AWT and CWT-DX3 have been
implemented; (3) the high performance of the proposed design has been demonstrated experimentally;
(4) the performance inconsistency in Java versions has been pointed out; (5) the usability of the CWT
by applying it to a real applet game, Mahjong, has been demonstrated.

Future extension includes OpenGL implementation and DirectX 9.0 implementation. In the former,
since OpenGL are available on many platforms, the OpenGL implementation is better than DirectX
implementation for cross-platform consideration. In the latter, since the .NET J# can access DirectX
9.0 via built-in APIs and Microsoft provides tools to convert Java 1.1 code into J# code, using .NET J#
is another alternative so as to access the latest DirectX.
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