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Abstract

This paper presents an integrated fuzzy-optimization customer grouping based logistics distribution methodology for
quickly responding to a variety of customer demands. The proposed methodology involves three main mechanisms: (1)
pre-route customer classification using fuzzy clustering techniques, (2) determination of customer group-based delivery ser-
vice priority and (3) en-route goods delivery using multi-objective optimization programming methods. In the process of
pre-route customer classification, the proposed method groups customers’ orders primarily based on the multiple attributes
of customer demands, rather than by static geographic attributes, which are mainly considered in classical vehicle routing
algorithms. Numerical studies including a real-world application are conducted to illustrate the applicability of the pro-
posed method and its potential advantages over existing operational strategies. Using the proposed method, it is shown
that the overall performance of a logistics distribution system can be improved by more than 20%, according to the numer-
ical results from the case studied.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Integrating both the operations of pre-route customer grouping and en-route goods delivery to customers is
key to the effectiveness and efficiency of logistics distribution. According to the practical procedures of logis-
tics distribution, processing customer orders and delivering them via suitable freight vehicles are regarded as
two key elements for efficient logistics service. Furthermore, quick response to a variety of customer demands
for goods delivery service appears to be a basic requirement for a successful third-party logistics enterprise in
today’s competitive business environment. Herein, the three sequential tasks of customer group-based vehicle
loading, dispatching and routing should be well coordinated so as to enhance the effectiveness and efficiency of
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such demand-responsive logistics distribution. In previous literature [1–3], it has also been pointed out that
both customer-based order clustering and vehicle routing strategies should be integrated in formulating com-
prehensive vehicle routing problems.

Despite the urgent need of an integrated vehicle dispatching strategy for logistics distribution, there are few
studies on mathematically formulating the corresponding problems. Correspondingly, most of previous liter-
ature appears to aim at either the pre-route planning phase (e.g., logistics resource allocation) or the en-route
operational phase (e.g., vehicle routing operations). Some typical models are exemplified below.

According to Bramel and Simchi-Levi [2], the deterministic vehicle routing problems (DVRP) are classified
into four groups, depending on the separability of customer demands and time window constraints. Given cus-
tomer demands and corresponding geographical attributes, the typical DVRP algorithms intend to find a set
of routes with minimal routing costs and penalties so as to satisfy the given customer demands subject to cor-
responding resource constraints. Relative to DVRP, stochastic vehicle routing problems (SVRP) cope partic-
ularly with the uncertain patterns of customer demands by assuming that they follow specific probability
distributions. Such a postulation arises particularly when logistics servers deliver goods to a given set of local
warehouses in response to the uncertainty of local customer demands. Nevertheless, the effects of the variety of
demand attributes on the performance of the existing VRP models are rarely investigated in previous research,
either in the deterministic domain [4–7] or the stochastic domain ([8–12]). Recent years have also seen growing
interest in fleet management to address the issues of assigning given loads to given sets of vehicles and deter-
mining vehicle routes, subject to corresponding resource constraints [13–23]. Further sophisticated solution
techniques can be seen elsewhere [24,25,14,18,26]. Nevertheless, research effort in terms of clustering customer
orders, and the corresponding effects of these order attributes on the performance of either vehicle loading or
vehicle routing in the ITS-induced dynamic traffic environment appear inadequate in the previous literature.

In essence, the logistical distribution problem investigated in this study may differ from typical VRP-related
issues from the following two viewpoints. First, logistics refers to an integrated procedure aiming at providing
value-added logistics services driven by customer needs. Therefore, all the related operational tasks including
customer order processing, logistics resource allocation, and vehicle dispatching and routing should be coor-
dinated to fulfill customer needs, effectively and efficiently. Second, minimizing transportation cost, as pursued
in most previous VRP-related literature, does not necessarily lead to enhancing the competitiveness of logis-
tical operations because the transportation functionality is merely one of the activities in logistics. Other logis-
tical activities, including inventory and order management, are also vital in determining the performance of
logistics systems. More specifically, there is a trade-off relationship between the performances of transporta-
tion and of inventory in logistics, thus leading to plausible solutions as existing VRP methods are directly
employed. Similar arguments can also be found elsewhere [27]. Therefore, a certain number of researchers
[28–31] have devoted themselves to integrating other core items of logistics such as inventory and customer
demand satisfaction with freight transportation in searching for optimal solutions for logistics management.

Accordingly, the major purpose of this study is to demonstrate the necessity of grouping customer orders
conducted previous to vehicle routing, and the resulting advantages of integrating the these operational phases
in logistics distribution. Here, we insist on the idea that the identification of customer groups should be exe-
cuted prior to freight fleet management and vehicle routing in a comprehensive logistics distribution opera-
tional procedure. Such a pre-route planning phase appears to be important particularly in the daily large-
scale logistics distribution cases, where there are a great number of diverse goods delivery demands dispersing
in urban areas. Furthermore, the resulting customer demands coupled with the corresponding demand attri-
butes may vary significantly with each short time period of vehicle dispatching.

In this study, we may shed light on the tasks undertaken to integrate the phases of pre-route customer clas-
sification and the resulting group-based goods delivery, rather than on the development of specific VRP algo-
rithms. Here, we propose an integrated customer group-based logistics distribution methodology which
integrates three operational phases, including (1) pre-route customer classification, (2) determination of cus-
tomer group-based delivery service priority, and (3) en-route goods delivery. In the phase of route customer
classification, the principles of fuzzy clustering technologies are employed to develop the corresponding algo-
rithm aiming at grouping customers under the condition that the attributes of customer demands are time-
varying, and hard to quantify completely. Then, using multi-objective programming approaches, the service
priority associated with each clustered customer group and corresponding vehicle routing strategies are
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determined in the second and third phases, respectively, where each vehicle route is specified to serve the cus-
tomers assigned to a given customer group.

The rest of the paper is organized as follows. The methodology development, including the architecture of
the proposed logistics distribution system and corresponding models used in the aforementioned three sequen-
tial phases, is described in Section 2. Section 3 depicts numerical results generated using the proposed method.
Finally, concluding remarks are summarized in Section 4.

2. Methodology development

The architecture of the proposed logistics distribution system is composed of three sequential operational
phases: (1) pre-route customer classification, (2) determination of customer group-based delivery service pri-
ority, and (3) en-route goods delivery. Fig. 1 illustrates the proposed system architecture. Here, the corre-
sponding computational algorithms embedded in these three phases will be resumed each time when a new
logistics distribution mission is undertaken. Corresponding models executed in these phases are detailed in
the following subsections.

2.1. Phase-I: pre-route customer classification

This phase aims to dynamically group multi-attribute customer orders using fuzzy-clustering techniques.
Considering the existence of qualitative and quantitative attributes of customer demands for logistics service,
order
selection
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time interval k=k+1
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functions of a customer group-based
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Fig. 1. Architecture of methodology.



Table 1
Definitions of order-oriented customer attributes

Notation Definition Explanation

w1
i ðkÞ The perceived volume of goods scheduled to be delivered

to a given customer i in a given time interval k

Here, w1
i ðkÞ is regarded as a key factor in determining types

of vehicles needed to serve given customer groups
w2

i ðkÞ The perceived value of goods scheduled to be delivered to
a given customer i in a given time interval k, which to a
certain extent may depend on the market price of the
product

In real-world logistics distribution operations, high-value
products might be segmented from other products,
and handled with specific security measures for safe delivery

w3
i ðkÞ The external compatibility of the goods ordered by a

given customer i, relative to the goods scheduled to be
delivered to a given customer group in a given time
interval k

This attribute is specified for the efficiency of providing bulk
delivery service to customers in the same group. The higher
the external compatibility is among the goods of a given
customer group, the more efficient the bulk delivery service
is in logistics distribution operations

w4
i ðkÞ The internal compatibility among the goods scheduled to

be delivered to a given customer i in a given time interval k

In contrast with w3
i ðkÞ, w4

i ðkÞ indicates the compatibility of
goods associated with customer i, and here it can be used to
determine if multiple deliveries are needed to serve a given
customer

w5
i ðkÞ The geographical vicinity associated with a given customer

i, relative to a given customer group in a given time
interval k

Here, the location associated with any given customer is
characterized with a two-dimensional variable. Then, those
neighboring customers can be served together in logistical
distribution operations

w6
i ðkÞ The temporal proximity in terms of the delivery deadline

associated with a given customer i, relative to the date of
the present vehicle dispatching

In real-world operations, customers associated with close
delivery deadlines can be assigned to given groups, and
served express by specific vehicular fleet in the process of
logistical distribution

w7
i ðkÞ The temporal proximity in terms of the daily delivery time

window associated with a given customer i, relative to a
given time interval k

In real-world logistics distribution operations, customers
with close time windows tend to be served together for
convenience. Compared to w2

i ðkÞ, this variable aims to
group customers based on their similarity in delivery
time of day
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a hybrid fuzzy-hierarchical clustering method1 is proposed to perform the corresponding pre-route customer
classification mechanism in this phase. Correspondingly, each customer order is regarded as a datum with
multiple order-oriented attributes, where some of these attributes are quantitative (e.g., the volume of goods
and delivery deadline), and others are qualitative (e.g., type of delivery service). To provide efficient group-
based goods delivery service to those customers with similar demand attributes, a fuzzy clustering based
approach is proposed to dynamically classify customer orders into appropriate groups before vehicle dispatch-
ing. The clustered customer groups identified in this phase is then used as the input of the second phase for the
determination of their service priority.

In this phase, seven order-oriented customer attributes are specified as determinants of grouping customers,
according to the analytical results from our previous research [37]. The notations and corresponding descrip-
tions of these specified attributes are summarized in Table 1. Herein, the length of a given time interval k

shown in Table 1 is defined as the temporal headway between two logistics distribution missions in the busi-
ness hours of one day.

Based on the specified customer order attributes, we can specify a (7 · 1) attribute vector associated with
each given customer i (Wi(k)) as
1 Th
concep
[32–36
hierarc
unkno
the pre
WiðkÞ ¼ ½w1
i ðkÞ;w

2
i ðkÞ;w

3
i ðkÞ;w

4
i ðkÞ;w

5
i ðkÞ;w

6
i ðkÞ;w

7
i ðkÞ�

T
: ð1Þ
e proposed hybrid fuzzy-hierarchical clustering approach is referred to as an unsupervised fuzzy clustering technique, which uses the
ts of both fuzzy and hierarchical clustering in fuzzy data analysis. Recently, there has been the increasing use of similar techniques
,3]. In comparison with the fuzzy c-means algorithm, which is one of the most popular fuzzy clustering algorithms, the hybrid fuzzy-
hical clustering algorithm appears more applicable in cases where a great amount of multi-attribute data needs to be assigned to an
wn number of clusters, subject to limited computational time. Thus, such a fuzzy clustering technique is used in this study to address
-trip customer classification issue in the area of logistical distribution.
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Then, a fuzzy clustering-based algorithm, which includes the procedures of (1) binary transformation, (2) gen-
eration of fuzzy correlation matrix, and (3) multi-attribute customer grouping, is proposed to perform the
function of pre-route customer classification. Details about these procedures are described in the following.

2.1.1. Binary transformation

The function of binary transformation executes the transformation of the measurements of order-oriented
customers’ demand attributes into binary data to facilitate fuzzy clustering. As mentioned previously, these
demand attributes are either quantitative (e.g., w1

i ðkÞ and w2
i ðkÞÞ or qualitative (e.g., w3

i ðkÞ, w4
i ðkÞ, w5

i ðkÞ,
w6

i ðkÞ, and w7
i ðkÞÞ. To efficiently cluster these multi-attribute customer order data sets, such a data-processing

procedure is needed. Here, two transitional steps are involved. First, for each given customer order datum, the
corresponding order-oriented customer attributes are measured with five linguistic terms, including ‘‘very
high’’, ‘‘high’’, ‘‘medium’’, ‘‘low’’, and ‘‘very low’’, which represent five levels of qualitative criteria. These
measured attributes are then transformed into binary codes, where each linguistic criterion is represented
by a 4-bit binary code, e.g., ‘‘0000’’ for the linguistic term ‘‘very low’’ and ‘‘1111’’ for ‘‘very high’’, as illus-
trated in Table 2.

Accordingly, any given pth order-oriented attribute associated with customer i (wp
i ðkÞ) can then be trans-

formed into a binary code with four bits (i.e., rp
i;jðkÞ for j = 1,2,3, and 4), and is given by
Table
Defini

Lingui

‘‘very
‘‘high’
‘‘medi
‘‘low’’
‘‘very
wp
i ðkÞ ¼ ½r

p
i;1ðkÞ; r

p
i;2ðkÞ; r

p
i;3ðkÞ; r

p
i;4ðkÞ�: ð2Þ
A numerical example is illustrated as follows. Given that the order of a given customer i is served in a given
time interval k, and the order-oriented customer attribute associated with the given customer i in terms of the
external compatibility of goods (i.e., w3

i ðkÞÞ is linguistically measured as ‘‘high’’, then w3
i ðkÞ is coded (1, 1,1,0),

according to Table 2.
To facilitate data processing, the standardization procedure of rp

i;jðkÞ is proposed, and the corresponding
standardized value of rp

i;jðkÞð~rp
i;jðkÞÞ is given by
~rp
i;jðkÞ ¼

rp
i;jðkÞ � �rp

j ðkÞ
Sp

j ðkÞ
; ð3Þ
where �rp
j ðkÞ and Sp

j ðkÞ correspond to the values of mean and standard deviation with respect to rp
i;jðkÞ, respec-

tively, and are denoted by
�rp
j ðkÞ ¼

PM
i¼1r

p
i;jðkÞ

M
; ð4Þ

Sp
j ðkÞ ¼

PM
i¼1ðr

p
i;jðkÞ � �rp

j ðkÞÞ
2

M � 1

" #1
2

: ð5Þ
Here, M represents the total number of order entries scheduled to be processed in the given time interval k.
Accordingly, we have the standardized binary demand attribute ð~vp

i ðkÞÞ, which is given by
~vp
i ðkÞ ¼ ½~rp

i;1ðkÞ; ~r
p
i;2ðkÞ; ~r

p
i;3ðkÞ; ~r

p
i;4ðkÞ�: ð6Þ
2
tions of 4-bit binary codes for linguistic criteria

stic criterion 4-Bit binary code

1st bit 2nd bit 3rd bit 4th bit

high’’ 1 1 1 1
’ 1 1 1 0
um’’ 1 1 0 0

1 0 0 0
low’’ 0 0 0 0
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2.1.2. Generation of fuzzy correlation matrix

In this procedure, a time-varying M · M fuzzy correlation matrix (W(k)) is estimated employing the stan-
dardized demand attributes measured in the previous procedure, where each element (xr,s(k)) of W(k) repre-
sents the correlation2 between a given pair of customers r and s. The mathematical forms of W(k) and xr,s(k)
are given by
2 Ac
datum
WðkÞ ¼

x11ðkÞ x12ðkÞ x13ðkÞ . . . x1MðkÞ

x21ðkÞ x22ðkÞ . . . . . . ..
.

x31ðkÞ . . . . .
. ..

.

..

.
. . . . . . . .

. ..
.

xM1ðkÞ . . . . . . . . . xMMðkÞ

26666666664

37777777775
M�M

; ð7Þ

xr;sðkÞ ¼ 1� 1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXP

p¼1

XH
h¼1

~rp
rhðkÞ � ~rp

shðkÞ
� �2

vuut ; ð8Þ
where a represents a parameter pre-determined for the upper and lower boundaries of xr,s(k), i.e., 1 and 0,
respectively; P and H represent the number of order-oriented customer attributes and the number of bits
pre-specified, and as noted above, they are 7 and 4, respectively. It is also worth noting that according to
Eqs. (7) and (8), W(k) turns out to be a symmetric matrix.

However, according to the fundamentals of fuzzy clustering technologies, the estimated fuzzy correlation
matrix W(k) should be further processed through the proposed max–min composition operation (i.e.,
W(#)(k) �W(#)(k), where � represents a composition symbol) to ensure the consistence of the estimated fuzzy
correlations. Here, in the proposed max–min composition routine, each element ðxð#Þr;s ðkÞÞ of W(k) should be
processed at each given iteration (#) by
xð#Þr;s ðkÞ ¼ max
M

t¼1
min

M

t¼1
xð#�1Þ

r;t ðkÞ;xð#�1Þ
t;s ðkÞ

h i� �
; 8ðr; sÞ: ð9Þ
Such a routine should be continued until the following condition holds:
IF fWð#ÞðkÞ �fWð#ÞðkÞ ¼ fWð#ÞðkÞ; THEN fWð#ÞðkÞ is the finalized matrix; ð10Þ

where fWð#ÞðkÞ represents the resulting composite fuzzy correlation matrix of W(k) obtained at a given itera-
tion #.

2.1.3. Customer grouping

This procedure clusters customer orders into several groups so that those customer orders with relatively
high similarity are assigned to the same group. Correspondingly, after conducting the customer grouping pro-
cedure, the demand attributes of customers in a given group are highly mutually similar, and however, can be
significantly different from those of any other groups. To execute this mechanism, five major computational
steps are involved in the proposed algorithm, and they are summarized as follows:

Step 0: Initialize the computational iteration. For this, set the iteration index p = 1; input the estimated fuzzy
correlation matrix ðfWðkÞÞmeasured in the previous procedure; start the iteration from the first column
of the processed fuzzy correlation matrix ð~w1ðkÞÞ, and let s = 1. Herein, we target the first customer to
trigger the customer grouping procedure. It is also noteworthy that any selected target customer is
regarded as the representative of a given customer group in the following cluster process.
cording to the theories of fuzzy clustering [38], here xr,s(k) can be interpreted as the degree of the similarity between the demand
of customer r and that of customer s, thus bounded between the values 0 and 1.
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Step 1: Given a target customer s, remove the row of fWðkÞ associated with customer s ð~wðkÞTÞ. Once a cus-
tomer is selected as the target customer denoted by ~wsðkÞ, it is not necessary to re-cluster the target
customer in this algorithm. Accordingly, the corresponding row ~wsðkÞT is redundant, and should be
ignored to facilitate the following clustering process.

Step 2: Find the maximum element in ~wsðkÞ, denoted by x̂rsðkÞ, and then conduct the following cluster pro-
cedures in sequence:
• If the condition x̂rsðkÞ > k1 holds, then assign customer r to the same group as the target customer s,

and remove the row of ~W ðkÞ associated with customer r ð~wrðkÞTÞ. This represents that the given cus-
tomer r is assigned to the same group as that of the target customer s.

• Go back to Step 2 to continue checking the other elements of ~wsðkÞ until there does not exist any
element that meets the aforementioned clustering condition. If so, remove ~wsðkÞ from fWðkÞ, repre-
senting that all the elements of ~wsðkÞ have been considered, and thus the corresponding clustering
process based on the demand attributes of the target customer s can be ended.

• If there are customers assigned at this stage, then let all the assigned customers be the target custom-
ers (i.e., let s = r), and go back to Step 1 to process the elements of fWðkÞ associated with these target
customers.

• Let p = p + 1, and then s = p.

Step 3: Conduct the following termination rules to stop the mechanism of customer grouping:

• If no column remains, then stop the cluster procedure.
• Else, go back to Step 1 for the next iteration.
Herein, k1 is a pre-determined threshold for identifying the relative similarity between a given pair of customers,
and in practice it can be specified by the decision-makers of logistics operations. Suppose that N cus-
tomer groups are identified in a given time interval k through the aforementioned customer classification pro-
cedure. Then, we have the processed demand attribute matrix associated with a given customer group n (Cn(k))
given by
CnðkÞ ¼ ½Win
1
ðkÞjWin

2
ðkÞj � � � jWin

‘n
ðkÞ�P�‘n

; ð11Þ
where Cn(k) is referred to as a X · ‘n group-based demand attribute matrix which is composed of the demand
attribute vectors of ‘n customers (i.e., Win

1
ðkÞ;Win

2
ðkÞ; . . . Win

‘n
ðkÞÞ; and ‘n represents the total number of custom-

ers involved in a given group n. Note that herein each attribute vector has the same dimension as the raw cus-
tomer demand attribute vector Wi(k) shown in Eq. (1).

In addition, detailed rationales of fuzzy clustering methodology and related applications can also be found
elsewhere [39–41,35,3], and thus they are omitted in this paper.

2.2. Phase-II: determination of customer group-based delivery service priority

In this phase, a respective algorithm is proposed to determine the service priority associated with the clus-
tered customers groups subject to the availability of the present fleet size. The following summarizes the major
steps executed in this algorithm:

Step 1: Given a customer group n, select a target customer in
� which is geographically closest to the distribution

depot compared to other customers in the same group.
Step 2: Calculate the corresponding delivery service priority determinant associated with the customer group n

(mn(k)) using
mnðkÞ ¼
P‘n

in¼1 ~xin;in� ðkÞ � w2
inðkÞ þ w3

inðkÞ þ w5
inðkÞ þ w7

inðkÞ
� �� �P‘n

in¼1 ~xin;in� ðkÞ
; ð12Þ
where in represents a customer index associated with the customer group n; and ~xin;in� ðkÞ denotes the
processed fuzzy correlation between a given customer in and the target customer in

�. Here, the 2nd,
3rd, 5th, and 7th types of demand attributes represented by w2

inðkÞ;w
3
inðkÞ;w

5
inðkÞ, and w7

inðkÞ, respec-
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tively, are viewed as the primary demand-driven factors that determine the group-based distribution
priority at this stage.

Step 3: Determine the group-based service priority subject to the availability of the fleet size. This step starts
by examining the customer group ðn̂Þ associated with the highest value of mn̂ðkÞ according to the fol-
lowing rules:
• IF the current fleet size satisfies the basic distribution requirement, as shown in Eq. (13), for deliv-

ering goods of the target customer group ðn̂Þ in the present time interval,
• THEN include the given target customer group in the distribution mission in this time interval, asso-

ciate the targeted customer group with a given priority3 u~nðkÞ in order, remove it from the group can-
didates, and then go back to Step 3 to continue to check the remaining customer groups with this rule;

• OTHERWISE exclude the target customer group together with the remaining groups from the ser-
vice list in the present time interval, and terminate the execution of this phase.
Herein, the order-oriented demand attribute w1

in̂ðkÞ can be employed to determine if the aforemen-
tioned requirement condition meets the following constraint:
3 He
X X
re, a
8in̂
w1

in̂ðkÞ 6
8c2C

NcðkÞ � an̂
cðkÞ � Lc; ð13Þ

where subscript c is a given type of vehicle; an̂
cðkÞ corresponds to the loading factor associated with

vehicle type c for the goods types of customer group n̂, and is bounded within the values 0 and 1;
Nc(k) represents the number of type c vehicles which are available in a given time interval k; C is
the set of vehicle types that can provide the delivery service for customer group n̂; and Lc represents
the loading capacity associated with vehicle type c.
Herein, only those customer groups involved in the service list of the present time interval are considered in
the following execution phase (i.e., Phase-III); the other groups are decomposed, then being re-clustered with
new customer order entries in the next time interval.

2.3. Phase-III: en-route customer group-based goods delivery

In this phase, a composite multi-objective optimization approach is proposed to formulate the problem of
en-route goods delivery for multiple customer groups. Here, each given customer group, planned to be served
in the present time interval, is associated with two respective objective functions, including (1) demand-ori-
ented penalties for violating customers’ time-of-day windows and (2) supply-oriented operating costs of vehi-
cle routing. Accordingly, the generalized form of the multi-objective functions (minF(k)) is given by
min FðkÞ ¼ ½F~nðkÞ; ~n ¼ 1; 2; . . . ; eN �; ð14Þ

where F(k) represents the ð2eN � 1Þ aggregate multi-objective vector which involves all the corresponding mul-
ti-objective vectors ðF~nðkÞÞ associated with the customer groups planned to be served in a given time interval k;
and eN represents the total number of customer groups identified in the previous phase. Herein, the corre-
sponding multi-objective vector (F~nðkÞ) associated with a given customer group ~n can be further expressed by
F~nðkÞ ¼
f ~n

1 ðkÞ
f ~n

2 ðkÞ

	 

; ð15Þ
where f ~n
1 ðkÞ and f ~n

2 ðkÞ refer to the corresponding demand-oriented and supply-oriented objective functions
associated with a given customer group ~n, and are given respectively by
f ~n
1 ðkÞ ¼

X
8j~n2~n

CLj~n �max 0; TLj~n �
X
8c2C

X
8i~n2~n

X c
i~n;j~nðkÞ � tarr

j~n ðkÞ
 !" #(

þCU j~n �max 0;
X X

X c
i~n;j~nðkÞ � tarr

j~n ðkÞ � TU j~n

 !" #)
; ð16Þ
8c2C 8i~n2~n

lower value of u~nðkÞ indicates a higher service priority associated with a given customer group n̂.
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f ~n
2 ðkÞ ¼

X
8c2C

ac �
X
8i~n

X
8j~n

ttra
i~n;j~nðkÞ � X c

i~n;j~nðkÞ

24 35þX
8j~n

tser
j~n ðkÞ �

X
8i~n

X c
i~n;j~nðkÞ

" #8<:
9=;: ð17Þ
In Eq. (16), f ~n
1 ðkÞ indicates the group-based delivery penalties caused by both early and late arrivals of vehicles,

relative to the pre-determined lower and upper bounds (i.e., TLj~n and TU j~n ) of the time-of-day window associ-
ated with each given customer ðj~nÞ of a given group ~n, where CLj~n and CU j~n represent the penalties per time unit
due to early and late arrivals at the given customer j~n in any given day; tarr

j~n ðkÞ represents the time of a given
vehicle arriving at the given customer j~n in a given time interval k. In contrast, f ~n

2 ðkÞ shown in Eq. (17) indicates
the group-based vehicular routing costs spent to provide the delivery service for a given customer group ~n,
where ac represents the unit transportation cost per given time unit associated with a given type of vehicle c;
ttra
i~n;j~nðkÞ represents the path travel time departing from a given customer i~n to the corresponding next customer

j~n in a given time interval k; tser
j~n ðkÞ represents the service time, including unloading time, associated with a given

customer j~n in a given time interval k; and X c
i~n;j~nðkÞ represents a binary decision variable in a given time interval k

with either the value 1 indicating that the link between any given pair of customers i~n and j~n is served by a given
type of vehicle c, or the value 0 indicating that the aforementioned condition does not hold.

Considering the potential conflicting effects of f ~n
1 ðkÞ and f ~n

2 ðkÞ on F~nðkÞ and those of respective group-based
multi-objective vectors (F~nðkÞ) on the aggregate multi-objective vector (F(k)), the aforementioned aggregate
multi-objective vector (F(k)) can be reformulated as a composite form (eFðkÞ) by summing them with respective
weights, as given by
eFðkÞ ¼XeN
~n¼1

q~nðkÞ � ½e~n
1 � f ~n

1 ðkÞ þ e~n
2 � f ~n

2 ðkÞ�
� �

; ð18Þ
where e~n
1 and e~n

2 represent the corresponding weights associated with f ~n
1 ðkÞ and f ~n

2 ðkÞ, indicating the relative
effects of f ~n

1 ðkÞ and f ~n
2 ðkÞ on a given group-based multi-objective function (F~nðkÞ); and q~nðkÞ refers to the

time-varying weight associated with the given group-based multi-objective function (F~nðkÞ), indicating the rel-
ative effect of F~nðkÞ on eFðkÞ, compared to the other group-based multi-objective functions. Herein, e~n

1 and e~n
2

can be pre-determined by the corresponding logistics decision makers, according to their perception in terms
of the relative significance of corresponding demand-oriented and supply-oriented objective functions. In con-
trast, q~nðkÞ is a time-varying weight given by
q~nðkÞ ¼
eN

u~nðkÞ
: ð19Þ
In addition, the limitations in terms of either operational conditions or resource availability for vehicle
routing should also be considered, and thus the corresponding constraints, as shown in Eqs. (20)–(26), are
considered in the proposed model.

Eqs. (20) and (21) represent the corresponding limitations in terms of the aggregate and disaggregate num-
ber of vehicles available in the given time interval k:
X

8c2C

X
8~n

X
8j~n

X c
0;j~nðkÞ 6

X
8c2C

NcðkÞ; 8k; ð20ÞX
8~n

X
8j~n

X c
0;j~nðkÞ 6 NcðkÞ; 8fc; kg; ð21Þ
where X c
0;j~nðkÞ represents the respective binary decision variable indicating whether or not a given type of vehi-

cle c dispatches from a given logistics distribution center (0) to serve the corresponding next customer j~n in a
given time interval k.

Eqs. (22) and (23) represent the constraints ensuring that each given customer of a given customer group ~n
is served one and only one time in any given time interval k:
X

8c2C

X
8i~n

X c
i~n;j~nðkÞ ¼ 1; 8fj~n; k; ~ng; ð22ÞX

8c2C

X
8j~n

X c
i~n;j~nðkÞ ¼ 1; 8fi~n; k; ~ng: ð23Þ
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Eq. (24) represents the link flow equilibrium condition ensuring that any given type of vehicle (c) arriving to
serve a given customer (s~n) in a given time interval k must depart in the same time interval. Correspondingly,
any given en-routing vehicle is not allowed to stay at a given customer for more than one time interval:
X

8i~n
X c

i~n;s~nðkÞ ¼
X
8j~n

X c
s~n;j~nðkÞ; 8fc; k; ~ng: ð24Þ
Eq. (25) represents a set of inequalities which are sub-route elimination constraints to ensure that the
group-based route visits each customer exactly once and continuously, i.e., the Hamiltonian circuit; and sim-
ilar formulations can also be found elsewhere [42–44]:
X

8i~n

X
8j~n

X c
i~n;j~nðkÞ 6 d~n

�� ��� 1; 8d~n � ~nðd 6¼ /; d 6¼ ~nÞ; and 2 6 d~n
�� �� 6 ‘~n; ð25Þ
where d~n is a nonempty subset of ~n, and is not equal to ~n; and ‘~n represents the total number of customers
involved in a given customer group ~n.

Furthermore, Eq. (26) should be involved to characterize the binary feature associated with these decision
variables:
X c
i~n;j~nðkÞ _ X c

0;j~nðkÞ _ X c
i~n;0ðkÞ ¼ 0 or 1; 8ði~n; j~n; ~n; kÞ: ð26Þ
In addition to the above constraints, the relationship of the corresponding arrival time (i.e., tarr
i~n ðkÞ and

tarr
j~n ðkÞÞ associated with any two successive customers (i.e., i~n and j~n) of a given customer group (~n) should fol-

low the following conditions, as presented in
tarr
j~n ðkÞ ¼ tarr

i~n ðkÞ þ tser
i~n ðkÞ þ ttra

i~n;j~nðkÞ; 8ði~n; j~n; ~n; kÞ: ð27Þ
As can be seen in Eq. (27), given that a given freight vehicle arrives at a given customer i~n at time tarr
i~n ðkÞ, the

predicted time (tarr
j~n ðkÞ) of the given vehicle arriving at any potential next customer j~n is then a time-vary-

ing function depending on the corresponding service time associated with the given customer i~nðtser
i~n ðkÞÞ and

the predicted path travel time departing from i~n to j~nðttra
i~n;j~nðkÞÞ. Accordingly, both tser

i~n ðkÞ and ttra
i~n;j~nðkÞ should

be dynamically predicted in advance of determining the customer service order in the given en-route goods
delivery mission in a given time interval k. The corresponding procedures for the prediction of both tser

i~n ðkÞ
and ttra

i~n;j~nðkÞ are detailed below.

To facilitate the aforementioned prediction in terms of tser
i~n ðkÞ, we formulated tser

i~n ðkÞ as a linear stochastic
model which has a positive proportional relationship with the amount of customer orders (w1

i~nðkÞ), where
w1

i~nðkÞ, as defined previously in Table 1, refers to the corresponding first type of order-oriented customer attri-
bute associated with a given customer i~n. Accordingly, tser

i~n ðkÞ is given by
tser
i~n ðkÞ ¼ b1 þ b2 � w1

i~nðkÞ þ n; ð28Þ
where b1 and b2 represent two pre-determined parameters indicating the averaged start-up delay and the deter-
ministic time for serving one unit of goods associated with a given customer group ~n, respectively; and n rep-
resents the corresponding stochastic term which is assumed to follow a Gaussian process.

The estimation of ttra
i~n;j~nðkÞ involves the utilization of published shortest-path searching algorithms (e.g., the

Bellman–Ford method and the Dijkstra method) coupled with a stochastic system modeling approach pro-
posed in our previous research [45,46]. It should be noted that up to this stage, the major issue remaining here
is how to search for the time-varying shortest path, represented by ttra

i~n;j~nðkÞ between any given pair of customers
(i~n and j~n) to be visited in sequence in a given customer group (~n). Particularly, we consider the link travel cost
defined in classical VRP algorithms as the time-varying shortest path travel cost depending on actual traffic
flow conditions. This concept stems from our proposed argument that the customer-based nodes denoted
in VRP do not correspond to the geographic nodes of traffic networks. Accordingly, ttra

i~n;j~nðkÞ should be dynam-
ically estimated by the sum of the time-varying costs (gs

i~n;j~nðkÞ) spent in traveling on the geographic links (s) of
the shortest path (P i~n;j~n ) between the given pair of customer-based nodes i~n and j~n, and is given by
ttra
i~n;j~nðkÞ ¼

X
8s2P rn̂sn̂

gs
i~n;j~nðkÞ: ð29Þ
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Once gs
i~n;j~nðkÞ is obtained, then ttra

i~n;j~nðkÞ can be readily determined using either the Bellman–Ford method or the
Dijkstra method.

In the following, we introduce a stochastic system modeling approach [45,46] to update the time-varying
link cost gs

i~n;j~nðkÞ in each given link (s) of the specified traffic network. The distinctive feature of the proposed
model here is that the time-varying link travel cost gs

i~n;j~nðkÞ is derived using the estimated lane-based traffic
variables, rather than link-based traffic flows, as in previous D-VRP literature.

Briefly, the proposed traffic estimation model mainly involves two groups of time-varying equations,
including recursive equations (Y[y(t2), k]) and measurement equations (Z(t2)), as shown in
Y½yðt2Þ; k� ¼ Y½yðt1Þ; k� þ L½yðt1Þ; k�VYðt1; kÞ; ð30Þ
Zðt2Þ ¼ H½yðt2Þ; k� þ VZðt2; kÞ; ð31Þ
where
t1 ¼ tarr
i~n ðkÞ; 8ði~n; ~n; kÞ; ð32Þ

t2 ¼ tarr
i~n ðkÞ þ tser

i~n ðkÞ; 8ði~n; ~n; kÞ: ð33Þ
Herein, Eq. (30) represents the generalized form of recursive equations referring to the time-varying relation-
ships of the predicted intra-link lane traffic states (i.e., y(t2) vs. y(t1)); and Eq. (31), termed measurement equa-
tions, characterizing the time-varying relationships of the raw traffic data collected from point detectors and
these intra-link lane traffic states. The capital notations shown in Eqs. (30) and (31) represent time-varying
vectors used to depict the aforementioned time-varying state relationships in the stochastic system. Herein,
vectors VY(t1,k) and VZ(t2,k) represent the state-independent noise terms associated with recursive and mea-
surement equations, respectively, and both of them are assumed to follow Gaussian processes. In contrast,
L[y(t1),k] represents a state-dependent noise vector. Details about the fundamentals and equations can be
readily found in the literature [45,46]. Employing the aforementioned stochastic model together with an ex-
tended Kalman filtering-based algorithm, the time-varying link travel cost gs

i~n;j~nðkÞ associated with each given

link can then be predicted for further use in the process of searching for the corresponding shortest path
(ttra

i~n;j~nðkÞ) between any given pair of customers (i~n and j~n) in a given time interval k.

3. Numerical results

The main purpose of this numerical study is to demonstrate the potential advantages of the proposed logis-
tics distribution approach relative to existing distribution strategies. The study case examines a private man-
ufacturer, which produces automobile and computer accessories, and is located in southern Taiwan. To
facilitate input data acquisition, we contacted this targeted manufacturer, where the data processed from cus-
tomer orders were used to generate input data and parameters required by the proposed method. Here, sam-
ples of customer orders were drawn from a 5-day database of the targeted manufacturer. Then, the relative
performance of the proposed method was evaluated by comparing with the existing logistics distribution strat-
egy using the sampled customer demand data.

The original logistics distribution strategy conducted by the targeted manufacturer was mainly based on
subjective judgment of the corresponding logistics manager of the targeted manufacturer subject to the 5-vehi-
cle fleet size available in this study case. The original frequency of vehicle dispatch of the targeted manufac-
turer was once a day, departing from the corresponding warehouse at 9:00 am. Herein, vehicular en-routing
paths depended mainly on personal experiences of the corresponding drivers and their responses to instanta-
neous road traffic conditions. In some cases, the quick-response (QR) strategy may be implemented to satisfy
the urgent needs of customers, particularly for special requests by target customers.

In the model evaluation scenario, a total of 41 order entries which were scheduled to be served in the given
5-day testing period were sampled. The corresponding geographical relationships of these customers are
depicted in Fig. 2, where each customer is coded with a specific number, indicating the sequence of order entry
times associated with these sampled customers.

Using the proposed distribution method, we re-processed the sampled order entries, and classified the cus-
tomers into specific groups by the customer classification mechanism built into the proposed algorithm. The
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results of customer grouping are summarized in Table 3, which also involves the original delivery service sche-
dule for comparison. In addition, the above clustering results are also presented in Fig. 3 to illustrate the
potential effect of pre-route customer grouping on the operations of logistics distribution. Conveniently, it
is assumed that there is no new order entry received in this study case.

After the aforementioned pre-route customer classification and service priority determination phases, the
vehicle routing operations were implemented by conducting the proposed en-route goods delivery algorithm.
It is worth mentioning that the computational difficulties existing typically in large-scale NP-hard VRP prob-
lems may not remain in this study because the delivered customer orders have been divided into several groups
using the proposed method. Thus, once the instantaneous link travel times among customers are determined
using the proposed model, the optimal solutions of the resulting group-based good delivery problem can then
be readily solved using existing optimization packages, e.g., LINGO. The corresponding vehicle routing
results obtained in this scenario are summarized in Table 4.

We compared the operational results obtained from the proposed distribution strategy and the original
strategy, utilizing two major criteria defined as follows:

(1) TT, which represents the total transportation costs, including the normal operational costs spent in vehi-
cle routing and induced penalties caused by violation of customers’ time-of-day windows;
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Fig. 2. Geographical relationships of customers.



Table 3
Summary of the estimated customer groups

Original strategy Customers (scheduled to be served)
1, 4, 5, 8, 11

Customer group Group member Service priority

Day 1

Proposed method Group 1 2, 3, 4, 8 1
Group 2 1, 5, 11 2

Customers (scheduled to be served)
14, 15, 16, 17, 20, 26, 27, 33

Customer group Group member Service priority

Day 2

Proposed method Group 3 14, 16, 17 3
Group 4 6, 10, 12, 15, 20 4
Group 5 21, 26, 27, 33 5

Customers (scheduled to be served)
3, 12, 22, 23, 24, 25, 28, 29

Customer group Group member Service priority

Day 3

Proposed method Group 6 19, 23, 24, 38, 40, 41 6
Group 7 25, 28, 29 7
Group 8 13, 22, 31, 37 8

Customers (scheduled to be served)
10, 18, 19, 21, 30, 31, 32, 34, 35, 41

Customer group Group member Service priority

Day 4

Proposed method Group 9 30, 34, 36 9
Group 10 7, 9, 18, 32, 35, 39 10

Customers (scheduled to be served)
2, 6, 7, 9, 13, 36, 37, 38, 39, 40

Day 5

Proposed method None
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(2) ST , which represents the average lead time ST associated with each given customer, and is measured by
averaging the time difference between when an order is received and when the goods delivery service is
completed for all the sampled customers.

The comparison results according to the aforementioned criteria are summarized in Table 5.
Overall, the comparison results shown in Table 5 revealed that there was a certain improvement in the per-

formance of logistical distribution using the proposed methodology. Two resulting generalizations are summa-
rized in the following. First, as can be seen in Table 5, the overall relative improvement of the logistics system
performance results mainly from the reduction in the aggregate transportation costs. According to our obser-
vation from this numerical study, such a group-based vehicle dispatching strategy coupled with the proposed
ITS-based D-VRP algorithm appear to make benefits with en-route goods delivery efficiency, thus contribut-
ing to significant improvement in transportation costs as high as 28.8%. Second, through appropriate pre-
route customer classification and group-based logistics resource allocation strategies, grouped customers
can be served more efficiently. As observed in Tables 4 and 5, out of the 41 sampled customers, 14 customers
can be served with shorter service time, relative to the original delivery schedule, thus contributing to the rel-
ative improvement 12.2% in terms of average lead time (ST ). To a certain extent, this implies that higher cus-
tomer service performance can be achieved using the proposed logistics distribution methodology.



Day-4

Day-3

Day-2

Day-1

Delivery Time

geographical distribution of
customers

Fig. 3. Illustration of pre-route customer grouping on logistics distribution.

Table 4
Grouping-based vehicle routing results

Date Customer group Group member Service priority

Day 1 Group 1 2-3-8-4 1
Group 2 11-5-1 2

Day 2 Group 3 14-16-17 3
Group 4 6-15-20-10-12 4
Group 5 33-21-26-27 5

Day 3 Group 6 19-38-40-41-23-24 6
Group 7 29-28-25 7
Group 8 31-22-13-37 8

Day 4 Group 9 30-36-34 9
Group 10 32-9-7-39-35-18 10
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Correspondingly, it also implies that more customers could be served by the same number of vehicles in the
same amount of time.



Table 5
Comparison of system performance

Criteria strategy TT (US$) ST (day)

Proposed 1543 4.3
Original 2168 4.9

Relative improvement (%) 28.8 12.2
Overall improvement (%) 20.5

1062 J.-B. Sheu / Applied Mathematical Modelling 31 (2007) 1048–1066
In addition, several implications are summarized below for further discussion:

(1) Although the proposed logistics distribution method appears to reduce lead time to a certain extent,
timeliness remains as an issue worth more investigation. For instance, to implement time-based logistics
control strategies, e.g., just-in-time (JIT) inventory control, the major request from customers may no
longer be shorter lead time, but the more exact goods delivery time. Sometimes earlier goods delivery
service is not a benefit to those customers who implement JIT strategies since they may have to bear
more inventory costs.

(2) Despite the measurements of TT and ST , both indicating certain improvements in transportation cost
and service time, it appears that the operational performance of logistics distribution can also be
improved by integrating either advanced vehicle routing technologies or ITS-related technologies, e.g.,
global positioning systems (GPS), two-way communication devices, and dynamic fleet management soft-
ware for real-time applications.

(3) The computational efficiency could be another potential advantage of the proposed method. According
to our observation in corresponding data processing and computational procedures, such a group-based
logistics distribution measure enables a great time savings in algorithmic execution. Using the same data-
base, one simple algorithm mimicking classical VRP models was conducted elsewhere [37], in which vehi-
cle routing was performed merely based on the geographical relationships of customers subject to
corresponding time windows and logistics resource constraints the same as those pre-set in this study.
By contrast, it was found that the proposed customer group-based goods delivery algorithm could save
time to a remarkable extent (more than 95%), compared to that simple algorithm. Note that the aver-
aged algorithmic computational time of the proposed method in this numerical study takes around
5 min to process daily customer groups, whereas the corresponding computational time for the afore-
mentioned un-clustered case is about 216 min.

In the following test scenario, simple sensitivity analyses aiming at some critical parameters are conducted.
These targeted parameters include the corresponding weights (i.e., e~n

1 and e~n
2) associated with two disaggregate

objective functions (f ~n
1 ðkÞ and f ~n

2 ðkÞ), and the unit early and delay penalty costs (i.e., CLj~n and CU j~n ). The pur-
pose of this scenario is to investigate the corresponding effects of these parameters, particularly on the relative
improvement in the measurements of TT, in contrast with the original logistics distribution strategy. Note that
in the previous numerical study, these two weights e~n

1 and e~n
2 are set to be consistent (i.e., e~n

1 ¼ e~n
2 ¼ 0:5). In this

scenario, all the pre-set parameters of the proposed method remain the same, excluding these four targeted
parameters. The corresponding numerical results are summarized in Tables 6 and 7.

According to the numerical results of Tables 6 and 7, two major generalizations are summarized below:

(1) Compared to the demand-oriented weight e~n
1, the supply-oriented weight e~n

2 may have relatively signifi-
cant effect on the reduction of total transportation costs (TT). As can be seen in Table 6, the relative
improvement of TT turns out to be monotonically increased with the increase of e~n

2; and however
decreased with the increase of e~n

1. This also implies that using the proposed methodology, the relative
improvement of total transportation costs might depend mainly on reduction of the aggregate transpor-
tation expenses, rather than on the reduction of penalty costs. Following the above implication, we
further deduce that the proposed methodology might have grouped those customers with compatible



Table 6
Results of sensitivity analyses with respect to weights e~n

1 and e~n
2

Target parameter System performance

Demand-oriented weight (e~n
1) Supply-oriented weight (e~n

2) Total transportation costs (TT) Relative improvement,
% (compared to original strategy)

1.0 0 1864 14.0
0.9 0.1 1794 17.3
0.8 0.2 1701 21.5
0.7 0.3 1637 24.5
0.6 0.4 1592 26.6
0.5 0.5 1543 28.8

0.4 0.6 1460 32.7
0.3 0.7 1398 35.5
0.2 0.8 1271 41.4
0.1 0.9 1229 43.3
0 1.0 1192 45.0

Table 7
Results of sensitivity analyses with respect to unit penalty costs CLj~n and CUj~n

Target parameter Increment (%) Total transportation costs (TT) Relative improvement,
% (compared to original strategy)

Unit early penalty cost ðCLj~n Þ �100 1513 30.2
�75 1521 29.8
�50 1528 29.5
�25 1537 29.1

0 1543 28.8

+25 1547 28.6
+50 1553 28.4
+75 1560 28.0

+100 1566 27.8

Unit delay penalty cost ðCUj~n Þ �100 1489 31.4
�75 1502 30.7
�50 1518 30.0
�25 1526 29.6

0 1543 28.8

+25 1559 28.1
+50 1568 27.7
+75 1574 27.4

+100 1588 26.8
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time-of-day windows prior to the procedure of vehicle routing for goods delivery. Accordingly, the rel-
ative improvement induced by the reduction of the corresponding penalty costs may not be significant as
the corresponding weight e~n

1 changes.
(2) Giving the same weights e~n

1 and e~n
2, the decrease in the unit delay penalty costs (CU j~n ) may be able to

reduce the total transportation costs to a greater extent, relative to the corresponding effect of the
early-arrival penalty costs (CLj~n ). Such a generalization is consistent with most arguments presented
in previous literature. In general parameter setting, it is suggested that CU j~n should be greater than
CLj~n , considering their different impacts on customer service performance. Accordingly, the resulting
effect of CU j~n on reduction of transportation costs is overall greater than that induced by CLj~n , as shown
in Table 7.

Nevertheless, using the proposed method as a decision-making support tool, all the corresponding mea-
sures of relative improvement shown in the above numerical results are positive, compared to the existing
logistics distribution strategy conducted by the targeted manufacturer.
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4. Concluding remarks

This paper has presented an advanced group-based logistics distribution approach which integrates both
pre-route customer classification and customer group-based vehicle routing procedures to provide efficient
goods delivery service and respond to the variety of customer demand attributes. The proposed methodology
involves three major mechanisms: (1) pre-route customer classification using fuzzy clustering techniques, (2)
determination of customer group-based delivery service priority and (3) en-route goods delivery using
multi-objective optimization programming methods. By analyzing customer demand attributes, seven
order-oriented customer attributes were specified as key determinants used for customer grouping. A fuzzy
clustering-based algorithm was then proposed to classified customers into given groups. Based on the clustered
customer groups as well as specified customer demand attributes, the customer group-based service priority
and vehicle routing strategies were then determined using the proposed multi-objective optimization model
and corresponding algorithms.

A numerical study aiming at the existing logistics operational case of a private manufacturer was conducted
to illustrate the potential advantages of the proposed method. By comparing the performance of the proposed
method with that of the existing strategy of the targeted manufacturer, numerical results revealed that the
overall logistics system performance could be improved by up to 20.5%, resulting mainly from the significant
improvement in total transportation costs. In addition, sensitivity analyses with respect to the corresponding
weights associated with objective functions and two unit penalty costs were conducted. Findings observed
from these numerical results were also discussed.

Nevertheless, there is still great potential for improving the operations performance of logistical distribu-
tion by integrating more elaborate vehicle routing algorithms with the proposed pre-trip customer classifica-
tion method. In addition, in-depth investigation of the potential advantages of the proposed method relative
to other logistics distribution strategies is needed. Furthermore, such an integrated customer group-based
logistics distribution operation also appears important to provide efficient goods delivery service in a large-
scale logistics network under time-varying traffic network conditions. More specifically, the proposed method
permits saving a remarkable amount of computational efficiency in solving large-scale dynamic vehicle routing
problems. This appears very important, particularly for the practical use of ITS-based real-time vehicle rout-
ing strategies.

It is expected that the proposed customer group-based logistics distribution method can make benefits
available not only for developing advanced logistics distribution strategies, but also for clarifying the impor-
tance of pre-route customer grouping in the operations of time-based logistics control and management. On
the basis of the present results, our further research will aim at incorporating advanced ITS-related technol-
ogies into the architecture of the proposed method to improve time-based demand-responsive logistics control
and management. Moreover, the applicability of the proposed method for logistics operations in the e-busi-
ness environment is also of interest to us, and warrants further research.
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