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Abstract: The First-In-First-Out (FIFO) and the Last-In-First-Out (LIFO) are the most general

presumption policies of the inventory management. These presumptions are carefully considered in

The authors greatly appreciate the very valuable and helpful suggestions from Dr. Dennis E. Kroll.
B VR EY E@%’ﬁ’f |+ e-mail: G8802404SUNG@apol-mp.com.tw ©



416 FEEE AR

line with the actual practice of most business entities, especially when the merchandise or goods which
have the deteriorating property affected by an imperfect production process. In this study, we firstly
propose a production-inventory model for deteriorating items under an imperfect production process
with FIFO inventory dispatching policy. Then, a closed-form solution of a near-optimal production
uptime will be derived by utilizing Taylor series expansion of an exponential function. A numerical
example is provided to argue the model’s fidelity. Also, a comparison with our previous research
work—an LIFO policy production-inventory model is made. We conclude that when a deteriorating
item is produced by an imperfect process, the LIFO inventory dispatch policy would be a better
decision than the FIFO. Finally, sensitivity analysis is given to investigate the impacts that various

parameters have in FIFO policy choice.

Keywords: Inventory, Deteriorating Item, Imperfect Process, FIFO, LIFO

1. Introduction

The economic production quantity (EPQ) model is an analytical model commonly adopted to cope
with inventory management issues in a production-inventory system. This model is considered to be
one of the most frequently adopted inventory control models which determine the optimal production
lot size in cases of a single product produced on a single machine (Osteryoung et al., 1986). However,
this model was developed under many idealistic but restricted assumptions. One limiting assumption
of the EPQ model is that a production process is perfect during a production run. As a result, no
defective item will be produced. However, in reality, manufacturing is affected by uncertainties in the
environment of the production system, such as tool wear, vibration from operation of machines,
unreliability of manual operations, defects of raw materials, and aging of equipment. Hence, a
perfectly stable and reliable production process is rarely available in a real production environment
(Nahmias, 2001). Another unrealistic assumption is that the items produced have indefinitely long
lives. In general, aging and deterioration over time is the nature of all physical items. Many
materials, such as highly volatile substances, radioactive materials, fresh food, blood, etc., their rates of
deterioration are high. Loss from deterioration should not be ignored. Often the rate of
deterioration is so low that it may be ignored in the determination of an optimal production lot size.
However, in some cases, product deterioration may be aggravated if control of the production process

is not accurate. When a production system may shift from an in-control state to an out-of-control
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state during a production process and the items be produced may deteriorate significantly over time.
For example, in the paper production process, if the alkaline reserve cannot be controlled at the proper
concentration, the paper deterioration speed will increase and shorten the useful life of paper.

Many research results considering various inventory management models for deteriorating items
have been given in the literature over the past several decades. Those who are interested can refer to
those papers by Raafat (1991), Goyal and Giri (2001), and Lin et al. (2006). Lin et al. (2006)
provided a brief literature review of production- inventory models considering the deterioration items;
we omit another survey and only provide a review for papers that are directly related to our model.
Ghare and Scharder (1963) developed the first Economic Order Quantity (EOQ) model for a single
item under a constant rate of deterioration. Misra (1975) considered an EPQ model for deteriorating
items with a varying rate of deterioration as well as a constant rate of deterioration. Mak (1982)
studied a case with backordering for unfilled orders. Nevertheless, please note that the impact of an
imperfect production process was not discussed in all of the aforementioned papers.

Over the past 20 years, studies on the impact of an imperfect process on the production cycle time
or the production lot quantity have contributed considerable results. The studies conducted by
Rosenblatt and Lee (1986) and Porteus (1986), are the first studies of the effects of an imperfect
production process in determining the optimal production cycle time of an EPQ model. In their
models, the production process may shift randomly from an in-control state into an out-of-control state
during a production run. Once the process has shifted, a fixed portion of items produced becomes
defective. All defective items are reworked or repaired with a cost. Several other research efforts
also considered various inventory models that dealt with an imperfect production process (Lin, 1999;
Giri et al., 2003; Chung and Hou; 2003). However, in the aforementioned research results, only Lin
and Gong’s (2007) studied the deterioration of items and imperfect production process simultaneously.
In their model, the inventory dispatching policy is LIFO. But in practice, a FIFO policy is the most
general policy for inventory management. Hence, motivated by this, we extend Lin and Gong’s
(2007) model and investigate in this paper an EPQ model for deteriorating items subject to an
imperfect production process with a FIFO inventory dispatching policy. Under a FIFO policy, the
units produced during out-of-control state will be stored first and then begin to be consumed after the
units produced during the in-control state are depleted. The time epoch at which the process shifts
into an out-of-control state is assumed to be a random variable which is exponentially distributed. A
setup activity takes place before each production begins, and it restores the manufacturing process to

its initial working condition.
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In the next section, assumptions and notations for the model development are presented. The
model itself will be addressed in Section 3 and a closed form of the optimal solution is also derived.
Section 4 illustrates a numerical example to argue the model’s fidelity. Two figures have a hold on
the convex property of the expected total cost function. In this research, we extend Lin and Gong’s
(2007) work and apply a distinct policy to dispatch inventory. Therefore, the impact comparisons on
the expected total cost between FIFO and LIFO policies will be discussed too. In Section 5,

sensitivity analyses on the minimum expected total cost Z(t') are supplied. Couple useful phenomena

are conducted. Finally, some concluding remarks will be given in the last section.

2. Assumptions and Notations

The mathematical model in this paper is developed on the basis of the following assumptions:
(1) The demand rate of each product is known and finite.
(2) Lead time is zero and shortages are not allowed.
(3) The production rate is finite.
(4) The system is in steady state, i.e., the production rate is greater than the demand rate.
(5) Once an item (product) is produced, it is immediately available to meet the demand.
(6) An item starts deteriorating at the moment when it is received into inventory.
(7) The time-to-deterioration of an item follows an exponential distribution.
(8) Deteriorated items are neither replaced nor repaired.
(9) Inventory holding cost is charged only to the amount of un-deteriorated stock.

(10) The cost of a deteriorated item is known and includes any disposal cost or salvage value.

(11) Space and production lot size are not constrained.

(12) The production process may shift randomly from an in-control state into an out-of-control state
during a production run. The time-to-shift is an exponentially distributed random variable.

(13) The inventory system follows a FIFO policy. This implies that items produced during the
in-control state are consumed first and items produced during the out-of-control state are
consumed later.

The notations employed in the paper are given as follows:

P production rate (items/unit time).

d demand rate (items/unit time).

I(f) inventory level function of good items at time ¢, produced during the in-control state, i = 1, 3.
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I(f) inventory level function of good items at time ¢, produced during the out-of-control state, i =2, 4,

5.

o

cost of a deteriorated item ($/item).

inventory carrying cost ($/item/unit time).

NS

setup cost of initiating a new production cycle.
deterioration rate when the system is in the in-control state.
deterioration rate when the system is in the out-of-control state, a < f.

time-to-shift of the process from an in-control state to an out-of-control state.

S ™ R

parameter of an exponential distribution of the time-to-shift random variable.

T production uptime.

T,  the duration from the time point X to the end of production up-time 7, where 77 =7 — x.

T, the duration from the end of production up-time to the time point of inventories, which with «
deterioration rate, be depleted.

T;  the duration from the time point of inventories, which with a deterioration rate, be depleted to
the time point of inventories, which with f deterioration rate, be depleted.

T  production cycle time including uptime and downtime.

Z(z") the minimum expected total cost when the optimal production uptime is T

3. The model

3.1 Model description

This paper deals with an EPQ model that considers the effect of a single facility imperfect
production process on the optimal production uptime determination for deteriorating items under a
FIFO policy. Under this operating policy, a production run is to be executed for a predetermined
period of time (i.e., the production uptime). The items produced and consumed will follow a FIFO
policy. Since the inventory is built up gradually during the production uptime, a new production run
can only be started when all on-hand inventory items are depleted. A setup is required before each
production run, and restores the production process to its initial working condition.

Although the time-to-shift is a random variable, we consider the time epoch from the beginning of
each production run as a renewal epoch. A sample path representing the behaviour of the inventory
system is depicted as in Figure 1. The path denoted by a dashed line illustrates a production cycle if

no shift occurs. At time zero, the inventory level is zero and a production starts for a period of z units
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Figure 1 Inventory level for a production cycle FIFO model

of time where the process is in the in-control state. In this time period, the inventory is gradually
built up at a rate of p —d (where p>d). This rate is counteracted by a constant deterioration rate .
The inventory level increases up to its maximum level of /j(7). After the maximum inventory is
reached, production is terminated. From this point on, the on-hand inventory will be used to meet the
demand and to counteract the losses due to the deterioration.

On the other hand, when a shift occurs at a random time point X before a production uptime 7 is
reached, i.e. a shift occurs at time x and x < 7, then items produced after this time point will have a
higher deterioration rate. A sample path in this case is shown by the solid curve as in Figure 1.
After the time point X, items with a higher deterioration rate f will be produced and the inventory will
be built up with a rate p — d for another time period T}, where 77=7—x. At the end of this period, the
production run is terminated. The inventory been built-up should be enough to cover the losses due
to deterioration for the remainder of the production cycle. In the time period 7, inventories built in
the in-control state are continuously depleted till the end. The remaining inventory items contributed

in the out-of-control state are then depleted in 73. Another production run will not begin until the
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entire on-hand inventory being depleted. Note that in this case, the inventory level of items with a
deterioration rate of § will be raised only up to 0,. In accordance with the FIFO policy, the on hand
inventory with a lower deterioration rate of a will be depleted during the time period of 77+7,. In
other words, the inventory with £ deterioration rate which is built-up after the process shift will be kept
on hand during the time period of 75, and then be depleted to meet the demand during 75 period. The
cycle time of the entire production cycle is 7= 7 +7, +T5.

Figure 1 shows that by conditioning on X = x, there are two cases to be considered depending on
whether x > 7 or not. In the case where x > 7, the model is similar to the one studied in Misra (1975).
While for the case where x < 7, at the time point x, the inventory level of items produced in the
in-control state reaches its maximum level, O;. From this point onwards to the end of the production
uptime, the system is in the out-of-control state. At the end of period 7, the amount of items in stock
should be sufficient to cover the demand during the periods 7,+75. The cycle completes at the end of
period 75. Let dI(f) represent the change in the inventory level of each time period, during a small
interval of time d¢, which may be a function of the deterioration rate — o or 5, the demand rate - d, and
/or production rate - p. Therefore, the inventory level of the system at a time point ¢ over the time
interval (0, 7) can be defined according to the different conditions by the following differential
equations.

(1) Before the time point X, items with a lower deterioration rate of a will be produced and the
inventory level will be built up to Q; with a rate p - d. Therefore, the inventory level of the

system at a time point ¢ over the time interval (0, x) can be defined by the differential equation (1).

d7, (¢
(115)+a11(t):p—d,for0£t£X- O]
(2) After the time point X, items with a higher deterioration rate § will be produced and stocked.
Therefore, the inventory level will be built up with a rate p for another time period 7; and can be
defined by the differential equation (2).
dz, (¢
;t()+/3’12(t):p,f0r0StST1 ()
(3) During the time interval 7+ 73, the inventory level of the items with a lower deterioration rate o
which was produced during the time interval (0, x) is continually consumed by demand. So, we

can define /3(¢) to be the inventory level function of the system and represent it by the differential
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“)

)

equation (3).

dr; (¢

(315)+a13(t)=—d,f0r 0<t<T+T,. (3)
In the time period 73, the remaining inventory items with a deterioration rate £, which produced in

the out-of-control state, are still in stock and deteriorating. So, we could define /,(¢) function to

represent the inventory level of the system.

dz, (¢t
;§)+ﬂl4(t):0,for0£t£T2- 4)
After T, the inventories which produced during the time interval (0, x) are all depleted. Therefore,
the inventories with a deterioration rate of f are started to be used to support the demands and the
losses due to the deterioration in 75.
dis (1)

T+,B15(t):—d,f0r0£t£T3- ®)

The boundary conditions for each differential equation are 7, (0) =0, 11( x) = [3(0) =0,

L(L)=1,(0)=0,, 1,(T,)=1,(0),and I,(Ty)=0.

The solutions for the above differential equations can be obtained as follows:

I (t)sz_d(l—e"”),forOStSX. (6)
Iz(t)zﬁ(l—e'ﬁ’),forOgtsTl. @
13(t):—Z+(Z+Qlje"",for0§t£T1+T2- ®)
1,(t)= Q¢ ”, for 0<t<T,. 9)
Is(t)z%(em’)—l), for0<1<T,. (10)

Using the condition /;(x) = I3(0), we obtain
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0241 ay
a
This implies that
13(t)=—£+£e'““—p_de'“(”’),for031£7}+T2- (12)
a «o o

Next, using the initial condition /5(7}) = 14(0), we obtain
QZ:%(l_e-ﬂTl). (13)

This implies that

1,(1)= (l—e’m‘)e’ﬂ’- (14)

The objective of the model is to determine an optimal production uptime 7 that minimizes the
expected (long-run) total cost per unit time. As stated before, we consider the time epoch where each
production run begins as a renewal epoch. Therefore, based on the renewal reward theorem (Ross,
2002), the expected total cost per unit time can be obtained by dividing the expected total cost per

renewal cycle to the expected duration of a renewal cycle:

E[G(T)] (T)
2= i(f) | )

where E[G(7)] and E[7(7)] denote the expected total cost and the expected duration of a renewal cycle.

Both are the functions of the production uptime z.

3.2 An approximate solution

In this section, a closed-form solution as a near-optimal approximation to the production uptime
is developed.  Using the condition /3(7] +75) =0 in equation (12), we obtain

d P a(fi+D) P-d -a(x+T+Ty) _ (16)
(04 (04 (04

If we use the relation 7} =7 —x and Taylor series approximation for exponential functions in

equation (16) and assume a7 << 1, we obtain an expression for 7, in terms of 7 and x as follows: (see

Appendix A)
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T, = vt X PO (l—pj

d 2d d
- —d
:_T;_i_ p d x_pa(pz )xz‘ (17)
d 2d

From Figure 1, it can be concluded that /,(7;) = I5(0).  This implies that
1
T=—In| 1+ 2™ (1.7 |. (18)
i) d

By referring to the relation of 7} and T, neglecting * and the higher order of A, applying the Taylor

series approximation again to simplify the exponential item in equation (18), we can describe the T3 as

re 2 x){l-g[g- j(ﬂx-“d_l’ﬁﬂ. (19)

This allows us to express the production cycle time, denoted by 7" for the case of x <1

70 = PX | POX (1—j+p(r—x){l—'g(p—lj(r+x—apx2ﬂ- (20)
d 2d d) d 2\d d

And, the production cycle time, denoted by 79 , for the case of x > 7, is formulated as follows:

follows: (see Appendix B)

d 24\ d

Since the time-to-shift is an exponentially distributed random variable with a mean of 1/4, the expected

cycle time of a production cycle can obtained as follows:

E[T(z )]= j 7O fe *dx +j T® je*dx. (22)
0 T

After carrying out the calculation and neglecting the terms with higher power of terms including o, 47,

af, and At, we have

E[T(z )]——ap(zzz_d)z'z—ﬂ,p (ﬂ_a)ij/d_l)Jr;;}% (23)
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Let /H denote the amount of inventory hold during a cycle and DI denote the number of deteriorating

items. Hence, for the case of x < 7, we obtain

h+T,

IHY = II dt+.|.] dt+.[ dt+Tf[4(t)dt+]2[5(t)dt
0 0

_plp=d) s P <f—x><p—d>[ﬂ(ﬁ-xz)+mz].

2d 2d* @)

Because the inventory holding cost is assumed to be charged only to the amount of un-decayed stock,

so the second item of equation (24) can be ignored. We then have the JH" presented as follows:

IH(I) — p(p_d) T2~ (25)
2d

Furthermore, DI can be obtained by finding the difference between the amount produced and the

demand. This means

DIV =px - d( )+p(r x) dT,

=§(§—lj[ﬂ(rz—x2)+ax2] (26)
Hence, for the case of x > 7, we have
-d
IH? = M 7%, (27)
2d
2
DI® - &(ﬁ_lj. 28)
2 d

The total cost function including setup, inventory holding, and deterioration costs can be written as

follows:

G(r)=A+hxIH+cxDI . (29)

For the case x < 7, by substituting equations (25) and (26) into equation (29), we obtain

G (z)= A+ hx IH" +cx DIV
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:A+h[1’<§_ﬁfz}{§(§_lj(ﬁ(rz_x2)+axz)] o)

For the case of x > 7, by substituting equations (27) and (28) into equation (29) we obtain the total cost

per cycle as follows:

G? ()= A+hxIH® +cx DI?

:A+h{17(17—a7)z_2}+c{parz (p—lﬂ- (31)
2d 2 d

Hence, the expected total cost per cycle can be expressed as

E[G(7) ]= [ G2 dv+[ G Ae ™ dx. (32)
0 T

After some algebra and neglecting the terms with a higher power Az, we obtain

E[G(z) ]= A+ pp—d)h+ca) >, cpAMp-d)f-a) s (33)
2d 3d

Using equation (15), the expected total cost per unit time can be expressed as follows:

p(p—d)(h+ca)r2+cp/1(p—d)(ﬂ—a) 3

Z(T):E[G(f)]: A 2d 3d )
E[T(T)] ﬂ—ap(p_d)rz—ﬂ (ﬂ—a)(p/d—l)Jri -
i 2d P 3d 2d

For further discussion, let

w =4,
o~ Pp=d)h+ca)
2 s
2d
w = PAP-d)Nf-a)
3 s
3d

_Pp
C()4—3,
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o, = ap(p—d),
2d°
o, :lp[(ﬂ—a)(p/d—l)Jri]
3d 2d

Hence, we could have a simple configuration of function Z(t).

2 3
O+ + o7 (35)

Z(1)= 5 3
0,7 — 0T —OFT

In order to determine a near optimal production uptime that minimizes Z(z), we quote the property due
to Bazaraa et al. (2006).

Property 1.

Let two function g: S — E;and h: S — E;, where S is a nonempty convex set in E;. Consider the
function f: S — E; defined by f(x) = g(x)/h(x). Then f is a pseudoconvex if the following two
conditions hold true: (a) g is convex on S, and g(x)=0 for each x€ S, (b) h is concave on S, and
h(x) >0 for each x € S, and (c) both g and h are differentiable.

Proof. Obvious.

Property 2.

The function given in Z(z) is pseudoconvex for 7> 0.

Proof.

From Property 1, we can prove that Z(7) is a pseudoconvex function by showing the convexity of
E[G(7)] and the concaveness of E[T(7)]. This can be shown by finding the second derivative of each

function as follows:

dzE[G(T)] _ p(p—d)(h+ac)+20p/1(p—d)(ﬂ—a)

= y y r. (36)

T

2 _ _ _

dE[TZ(Z')]:_ap(pz d)_/lp[Z(ﬂ a)(p/d 1)+3/1}' 37)
dr d d

Since p > d, a < §, so d’E[G(7)]/dz*> >0 and d*E[T(r)]/dr*> <0 for z> 0, and both functions
are continuous. Referring to Property 1, we can conclude that Z(7) is pseudoconvex.

Let dZ(r)/dr=0. Then, the near optimal solution of T that minimizes Z(z) can be found by

solving the equation
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(0,0, — 0,0) T + 20,0,7° + (0,0, +30,0) T + 20,0, — w0, = 0. (38)

The positive root of the above equation can be solved by using numerical approaches such as the
bisection methods and Newton’s methods. One can also apply the Excel Goal Seek function to obtain
a solution. However, it is still complicated to solve the equation (38) directly. To simplify the
problem, we ignore the fourth degree term of 7 and transfer the equation (38) into a cubic equation

as follows.
20,0,7° +(a)2a)4 +3a)1a)6)2'2 +2w,0,1 — w0, =0 (39)

After some algebraic solving procedures, a closed-form of near optimal solution of z can be obtained as

in the following:
4,2
="\ =% °/ 7, (40)

where

U = oo, U, =200, u, =300,T0,0,, u, =20,0,,and

1
V= (36u2u3u4+108u1uf -8u; +12x/§u4 \/4u§u4 wous 1 8u g, Y2 7u v, -4uu; ) !

Note that when [ = =0, the production uptime in equation (39) becomes the optimal

production uptime for the classical EPQ model.
1
. . 2Ad %
lim 7 = ——| -
a—0, -0 hp(p_d)

4. Illustrative example

The following parameters are used to illustrate the application of the model. Let production
capacity be 7500 units per year and the demand rate be 2500 units per year. Other related factors are as
follows: the production setup cost is $45 per order, the inventory holding cost is $0.5 per unit per year,
and the deterioration cost is $5 per unit. Both the time-to-shift of productions system and the

time-to-deterioration of an item are assumed to be an exponential distribution. The deterioration rates
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at the in-control state and out-of-control state are 0.02 and 0.2, respectively. The mean time of the
time-to-shift is assumed 10. Solving equation (40) gives the optimal production uptime (T*) a value
of 0.0527. Furthermore, substituting the optimal production uptime into equation (34) yields the
minimum expected total cost per unit time, Z( T ), a value of $473.11.

Figure 2 shows the inventory of function Z(7) and the changes of each cost component to the
production uptime. The inventory holding cost and the deterioration cost increase along with the
increasing of the production uptime. Figure 3 demonstrates the argument that E[7(7)] is a concave
function.

This research is extended from Lin and Gong’s (2007) work, in which an LIFO policy is applied.
We are interested in comprising the impacts on the expected total cost when two distinct policies (ie.,

FIFO and LIFO) are concerned. The expected total cost function of LIFO policy denoted by
Z(7)ro is expressed as

A+(p_d)p[h+cadJr2+EHP—I}L,H—a}if

Z(T) o = 2 P d @1
P _ “(p_d)rz _{a(p—d)(l_dj_'_ ﬂ(p—d)}iﬁ
2d 2d 2 6d
Cost($)
180
1600
1400 |

Figure 2 System cost composition as a function of production uptime.
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Figure 3 System production cycle time as a function of production uptime.

Let 5 be fixed to 0.2 and ¢ be the ratio of deterioration rate a to the deterioration rate 5. Given
different values of ¢, Table 1 shows the results on 7 and Z with respect to FIFO and LIFO policies.
We observe that no matter what values of ¢ are, the LIFO policy always provides a lower expected
total cost. We should not make a conclusion just based on couple instances. However, those

comparisons in Table 1 indeed reveal a solid suggestion. This is also a contribution of this paper.

Table 1 Comparison between FIFO and LIFO ploicy

o FIFO LIFO
T;IFO Z ;IFO TZIFO Z ZIFO
0 0.05306 462.8358 0.10911 274.5965
0.2 0.05238 483.3502 0.10225 292.9125
0.4 0.05168 503.653 0.09653 310.1932
0.6 0.05097 523.7382 0.09167 326.5997

0.8 0.05024 543.6006 0.08746 342.2554
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5. Sensitivity analysis

In this section, we study the effects in the parameters set {d, p, a, f, 4, h, ¢, A} on the optimal
values of 7 and Z(z') derived by the proposed FIFO model. The sensitivity analysis is performed by
changing each parameter set by -30%, -20%, -10%, 10%, 20% and 30% with all other parameters
remaining unchanged. On the basis of the result shown in Table 2, the following observations can be
made.

(1) There is a decrease in the 7 values when p, P, o, h, c or A increase.
(2) There is an increase in the 7 values when d or 4 increase.
(3) The expected total cost Z( T ) increases with an increase in d, f, a, 4, h, c or A, but it decreases
with an increase in p since the production rate increased.
(4) The expected total cost Z( T ) is very highly sensitive with respect to A, highly sensitive to d and 4,
but almost insensitive to a change in a.
From the above analysis, it is seen that A4 is a critical parameter in the sense that any change in 4

results in significant change in the expected total cost Z( T ).

6. Conclusions

In this paper, we have developed an EPQ model for deteriorating items to be produced on an
imperfect process that is subject to a random shift from in-control state to out-of control state and a
FIFO inventory dispatching policy is considered. This scenario had not been considered in the
Misra’s model (1975). The items produced in the out-of-control state are subject to a higher than
normal deterioration rate. The time for the process shift to the out-of-control state and the time to
deterioration are assumed to be exponentially. The objective is to determine a near optimal
production uptime so as to minimize the expected total cost per unit time consisting of setup, inventory
holding, and deterioration costs. Based on numerical examples illustrated in this paper, the following
conclusions can be made:

(1) Applying FIFO policy, the expected total cost Z( T ) is highly sensitive in respect to setup cost per
order, 4, and slightly sensitive in respect to a change in the deterioration rate after process shift, j.
But, Z( T ) is almost insensitive to a change in the deterioration rate before process shift, a.

(2) When a deterioration item is produced in an imperfect process, the LIFO inventory dispatching

policy would have a lower cost than FIFO has.
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Table 2 Results of the sensitivity analysis on different parameters

Change in the Change in Change in
Parameter - meter (%) - (%) %) Z(*)(%)
d -30 0.04599 -12.77 387.286 -18.14
-20 0.04841 -8.18 417.5213 -11.75
-10 0.05064 -3.95 446.0574 -5.72
10 0.05467 3.70 498.8755 5.44
20 0.05652 7.21 523.4582 10.64
30 0.05828 10.55 546.9705 15.61
p -30 0.06449 14.67 532.3275 9.19
-20 0.06015 6.95 506.4517 3.88
-10 0.05624 0.00 487.5202 0.00
10 0.04957 -11.86 461.8189 -5.27
20 0.04675 -16.87 452.7265 -7.14
30 0.04421 -21.39 4452576 -8.67
s -30 0.05531 491 456.1494 -3.59
-20 0.05438 3.15 461.9957 -2.35
-10 0.05352 1.52 467.6468 -1.16
10 0.05197 -1.42 478.4264 1.12
20 0.05127 -2.75 483.5816 221
30 0.0506 -4.02 488.5955 3.27
o -30 0.05282 0.19 470.0395 -0.65
-20 0.05279 0.13 471.0665 -0.43
-10 0.05275 0.06 472.093 -0.22
10 0.05269 -0.06 474.1445 0.22
20 0.05265 -0.13 475.1694 0.43
30 0.05262 -0.19 476.1938 0.65
A -30 0.04798 -8.99 369.2149 -21.96
-20 0.04976 -5.61 404.6397 -14.47
-10 0.05133 -2.64 439.2225 -7.16
10 0.05397 2.37 506.4453 7.04
20 0.05509 4.50 539.2902 13.99
30 0.05612 6.45 571.7235 20.84
h -30 0.05438 3.15 449.9951 -4.89
-20 0.05381 2.07 457.8194 -3.23
-10 0.05326 1.02 465.5257 -1.60
10 0.05219 -1.01 480.6039 1.58
20 0.05168 -1.97 487.9847 3.14
30 0.05118 -2.92 495.2655 4.68
c -30 0.05532 4.93 453.7057 -4.10
-20 0.05439 3.17 460.383 -2.69
-10 0.05353 1.54 466.8482 -1.33
10 0.05196 -1.44 479.2109 1.29
20 0.05125 -2.79 485.1372 2.54
30 0.05058 -4.06 490.9101 3.76
A -30 0.06166 16.96 416.301 -12.01
-20 0.05842 10.81 434.7593 -8.11
-10 0.05545 5.18 453.7044 -4.10
10 0.05021 -4.76 492.9836 4.20
20 0.04789 -9.16 513.2775 8.49

30 0.04574 -13.24 533.9789 12.86
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The second conclusion does not exactly low down the value of the FIFO model. On the other
hand, because of the firm procedure provided in the FIFO model development and significant
distinctions shown in Table 1, we then are able to have that summary. These two conclusions
demonstrate solid suggestions in practice and the contribution about the proposed model. Future
research directions can be models with effects such as price-dependent demand and other distributions

for deterioration.

Appendix A: The detail derivation process of 7.

Here, 7, =7 — X, hence, we can derive from equation (16) that

_ 4 P a(Dir-x) pod a(e+Dy) _ g (Al)
o (04 o

By solving (A1), we can get

ar+1In axd]
T =-- pe” —p+d (A2)
a
I B P Citea DA )
a d

Using the expansion of the natural logarithm function In (1+y), In(1+y) =y - y/2 + y*/3 - y"/4 + ...,

where -1<y<l. Keeping the first two terms of the series, then

2

ln(1+y)zy—y7.

Consequently, the approximation value of 7, can be given as

ax ax N2
Ty~—rt L| 2P _(pe . 120 (A3)
a d 2d

Since ax << 1, then, by using the Taylor series approximation to the exponential items in (A3) and

omitting the high order item of o which is larger than 2, we can derive
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2
ax
e 2 l+ax+ ( ') . (A4)

By inserting (A4) into (A3), we can obtain

b =—r+p(1+ax+
ad

2 2
(@x) —1J(L—1”(L+ax+(“x)-—nj
2 2d 2

2
2 2 2

2 4 4
P(M) P” 22 3345
d 2 ) 2qd? 4

Clearly, if we omit the high order terms of a which is larger than or equal to 2 and simplify the

equation, we can get

2.2
fmes 251, 05)_aps
d 2 2d

2
=_2-+ﬂ+u 1_£ .
d 2d d

Appendix B: The detail derivation process of 75.

Since 14(75) = I5(0), thus, we can derive from equations (9) and (10) that

1 AL _(\_ ,(1—.PT —ﬂTz)zo B1
ﬁ(d(e 1) p(l e )e : (B1)
By solving (B1), we can get
=BTy (1 _ ,~PTi
T3=lln[1+pe 2(-e 1)]- (B2)
p d

Using the expansion of the natural logarithm function In (1+y), In(1+y) =y - y/2 + y*/3 - y"/4 + ...,
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where -1<y<l. Keeping the first two terms of the series, then

2
1n(1+y)zy—y7.

Consequently, the approximation value of 75 can be given as

T3%

2
1 pe Pl (- Py 1 pe Pl (1— Py . (B3)
B d 2 d

Since fT,<< 1 and pT,<< 1, then, by using the Taylor series approximation to the exponential terms in

(B3) and omitting the high order terms of § which is larger than 2, we can get
—pT, (-pn)* BT (-Bn)*
e 1=1+(—,BT1)+T,and e 2=1+(_/3T2)+T. (B4)

Substituting (B4) into (B3), we find

-pT,) -pT)’
- p(l—ﬂT2+( ﬂzz) )(ﬂTl—( ﬂz')) P ar (-pL)’ . (-pBL)
=3 y — (= AL +=2) (BT -5
_ p[Tl_ﬂle_ ﬂTITZ+ﬂ2n2T2+ﬂ2ﬁTl_ﬂ3n2T5J
d 2 2 2 4
_r ﬂ _ FTT,  FTL [T
[1 (PT, - BTT, + 5 + 5 1 )]

By omitting the high order terms of § which is larger than or equal to 2, we can have:

T, = p(T ﬂsz —BTT,)(1- pﬂ)

2 2 23
P PN gy PP PP ﬁT 2).
d 2 2d  4d

Still, we can omit the high order terms of f which is larger than or equal to 2 and simplify the equation,

thus, the equation of 73 can be

T* ppT?
n=La- L prr, -2
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_pT(2d-(p J;ZZﬂT] —2pdT;) E5)

Substituting 7} =7 —x and (17) into (BYS), after some simplifications, we thus obtain
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