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摘要：先進先出 (FIFO) 與後進先出 (LIFO) 為存貨管理最常預設的策略，其選用必需符合企

業實際生產情況，尤其當產品為易受製程偏移影響之損耗性商品。本研究首先針對不完美製程

損耗性商品提出 FIFO 策略下之生產存貨模式，隨後應用指數函數之泰勒展開式推導出近似最佳

生產運轉時間之封閉解，並以數值範例說明模式精確性。再者，研究中將所獲得之模式與先前

提出之 LIFO 策略生產存貨模式比較，並獲致損耗性商品於不完美製程生產時，LIFO 存貨派用

策略優於 FIFO 策略之結論。最後，透過敏感度分析展現 FIFO 策略下各參數之影響。 

 

關鍵詞: 存貨、損耗商品、不完美製程、先進先出、後進先出 

 

Abstract: The First-In-First-Out (FIFO) and the Last-In-First-Out (LIFO) are the most general 

presumption policies of the inventory management.  These presumptions are carefully considered in 
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line with the actual practice of most business entities, especially when the merchandise or goods which 

have the deteriorating property affected by an imperfect production process.  In this study, we firstly 

propose a production-inventory model for deteriorating items under an imperfect production process 

with FIFO inventory dispatching policy.  Then, a closed-form solution of a near-optimal production 

uptime will be derived by utilizing Taylor series expansion of an exponential function.  A numerical 

example is provided to argue the model’s fidelity.  Also, a comparison with our previous research 

work—an LIFO policy production-inventory model is made.  We conclude that when a deteriorating 

item is produced by an imperfect process, the LIFO inventory dispatch policy would be a better 

decision than the FIFO.  Finally, sensitivity analysis is given to investigate the impacts that various 

parameters have in FIFO policy choice. 

 

Keywords: Inventory, Deteriorating Item, Imperfect Process, FIFO, LIFO 

 

1. Introduction 

The economic production quantity (EPQ) model is an analytical model commonly adopted to cope 

with inventory management issues in a production-inventory system.  This model is considered to be 

one of the most frequently adopted inventory control models which determine the optimal production 

lot size in cases of a single product produced on a single machine (Osteryoung et al., 1986).  However, 

this model was developed under many idealistic but restricted assumptions.  One limiting assumption 

of the EPQ model is that a production process is perfect during a production run.  As a result, no 

defective item will be produced.  However, in reality, manufacturing is affected by uncertainties in the 

environment of the production system, such as tool wear, vibration from operation of machines, 

unreliability of manual operations, defects of raw materials, and aging of equipment.  Hence, a 

perfectly stable and reliable production process is rarely available in a real production environment 

(Nahmias, 2001).  Another unrealistic assumption is that the items produced have indefinitely long 

lives.  In general, aging and deterioration over time is the nature of all physical items.  Many 

materials, such as highly volatile substances, radioactive materials, fresh food, blood, etc., their rates of 

deterioration are high.  Loss from deterioration should not be ignored.  Often the rate of 

deterioration is so low that it may be ignored in the determination of an optimal production lot size.  

However, in some cases, product deterioration may be aggravated if control of the production process 

is not accurate.  When a production system may shift from an in-control state to an out-of-control 
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state during a production process and the items be produced may deteriorate significantly over time.  

For example, in the paper production process, if the alkaline reserve cannot be controlled at the proper 

concentration, the paper deterioration speed will increase and shorten the useful life of paper. 

Many research results considering various inventory management models for deteriorating items 

have been given in the literature over the past several decades.  Those who are interested can refer to 

those papers by Raafat (1991), Goyal and Giri (2001), and Lin et al. (2006).  Lin et al. (2006) 

provided a brief literature review of production- inventory models considering the deterioration items; 

we omit another survey and only provide a review for papers that are directly related to our model.  

Ghare and Scharder (1963) developed the first Economic Order Quantity (EOQ) model for a single 

item under a constant rate of deterioration.  Misra (1975) considered an EPQ model for deteriorating 

items with a varying rate of deterioration as well as a constant rate of deterioration.  Mak (1982) 

studied a case with backordering for unfilled orders.  Nevertheless, please note that the impact of an 

imperfect production process was not discussed in all of the aforementioned papers.  

Over the past 20 years, studies on the impact of an imperfect process on the production cycle time 

or the production lot quantity have contributed considerable results.  The studies conducted by 

Rosenblatt and Lee (1986) and Porteus (1986), are the first studies of the effects of an imperfect 

production process in determining the optimal production cycle time of an EPQ model.  In their 

models, the production process may shift randomly from an in-control state into an out-of-control state 

during a production run.  Once the process has shifted, a fixed portion of items produced becomes 

defective.  All defective items are reworked or repaired with a cost.  Several other research efforts 

also considered various inventory models that dealt with an imperfect production process (Lin, 1999; 

Giri et al., 2003; Chung and Hou; 2003).  However, in the aforementioned research results, only Lin 

and Gong’s (2007) studied the deterioration of items and imperfect production process simultaneously.  

In their model, the inventory dispatching policy is LIFO.  But in practice, a FIFO policy is the most 

general policy for inventory management.  Hence, motivated by this, we extend Lin and Gong’s 

(2007) model and investigate in this paper an EPQ model for deteriorating items subject to an 

imperfect production process with a FIFO inventory dispatching policy.  Under a FIFO policy, the 

units produced during out-of-control state will be stored first and then begin to be consumed after the 

units produced during the in-control state are depleted.  The time epoch at which the process shifts 

into an out-of-control state is assumed to be a random variable which is exponentially distributed.  A 

setup activity takes place before each production begins, and it restores the manufacturing process to 

its initial working condition. 



418   管理與系統 

In the next section, assumptions and notations for the model development are presented.  The 

model itself will be addressed in Section 3 and a closed form of the optimal solution is also derived.  

Section 4 illustrates a numerical example to argue the model’s fidelity.  Two figures have a hold on 

the convex property of the expected total cost function.  In this research, we extend Lin and Gong’s 

(2007) work and apply a distinct policy to dispatch inventory.  Therefore, the impact comparisons on 

the expected total cost between FIFO and LIFO policies will be discussed too.  In Section 5, 

sensitivity analyses on the minimum expected total cost Z(τ*) are supplied.  Couple useful phenomena 

are conducted.  Finally, some concluding remarks will be given in the last section. 

2. Assumptions and Notations  

The mathematical model in this paper is developed on the basis of the following assumptions: 

(1) The demand rate of each product is known and finite.  

(2) Lead time is zero and shortages are not allowed.  

(3) The production rate is finite.  

(4) The system is in steady state, i.e., the production rate is greater than the demand rate.  

(5) Once an item (product) is produced, it is immediately available to meet the demand.  

(6) An item starts deteriorating at the moment when it is received into inventory.  

(7) The time-to-deterioration of an item follows an exponential distribution.  

(8) Deteriorated items are neither replaced nor repaired.  

(9) Inventory holding cost is charged only to the amount of un-deteriorated stock.  

(10) The cost of a deteriorated item is known and includes any disposal cost or salvage value. 

(11) Space and production lot size are not constrained. 

(12) The production process may shift randomly from an in-control state into an out-of-control state 

during a production run.  The time-to-shift is an exponentially distributed random variable.  

(13) The inventory system follows a FIFO policy.  This implies that items produced during the 

in-control state are consumed first and items produced during the out-of-control state are 

consumed later. 

The notations employed in the paper are given as follows:  

p  production rate (items/unit time). 

d  demand rate (items/unit time). 

Ii(t)  inventory level function of good items at time t, produced during the in-control state, i = 1, 3.  
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Ii(t)  inventory level function of good items at time t, produced during the out-of-control state, i = 2, 4, 

5. 

c   cost of a deteriorated item ($/item).  

h   inventory carrying cost ($/item/unit time).  

A   setup cost of initiating a new production cycle.  

α   deterioration rate when the system is in the in-control state.  

β  deterioration rate when the system is in the out-of-control state, α < β.  

X  time-to-shift of the process from an in-control state to an out-of-control state.  

λ   parameter of an exponential distribution of the time-to-shift random variable.  

τ   production uptime. 

T1   the duration from the time point X to the end of production up-time τ, where T1 
= τ – x. 

T2   the duration from the end of production up-time to the time point of inventories, which with α 

deterioration rate, be depleted. 

T3   the duration from the time point of inventories, which with α deterioration rate, be depleted to 

the time point of inventories, which with β deterioration rate, be depleted. 

T   production cycle time including uptime and downtime. 

Z(τ*)  the minimum expected total cost when the optimal production uptime is *τ . 

3. The model  

3.1 Model description 

This paper deals with an EPQ model that considers the effect of a single facility imperfect 

production process on the optimal production uptime determination for deteriorating items under a 

FIFO policy.  Under this operating policy, a production run is to be executed for a predetermined 

period of time (i.e., the production uptime).  The items produced and consumed will follow a FIFO 

policy.  Since the inventory is built up gradually during the production uptime, a new production run 

can only be started when all on-hand inventory items are depleted.  A setup is required before each 

production run, and restores the production process to its initial working condition.  

Although the time-to-shift is a random variable, we consider the time epoch from the beginning of 

each production run as a renewal epoch.  A sample path representing the behaviour of the inventory 

system is depicted as in Figure 1.  The path denoted by a dashed line illustrates a production cycle if 

no shift occurs.  At time zero, the inventory level is zero and a production starts for a period of τ units  
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of time where the process is in the in-control state.  In this time period, the inventory is gradually 

built up at a rate of p –d (where p>d).  This rate is counteracted by a constant deterioration rate α.  

The inventory level increases up to its maximum level of I1(τ).  After the maximum inventory is 

reached, production is terminated.  From this point on, the on-hand inventory will be used to meet the 

demand and to counteract the losses due to the deterioration. 

On the other hand, when a shift occurs at a random time point X before a production uptime τ is 

reached, i.e. a shift occurs at time x and x < τ, then items produced after this time point will have a 

higher deterioration rate.  A sample path in this case is shown by the solid curve as in Figure 1.  

After the time point X, items with a higher deterioration rate β will be produced and the inventory will 

be built up with a rate p – d for another time period T1, where T1 
= τ – x.  At the end of this period, the 

production run is terminated.  The inventory been built-up should be enough to cover the losses due 

to deterioration for the remainder of the production cycle.  In the time period T2, inventories built in 

the in-control state are continuously depleted till the end.  The remaining inventory items contributed 

in the out-of-control state are then depleted in T3.  Another production run will not begin until the 
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entire on-hand inventory being depleted.  Note that in this case, the inventory level of items with a 

deterioration rate of β will be raised only up to Q2.  In accordance with the FIFO policy, the on hand 

inventory with a lower deterioration rate of α will be depleted during the time period of T1+T2.  In 

other words, the inventory with β deterioration rate which is built-up after the process shift will be kept 

on hand during the time period of T2, and then be depleted to meet the demand during T3 period.  The 

cycle time of the entire production cycle is T = τ +T2 
+T3. 

Figure 1 shows that by conditioning on X = x, there are two cases to be considered depending on 

whether x ≥ τ or not.  In the case where x ≥ τ, the model is similar to the one studied in Misra (1975).  

While for the case where x < τ, at the time point x, the inventory level of items produced in the 

in-control state reaches its maximum level, Q1.  From this point onwards to the end of the production 

uptime, the system is in the out-of-control state.  At the end of period T1, the amount of items in stock 

should be sufficient to cover the demand during the periods T2+T3.  The cycle completes at the end of 

period T3.  Let dIi(t)  represent the change in the inventory level of each time period, during a small 

interval of time dt, which may be a function of the deterioration rate – α or β, the demand rate - d, and 

/or production rate - p.  Therefore, the inventory level of the system at a time point t over the time 

interval (0, T) can be defined according to the different conditions by the following differential 

equations. 

(1) Before the time point X, items with a lower deterioration rate of α will be produced and the 

inventory level will be built up to Q1 with a rate p - d.  Therefore, the inventory level of the 

system at a time point t over the time interval (0, x) can be defined by the differential equation (1). 

 ( ) ( )1
1

d
, for 0

d
I t

I t p d t X
t

α+ = − ≤ ≤ . (1) 

(2) After the time point X, items with a higher deterioration rate β will be produced and stocked.  

Therefore, the inventory level will be built up with a rate p for another time period T1 and can be 

defined by the differential equation (2). 

 ( ) ( )2
2 1

d
,   0

d
I t

I t p for t T
t

β+ = ≤ ≤   (2) 

(3) During the time interval T1 + T2, the inventory level of the items with a lower deterioration rate α 

which was produced during the time interval (0, x) is continually consumed by demand.  So, we 

can define I3(t) to be the inventory level function of the system and represent it by the differential 
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equation (3). 

 ( ) ( )3
3 1 2

d
,   0

d
I t

I t d for t T T
t

α+ = − ≤ ≤ + . (3) 

(4) In the time period T2, the remaining inventory items with a deterioration rate β, which produced in 

the out-of-control state, are still in stock and deteriorating.  So, we could define I4(t) function to 

represent the inventory level of the system. 

 ( ) ( )4
4 2

d
0,   0

d
I t

I t for t T
t

β+ = ≤ ≤ .  (4) 

(5) After T2, the inventories which produced during the time interval (0, x) are all depleted. Therefore, 

the inventories with a deterioration rate of β are started to be used to support the demands and the 

losses due to the deterioration in T3. 

 ( ) ( )5
5 3

d
- ,   0

d
I t

I t d for t T
t

β+ = ≤ ≤ . (5) 

The boundary conditions for each differential equation are ( )1 0 0I = , ( ) ( )1 3 1 0I x I Q= = , 

( ) ( )2 1 4 20I T I Q= = , ( ) ( )4 2 5 0I T I= , and ( )5 3 0I T = . 

The solutions for the above differential equations can be obtained as follows: 

 ( ) ( )-
1 1- , for 0tp dI t e t Xα

α
−

= ≤ ≤ .  (6) 

 ( ) ( )-
2 11- , for 0tpI t e t Tβ

β
= ≤ ≤ . (7) 

 ( ) -
3 1 1 2, for 0td dI t Q e t T Tα

α α
⎛ ⎞= − + + ≤ ≤ +⎜ ⎟
⎝ ⎠

. (8) 

 ( ) - 
4 2 2 , for 0tI t Q e t Tβ= ≤ ≤ .  (9) 

 ( ) ( )( )3
5 31 , for 0T tdI t e t Tβ

β
−= − ≤ ≤ . (10) 

Using the condition I1(x) = I3(0), we obtain 
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 ( )1 1 xp dQ e α

α
−−

= − . (11) 

This implies that 

 ( ) ( )-  - αt
3 1 2

p-de - e ,for 0
α

x td pI t t T Tα

α α
+= − + ≤ ≤ + . (12) 

Next, using the initial condition I2(T1) = I4(0), we obtain 

 ( )1-
2 1 TpQ e β

β
= − . (13) 

This implies that 

 ( ) ( )1
4 1 T tpI t e eβ β

β
− −= − . (14) 

The objective of the model is to determine an optimal production uptime τ* that minimizes the 

expected (long-run) total cost per unit time.  As stated before, we consider the time epoch where each 

production run begins as a renewal epoch.  Therefore, based on the renewal reward theorem (Ross, 

2002), the expected total cost per unit time can be obtained by dividing the expected total cost per 

renewal cycle to the expected duration of a renewal cycle: 

 ( ) ( )
( )

( )
( )

E[ ]
E[ ]

G g
Z

T h
τ τ

τ
τ τ

= = . (15) 

where E[G(τ)] and E[T(τ)] denote the expected total cost and the expected duration of a renewal cycle.  

Both are the functions of the production uptime τ.  

3.2 An approximate solution  

In this section, a closed-form solution as a near-optimal approximation to the production uptime 
is developed.  Using the condition 3 1 2( ) 0I T T+ =  in equation (12), we obtain  

 ( ) ( )1 2 1 2- - - - 0T T x T Td p p de eα α
α α α

+ + +− + = . (16) 

If we use the relation 1T xτ= −  and Taylor series approximation for exponential functions in 

equation (16) and assume αT << 1, we obtain an expression for T2 in terms of τ and x as follows: (see 

Appendix A) 
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2

2
  1
2

px p x pT
d d d

ατ ⎛ ⎞≈ − + + −⎜ ⎟
⎝ ⎠

  

 ( ) 2
1 22

p p dp dT x x
d d

α −−⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

. (17) 

From Figure 1, it can be concluded that I4(T2) = I5(0).  This implies that  

 ( )2 1-
3

1 ln 1 1-T TpT e e
d

β β

β
−⎛ ⎞= +⎜ ⎟

⎝ ⎠
. (18) 

By referring to the relation of T1 and T2, neglecting β2 and the higher order of β, applying the Taylor 

series approximation again to simplify the exponential item in equation (18), we can describe the T3
 as 

follows: (see Appendix B) 

 ( ) 2
3 - 1 - - 1 -

2
p p pT x x x
d d d

β ατ τ⎡ ⎤⎛ ⎞ ⎛ ⎞≈ +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
. (19)  

This allows us to express the production cycle time, denoted by T(1) for the case of x < τ: 

 
2

(1) 21 ( ) 1 1
2 2

px p x p p p pT x x x
d d d d d d

α β ατ τ⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞= + − + − − − + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
. (20) 

And, the production cycle time, denoted by T(2) , for the case of x > τ, is formulated as follows: 

 
2

(2) 1-
2

p p pT
d d d
τ ατ ⎛ ⎞= + ⎜ ⎟

⎝ ⎠
. (21) 

Since the time-to-shift is an exponentially distributed random variable with a mean of 1/λ, the expected 

cycle time of a production cycle can obtained as follows: 

 (1) (2)

0

E[ (  )] d dx xT T e x T e x
τ

λ λ

τ

τ λ λ
∞

− −= +∫ ∫ . (22) 

After carrying out the calculation and neglecting the terms with higher power of terms including α2, β2, 

αβ, and λτ, we have 

 ( ) ( )( )2 3
2

/ 1
E[ ( )]

2 3 2
p p d p dpT p

d d d d
α β ατ λτ τ λ τ

⎡ ⎤− − −
= − − +⎢ ⎥

⎣ ⎦
. (23) 
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Let IH denote the amount of inventory hold during a cycle and DI denote the number of deteriorating 

items.  Hence, for the case of x < τ, we obtain 

 ( ) ( ) ( ) ( ) ( )
31 1 2 2

(1)
1 2 3 4 5

0 0 0 0 0

d d d d d
TT T T Tx

IH I t t I t t I t t I t t I t t
+

= + + + +∫ ∫ ∫ ∫ ∫    

 ( ) ( )( ) ( )2 2 2 2
2

22 2

p x p d x xp p d
d d

τ β τ α
τ

⎡ ⎤− − − +− ⎣ ⎦= − . (24) 

Because the inventory holding cost is assumed to be charged only to the amount of un-decayed stock, 

so the second item of equation (24) can be ignored.  We then have the IH(1) presented as follows: 

 ( )(1) 2

2
p p d

IH
d

τ
−

= . (25) 

Furthermore, DI can be obtained by finding the difference between the amount produced and the 

demand.  This means 

     ( ) ( )(1)
2 3= - -DI px d T p x dTτ τ+ + −  

 ( )2 2 21
2
p p x x

d
β τ α⎛ ⎞ ⎡ ⎤= − − +⎜ ⎟ ⎣ ⎦⎝ ⎠

. (26) 

Hence, for the case of x > τ, we have 

 
( )(2) 2

2
p p d

IH
d

τ
−

= . (27) 

 
2

(2) 1
2

p pDI
d

ατ ⎛ ⎞= −⎜ ⎟
⎝ ⎠

. (28) 

The total cost function including setup, inventory holding, and deterioration costs can be written as 

follows: 

 ( )G A h IH c DIτ = + × + × . (29) 

For the case x < τ, by substituting equations (25) and (26) into equation (29), we obtain 

 ( )(1) (1) (1)G A h IH c DIτ = + × + ×  
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 ( ) ( )( )2 2 2 21
2 2

p p d p pA h c x x
d d

τ β τ α
⎡ ⎤− ⎡ ⎤⎛ ⎞= + + − − +⎢ ⎥ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎣ ⎦

. (30) 

For the case of x > τ, by substituting equations (27) and (28) into equation (29) we obtain the total cost 

per cycle as follows: 

 ( )(2) (2) (2)G A h IH c DIτ = + × + ×  

 ( ) 2
2 1

2 2
p p d p pA h c

d d
αττ

⎡ ⎤− ⎡ ⎤⎛ ⎞= + + −⎢ ⎥ ⎢ ⎜ ⎟⎥
⎝ ⎠⎣ ⎦⎣ ⎦

. (31) 

Hence, the expected total cost per cycle can be expressed as 

 (1) (2)

0

E[ ( ) ] d dx xG G e x G e x
τ

λ λ

τ

τ λ λ
∞

− −= +∫ ∫ . (32) 

After some algebra and neglecting the terms with a higher power λτ, we obtain 

 2 3( )( ) ( )( )E[ ( ) ]
2 3

p p d h c cp p dG A
d d

α λ β ατ τ τ− + − −
= + + . (33) 

Using equation (15), the expected total cost per unit time can be expressed as follows: 

 ( ) ( )
( )

( )( ) ( )( )

( ) ( )( )

2 3

2 3
2

E[ ] 2 3
E[ ] / 1

2 3 2

p p d h c cp p d
AG d dZ

T p p d p dp p
d d d d

α λ β α
τ ττ

τ
τ α β ατ λτ λ τ

− + − −
+ +

= =
⎡ ⎤− − −

− − +⎢ ⎥
⎣ ⎦

. (34) 

For further discussion, let 

1  = ,Aω   

2
( )( ) = ,

2
p p d h c

d
αω − +   

3
( )( ) = ,

3
cp p d

d
λ β αω − −  

4  = ,p
d

ω   
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5 2

( ) = ,
2

p p d
d

αω −  

6
( )( / 1) = 

3 2
p dp
d d

β α λω λ − −⎡ ⎤+⎢ ⎥⎣ ⎦
.  

Hence, we could have a simple configuration of function Z(τ). 

 
2 3

1 2 3
2 3

4 5 6

( )Z ω ω τ ω ττ
ω τ ω τ ω τ

+ +
=

− −
.  (35) 

In order to determine a near optimal production uptime that minimizes Z(τ), we quote the property due 

to Bazaraa et al. (2006). 

Property 1. 

Let two function g: S → E1 and h: S → E1, where S is a nonempty convex set in En.  Consider the 

function f: S → E1 defined by f(x) = g(x)/h(x).  Then f is a pseudoconvex if the following two 

conditions hold true: (a) g is convex on S, and g(x)≥ 0 for each x∈S, (b) h is concave on S, and 

h(x)> 0 for each x∈S, and (c) both g and h are differentiable. 

Proof.  Obvious.  

Property 2. 

The function given in Z(τ) is pseudoconvex for τ > 0. 

Proof.   
From Property 1, we can prove that ( )Z τ  is a pseudoconvex function by showing the convexity of 

E[G(τ)] and the concaveness of E[T(τ)].  This can be shown by finding the second derivative of each 

function as follows: 

 ( ) ( )( ) ( )( )2

2

d E[ ] 2
d
G p p d h c cp p d

d d
τ α λ β α

τ
τ

− + − −
= + . (36) 

 ( ) ( ) ( )( )2

2 2

d E[ ] 2 / 1 3
d
T p p d p d

p
d d

τ α β α λ
λ τ

τ
⎡ ⎤− − − +

= − − ⎢ ⎥
⎣ ⎦

. (37) 

Since p > d, α < β, so 2 2E[ ( )] 0d G dτ τ >  and 2 2E[ ( )] 0d T dτ τ <  for τ > 0, and both functions 

are continuous.  Referring to Property 1, we can conclude that ( )Z τ  is pseudoconvex.  

Let ( ) / 0dZ dτ τ = .  Then, the near optimal solution of τ that minimizes Z(τ) can be found by 

solving the equation 
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 ( ) ( )4 3 2
2 6 3 5 3 4 2 4 1 6 1 5 1 42 3 2 0ω ω ω ω τ ω ω τ ω ω ωω τ ωω τ ωω− + + + + − = . (38) 

The positive root of the above equation can be solved by using numerical approaches such as the 

bisection methods and Newton’s methods.  One can also apply the Excel Goal Seek function to obtain 

a solution.  However, it is still complicated to solve the equation (38) directly.  To simplify the 

problem, we ignore the fourth degree term of τ  and transfer the equation (38) into a cubic equation 

as follows. 

 ( )3 2
3 4 2 4 1 6 1 5 1 42 3 2 0ω ω τ ω ω ωω τ ωω τ ωω+ + + − =  (39) 

After some algebraic solving procedures, a closed-form of near optimal solution of τ can be obtained as 

in the following:  

( )2
2 4 3* 3

4 4 4

2 3

6 3 3

u u u uv
u vu u

τ
−

= − − . (40) 

where 

1 1 4 = u ωω , 2 1 5 = 2u ωω , 3 1 6 2 4 = 3 +u ωω ω ω , 4 3 4 = 2u ω ω , and 

( )
1

32 3 3 2 2 2 2 3
2 3 4 1 4 3 4 2 4 2 3 1 2 3 4 1 4 1 3= 36 +108 -8 +12 3 4 - +18 +27 -4v u u u u u u u u u u u u u u u u u u u . 

Note that when 0,β α= =  the production uptime in equation (39) becomes the optimal 

production uptime for the classical EPQ model. 

1
2

*

0, 0

2lim
( )

Ad
hp p dα β

τ
→ →

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

. 

 

4. Illustrative example 

The following parameters are used to illustrate the application of the model.  Let production 

capacity be 7500 units per year and the demand rate be 2500 units per year. Other related factors are as 

follows: the production setup cost is $45 per order, the inventory holding cost is $0.5 per unit per year, 

and the deterioration cost is $5 per unit.  Both the time-to-shift of productions system and the 

time-to-deterioration of an item are assumed to be an exponential distribution.  The deterioration rates 
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at the in-control state and out-of-control state are 0.02 and 0.2, respectively.  The mean time of the 

time-to-shift is assumed 10.  Solving equation (40) gives the optimal production uptime ( *τ ) a value 

of 0.0527.  Furthermore, substituting the optimal production uptime into equation (34) yields the 

minimum expected total cost per unit time, Z( *τ ), a value of $473.11. 

Figure 2 shows the inventory of function Z(τ) and the changes of each cost component to the 

production uptime.  The inventory holding cost and the deterioration cost increase along with the 

increasing of the production uptime.  Figure 3 demonstrates the argument that E[T(τ)] is a concave 

function.  

This research is extended from Lin and Gong’s (2007) work, in which an LIFO policy is applied. 

We are interested in comprising the impacts on the expected total cost when two distinct policies (ie., 

FIFO and LIFO) are concerned.  The expected total cost function of LIFO policy denoted by 
( )LIFOZ τ  is expressed as 

( ) ( ) ( )

2 3

2 3

( ) 1
2 6

( )
1

2 2 6

LIFO

p d p c d c pA h
d p d

Z
p d p d p dp d

d d d p d

α τ β α λτ
τ

α α β
τ τ λτ

⎛ ⎞ ⎡ ⎤− ⎛ ⎞+ + + − + −⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠=
⎡ ⎤− − −⎛ ⎞

− − − +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 (41) 
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Figure 2  System cost composition as a function of production uptime. 
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Figure 3  System production cycle time as a function of production uptime. 

 

Let β be fixed to 0.2 and φ be the ratio of deterioration rate α to the deterioration rate β.  Given 

different values of φ, Table 1 shows the results on τ*and Z* with respect to FIFO and LIFO policies.  

We observe that no matter what values of φ are, the LIFO policy always provides a lower expected 

total cost.  We should not make a conclusion just based on couple instances.  However, those 

comparisons in Table 1 indeed reveal a solid suggestion.  This is also a contribution of this paper.  

 

Table 1  Comparison between FIFO and LIFO ploicy 

ϕ  
FIFO LIFO 

*
FIFOτ  *

FIFOZ  *
LIFOτ  *

LIFOZ  

0 0.05306 462.8358 0.10911 274.5965 

0.2 0.05238 483.3502 0.10225 292.9125 

0.4 0.05168 503.653 0.09653 310.1932 

0.6 0.05097 523.7382 0.09167 326.5997 

0.8 0.05024 543.6006 0.08746 342.2554 
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5. Sensitivity analysis 

In this section, we study the effects in the parameters set {d, p, α, β, A, h, c, λ} on the optimal 

values of τ* and Z(τ*) derived by the proposed FIFO model.  The sensitivity analysis is performed by 

changing each parameter set by -30%, -20%, -10%, 10%, 20% and 30% with all other parameters 

remaining unchanged.  On the basis of the result shown in Table 2, the following observations can be 

made. 

(1) There is a decrease in the τ* values when p, β, α, h, c or λ increase. 

(2) There is an increase in the τ* values when d or A increase. 

(3) The expected total cost Z( *τ ) increases with an increase in d, β, α, A, h, c or λ, but it decreases 

with an increase in p since the production rate increased. 

(4) The expected total cost Z( *τ ) is very highly sensitive with respect to A, highly sensitive to d and λ, 

but almost insensitive to a change in α. 

From the above analysis, it is seen that A is a critical parameter in the sense that any change in A 

results in significant change in the expected total cost Z( *τ ). 

6. Conclusions 

In this paper, we have developed an EPQ model for deteriorating items to be produced on an 

imperfect process that is subject to a random shift from in-control state to out-of control state and a 

FIFO inventory dispatching policy is considered.  This scenario had not been considered in the 

Misra’s model (1975).  The items produced in the out-of-control state are subject to a higher than 

normal deterioration rate.  The time for the process shift to the out-of-control state and the time to 

deterioration are assumed to be exponentially.  The objective is to determine a near optimal 

production uptime so as to minimize the expected total cost per unit time consisting of setup, inventory 

holding, and deterioration costs.  Based on numerical examples illustrated in this paper, the following 

conclusions can be made:  

(1) Applying FIFO policy, the expected total cost Z( *τ ) is highly sensitive in respect to setup cost per 

order, A, and slightly sensitive in respect to a change in the deterioration rate after process shift, β.  

But,  Z( *τ ) is almost insensitive to a change in the deterioration rate before process shift, α. 

(2) When a deterioration item is produced in an imperfect process, the LIFO inventory dispatching 

policy would have a lower cost than FIFO has. 
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Table 2  Results of the sensitivity analysis on different parameters 

Parameter Change in the 
parameter (%) τ* Change in 

τ*(%) Z(τ*) Change in 
Z(τ*)(%) 

d -30 
-20 
-10 
10 
20 
30 

0.04599 
0.04841 
0.05064 
0.05467 
0.05652 
0.05828 

-12.77 
-8.18 
-3.95 
3.70 
7.21 
10.55 

387.286 
417.5213 
446.0574 
498.8755 
523.4582 
546.9705 

-18.14 
-11.75 
-5.72 
5.44 
10.64 
15.61 

p -30 
-20 
-10 
10 
20 
30 

0.06449 
0.06015 
0.05624 
0.04957 
0.04675 
0.04421 

14.67 
6.95 
0.00 

-11.86 
-16.87 
-21.39 

532.3275 
506.4517 
487.5202 
461.8189 
452.7265 
445.2576 

9.19 
3.88 
0.00 
-5.27 
-7.14 
-8.67 

β -30 
-20 
-10 
10 
20 
30 

0.05531 
0.05438 
0.05352 
0.05197 
0.05127 
0.0506 

4.91 
3.15 
1.52 
-1.42 
-2.75 
-4.02 

456.1494 
461.9957 
467.6468 
478.4264 
483.5816 
488.5955 

-3.59 
-2.35 
-1.16 
1.12 
2.21 
3.27 

α -30 
-20 
-10 
10 
20 
30 

0.05282 
0.05279 
0.05275 
0.05269 
0.05265 
0.05262 

0.19 
0.13 
0.06 
-0.06 
-0.13 
-0.19 

470.0395 
471.0665 
472.093 

474.1445 
475.1694 
476.1938 

-0.65 
-0.43 
-0.22 
0.22 
0.43 
0.65 

A -30 
-20 
-10 
10 
20 
30 

0.04798 
0.04976 
0.05133 
0.05397 
0.05509 
0.05612 

-8.99 
-5.61 
-2.64 
2.37 
4.50 
6.45 

369.2149 
404.6397 
439.2225 
506.4453 
539.2902 
571.7235 

-21.96 
-14.47 
-7.16 
7.04 
13.99 
20.84 

h -30 
-20 
-10 
10 
20 
30 

0.05438 
0.05381 
0.05326 
0.05219 
0.05168 
0.05118 

3.15 
2.07 
1.02 
-1.01 
-1.97 
-2.92 

449.9951 
457.8194 
465.5257 
480.6039 
487.9847 
495.2655 

-4.89 
-3.23 
-1.60 
1.58 
3.14 
4.68 

c -30 
-20 
-10 
10 
20 
30 

0.05532 
0.05439 
0.05353 
0.05196 
0.05125 
0.05058 

4.93 
3.17 
1.54 
-1.44 
-2.79 
-4.06 

453.7057 
460.383 

466.8482 
479.2109 
485.1372 
490.9101 

-4.10 
-2.69 
-1.33 
1.29 
2.54 
3.76 

λ -30 
-20 
-10 
10 
20 
30 

0.06166 
0.05842 
0.05545 
0.05021 
0.04789 
0.04574 

16.96 
10.81 
5.18 
-4.76 
-9.16 
-13.24 

416.301 
434.7593 
453.7044 
492.9836 
513.2775 
533.9789 

-12.01 
-8.11 
-4.10 
4.20 
8.49 
12.86 
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The second conclusion does not exactly low down the value of the FIFO model.  On the other 

hand, because of the firm procedure provided in the FIFO model development and significant 

distinctions shown in Table 1, we then are able to have that summary.  These two conclusions 

demonstrate solid suggestions in practice and the contribution about the proposed model.  Future 

research directions can be models with effects such as price-dependent demand and other distributions 

for deterioration. 

Appendix A: The detail derivation process of T2. 

Here, 1T xτ= − , hence, we can derive from equation (16) that 

 ( ) ( )2 2- - - - 0T x Td p p de eα τ α τ
α α α

+ − +− + = . (A1) 

By solving (A1), we can get 

 2

ln x
d

pe p d
T

αατ

α

⎛ ⎞
+ ⎜ ⎟⎜ ⎟− +⎝ ⎠= −  (A2) 

1ln 1
xp e

d

α
τ

α

⎛ ⎞−
= − ⎜ ⎟⎜ ⎟

⎝ ⎠

1 （ ）
＋ ＋ . 

Using the expansion of the natural logarithm function ln (1+y), ln(1+y) = y - y2/2 + y3/3 - y4/4 + …, 

where -1<y≤1.  Keeping the first two terms of the series, then 

 
2

ln(1 )
2
yy y+ ≈ − . 

Consequently, the approximation value of T2 can be given as  

 2 2
(

2

x xpe p pe pT
d d

α α
τ

α

⎛ ⎞− −
≈ − −⎜ ⎟⎜ ⎟

⎝ ⎠

21 ）
＋ . (A3) 

Since αx << 1, then, by using the Taylor series approximation to the exponential items in (A3) and 

omitting the high order item of α which is larger than 2, we can derive 
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2( )1

2!
x xe xα αα≈ + + . (A4) 

By inserting (A4) into (A3), we can obtain 

 
2 2

2
( ) ( )1 1 1 (1 1)

2 2 2
p x p xT x x
d d

α ατ α α
α

⎛ ⎞⎛ ⎞
= − + + + − − + + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
  

22 2 2

2
( ) ( )

2 22
p x p xx x
d d

α ατ α α
α α

⎛ ⎞ ⎛ ⎞
= − + + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

2 4 4
2 2 3 3

21
2 42

px x p xx x
d d

α ατ α α
α

⎛ ⎞⎛ ⎞= − + + − + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
. 

Clearly, if we omit the high order terms of α which is larger than or equal to 2 and simplify the 

equation, we can get 

2 2

2 21
2 2

px x p xT
d d

α ατ ⎛ ⎞= − + + −⎜ ⎟
⎝ ⎠

 

 
2  1

2
px p x p
d d d

ατ ⎛ ⎞= − + + −⎜ ⎟
⎝ ⎠

. 

 

Appendix B: The detail derivation process of T3. 

Since I4(T2) = I5(0), thus, we can derive from equations (9) and (10) that 

 ( ) ( )( )3 1 21 1 1T T Td e p e eβ β β
β

− −− − − =0. (B1) 

By solving (B1), we can get 

 
2 1

3
1 (1 )ln 1

T Tpe eT
d

β β

β

− −⎛ ⎞−
= +⎜ ⎟⎜ ⎟

⎝ ⎠
. (B2) 

Using the expansion of the natural logarithm function ln (1+y), ln(1+y) = y - y2/2 + y3/3 - y4/4 + …, 



兩種存貨派用策略下不完美製程損耗性商品生產存貨模式之延伸研究   435 

where -1<y≤1.  Keeping the first two terms of the series, then 

 
2

ln(1 )
2
yy y+ ≈ − . 

Consequently, the approximation value of T3 can be given as  

 
2 1 2 1

2

3
1 (1 ) 1 (1 )

2

T T T Tpe e pe eT
d d

β β β β

β

− − − −⎛ ⎞⎛ ⎞− −⎜ ⎟≈ − ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

. (B3) 

Since βT1<< 1 and βT2<< 1, then, by using the Taylor series approximation to the exponential terms in 

(B3) and omitting the high order terms of β which is larger than 2, we can get  

 1
2

1
1

( )1 ( )
2

T Te Tβ ββ− −
= + − + , and 2

2
2

2
( )1 ( )

2
T Te Tβ ββ− −

= + − + . (B4) 

Substituting (B4) into (B3), we find 

( ) ( )
( ) ( )

2 2
2 1 2 2

2 1
2 1

3 2 1

(1 )( )1 2 2 1 (1 )( )
2 2 2

T T
p T T T TpT T T

d d

β β
β β β β

β β
β

− −
− + − ⎛ ⎞− −

⎜ ⎟= − − + −
⎜ ⎟
⎝ ⎠

 

2 2 2 2 2 3 2 2
1 1 2 2 1 1 2

1 1 22 2 2 4
T T T T T T Tp T TT

d
β β β ββ

⎛ ⎞
= − − + + −⎜ ⎟

⎝ ⎠
 

2 2 3 2 3 2 4 2 2
21 1 2 2 1 1 2

1 1 2      1 ( )
2 2 2 2 4

T T T T T T Tp T TT
d

β β β ββ β
⎛ ⎞
− − − + + −⎜ ⎟

⎝ ⎠
. 

By omitting the high order terms of β which is larger than or equal to 2, we can have: 

2
1 1

3 1 1 2( )(1 )
2 2
T p TpT T TT

d d
β ββ= − − −  

 
2 2 2 3 2 2

1 1 1 1 2
1 1 2( )

2 2 4 2
T p T p T p T Tp T TT

d d d d
β β β ββ= − − − + + . 

Still, we can omit the high order terms of β which is larger than or equal to 2 and simplify the equation, 

thus, the equation of T3 can be 

2 2
1 1

3 1 1 2( )
2 2
T p TpT T TT

d d
β ββ= − − −  
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( )1 1 2

2

2 ( ) 2
2

pT d p d T dT
d
β β− + −

= . (B5) 

Substituting 1T xτ= −  and (17) into (B5), after some simplifications, we thus obtain 

( ) 2
3 - 1 - - 1 -

2
p p pT x x x
d d d

β ατ τ⎛ ⎞⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

. 
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