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Abstract:  We analytically obtain the exact fundamental limit of 4-level 
amplitude shifted keying formats (4ASK) with direct detection optically 
preamplified receivers. The optimum multilevel spacing and the 
corresponding decision thresholds, which depend both on the signal to noise 
ratio and optical bandwidth, are obtained numerically considering the Chi-
squared distribution of each level. The quantum limit under the optimum 
level spacing is 127.5 photons/bit, which is about 0.2 dB smaller than the 
results by the Gaussian approximation. Over a broad range of the signal to 
noise ratio and the optical bandwidth, we have found that not only the bit 
error rate but also the optimum level spacing are well predicted by Gaussian 
method, although the three decision thresholds are all underestimated.  
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1. Introduction  

With the rapid growth of Internet traffic congestion, efficiently using signal bandwidth is 
essential to increase the transmission capacity over already installed optical fibers and 
amplifiers. Multilevel amplitude-shifted-keying (ASK) format such as 4ASK has recently 
attracted much attention because it offers an increased spectral efficiency at a reduced symbol 
rate without too complex transmitting and receiving ends [1-5]. Benefited from the reduced 
symbol rate, the tolerances to chromatic dispersion (CD) and polarization mode dispersion 
(PMD) are enhanced compared to traditional binary format [1, 3, 5]. In addition, the logic 
circuit at both the transmitter and receiver can be operated with half the bit-rate speed, thus 
lowering the electronic cost [5]. One interesting problem of 4ASK format is the level spacing 
with an optically pre-amplified receiver, which is directly related to the bit error rate of the 
system. Extensive works based on the optimum level spacing have been studied [1, 6, 7]. In 
these papers, the noises are all simplified as Gaussian distribution to pursue the optimum level 
spacing and the corresponding bit error rate. Unfortunately, the accuracy and the 
appropriateness of Gaussian approximation to the optimum level spacing and the bit error rate 
have not been confirmed yet. Although the Gaussian approximation is good for calculating bit 
error rate in binary format, there has no report regarding the Gaussian method in predicting 
the optimum level in 4ASK format. An exact analysis to 4ASK will be necessary since 
establishing accurate estimates of the performance can yield useful insights in practical 
system design. Recently, the exact performance of 4ASK transmission systems was explored 
by using Karhunen–Loeve series expansion (KLSE) and saddle point approximation method, 
which generally speaking is semi-analytical and not explicit [5]. With this method, the 
optimum multilevel spacing of the 4ASK is achieved by scanning the middle two energy 
levels for each pair of optical and electrical bandwidth to get the minimum bit error rate. They 
also provide the optimum receiving sensitivity, which is generally called quantum limit [8], by 
KLSE method. However, searching the optimum multilevel spacing and threshold levels by 
scanning each parameter to achieve the minimum error rate would be very time consuming. 
Therefore, an explicit and rigorous expression for the bit error rate, which has never been 
investigated to the authors’ knowledge, is required since it provides fast computing and gives 
a direct relation between the system inputs and the overall performance.  

In this paper, we give an exact formula of bit error rate for an optical 4ASK format with 
optimum level spacing using an optically pre-amplified receiver. This formula is derived 
under the assumption that an ideal optical filter and an integrate and dump circuit are used at 
the receiver. The quantum limit for a 4ASK signal is derived as 127.5 photons/bit, considering 
the chi-squared distribution of each level. The exact bit error rates and optimum level spacing 
are compared to those evaluated by Gaussian approximation. We conclude that the Gaussian 
method not only give a good evaluation to the bit error rate but also the optimum level spacing 
for a 4ASK format, although the three optimum decision thresholds are all underestimated. 
We further confirm that the inter-symbol interference (ISI) considered Gaussian 
approximation used for binary format [9] would still works for a practical 4ASK format when 
suffered by ISI.  

2. The optimum level and quantum limit for 4ASK 

We firstly consider the error probability formula of a receiver consisting of an ideal optical 
filter, a square law detector and an electrical integrate and dump circuit, and then the quantum 
limit will be the specific case of this formula. We assume that the ASE is the dominant noise 
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and ignore the other noises.  The baseband envelope of the transmitter output can be written 
as: 
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where the decision random variable χ  has been normalized to the noise level 
0N  and 
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symbol error rate ( | )iP e S for each symbol iS  can be written as: 
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 is the Marcum’s Q function, and MI is the 

modified Bessel function of the first kind. The bit error rate (BER) is almost equal to half the 
averaged symbol error rate under a good signal to noise ratio [13, p. 503]:  
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Usually the levels of 
0 0S =  and 

3S  are known and we only need to find the values of 
1, 2S  

and 1 3~γ γ  to minimize the error rate. The minimum error rate implies that the partial 

derivatives of 
eP  with respect to 

1, 2S  and 1 3~γ γ  are all equal to zeros, which means: 
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The derivatives with respect to the thresholds are known as the maximum-likelihood principle 
and those with respect to 
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where Eq. (8) can be easily proved with the two following equalities: 
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where 2i ia S=  and 2i ib γ= . With Eq. (9), we can uniquely obtain the middle two 

levels 1, 2S  and the thresholds 1 3~γ γ . Note that to avoid the overflow of the modified 

Bessel function, the exponential term should be shifted into the integrand of the integral 
formula of the modified Bessel function. An alternative method avoiding over- and underflow 
problems is to put these derivatives in the moment generating function (MGF) domain using 
the method similar to that described in Ref. [14].  

Although Eq. (5) is for ideal optical filter and electrical integration circuit, it is with the 
same form as that of an optical matched filter *( ) ( )h t p T t= −  when M = 1 [10, 15]. For the 
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matched filter, the normalized multilevel spacing and the optimum decision thresholds under a 

high signal to noise ratio (
3
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where 1 2 3Q Q Q Q= = = . Note that each symbol carriers two bits.  

3. Results and discussions 
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Fig. 1. The bit error rate for 4ASK as a function of photons/bit with various M. 

For the results shown here we only consider the ASE noise with the same polarization as the 
signal. The ASE orthogonal to signal can be easily included by doubling the value of M [10, 
11]. The BER versus the photons/bit are presented in Fig .1 with M = 1, 10, 30, 50, where the 
photons/bit relates to SNR as photons/bit /b oSNR E N= =  [16]. The BER approximated by 

Gaussian scheme only slightly overestimate those of exact solutions. For various optical 
bandwidths M, the sensitivity differences between the chi-squared and Gaussian distributions 
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are less than 0.2 dB. For the optical matched filter, ie: M = 1, the photons/bit and SNR 
required to achieve a BER of 10-9  is about 127.5 and 21 dB, respectively, and this figures out 
the best performance that 4ASK format can reach under the optimum multilevel spacing. 

Figures 2(a)-2(d) shows the relation between SNR and optimum levels iL  and the 

thresholds ir  for various optical bandwidths M. The optimum levels and the thresholds are 

descending as SNR increases. For poor SNR and broader optical bandwidth M, the noise is 
less dependent to the signal and the optimum levels are closer to be equally spaced. For high 
SNR and narrower optical bandwidth, the signal dependent noise dominants and the levels 

and the thresholds will approach the asymptotic values ( 0L , 1L , 2L , 3L , 1r , 2r , 3r ) = (0, 1/9, 

4/9, 1, 1/36, 1/4, 25/36).  
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Fig. 2. The optimum normalized multilevel spacing and thresholds as a function of photons/ bit 
with (a) M = 1, (b) M=10, (c) M=30, (d) M=50. (e) The optimum normalized multilevel 
spacing and thresholds at a bit error rate of 10-9 as a function of M.  

#79449 - $15.00 USD Received 29 Jan 2007; revised 16 Mar 2007; accepted 21 Mar 2007; published 18 May 2007

(C) 2007 OSA 28 May 2007 / Vol. 15,  No. 11 / OPTICS EXPRESS  6795



Figure 2(e) shows the optimum spacing and thresholds at a BER of 10-9 as a function of M. 
The optimum multilevel spacing predicted by Gaussian method is quite close to those by 
exact solution over a broad range of SNR and M while the decision thresholds are slightly 
underestimated.  

Figure 3 shows the relation between the optical bandwidth M and the required photons/bit 
(SNR) at a BER of 10-9. The results of binary format, which we have reviewed from Ref. [10], 
are also shown for comparison. The worse performance for 4ASK has been explained and 
described in Ref. [1]. In both the cases of binary and quaternary formats, the SNR are 
overestimated by the Gaussian approximation for a broad range of M from 1 to 100. The 
results from Gaussian method are more accurate as M becomes larger in both formats due to 
the central limit theorem when M approaches infinity. We also found that the quaternary 
format is not that sensitive to the bandwidth of optical filter, M. Since the variance of χ  for  
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Fig. 3. Required photons/bit to achieve a bit error rate of 10-9 for both the binary and the quaternary formats. 

each symbol is 2 2i iM Sσ = + , the quaternary format with higher SNR dominating the variance 

will behave more insensitive to M. This leads to the result that the gain of binary format over 
quaternary varies from 5.2 to 3.5 dB as M increases from M =1 to 100. The gain ~5 dB of 
binary format described in previous reports [1, 16] comes from the result of using an optical 
filter.  

In Fig. 4 we show the BER for the return-to zero 4ASK (RZ-4ASK) format considering 
the ISI effect. The data rate is operated at 20Gbps. The exact BER, which is calculated by the 
Karhunen-Loeve based method [17], is compared to that of the Gaussian approximation [1, 9]. 
The receiver uses a 2nd order optical Gaussian band-pass and 5th order electrical Bessel low-
pass filters. The 3dB-bandwidths (BW) of optical and electrical filters are 25 and 7GHz, 
respectively. The results show that the BER calculated by the exact and Gaussian methods are 
with a difference of less than 0.2dB in both the cases of back to back (b2b) and after 30km 
standard single mode fiber (SSMF) transmission. This confirms the accuracy of using the 
Gaussian method for the 4ASK signal when the ISI exists. 
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Fig. 4. The bit error rate versus the photons/bit for the RZ-4ASK format for the back to back 
and CD = 510ps/nm with the exact and Gaussian approximation methods. 

4. Conclusions 

We have evaluated the exact optimum multilevel spacing and the corresponding bit error rate 
for the 4-level amplitude-shift keying format in presence of optical pre-amplified direct-
detection receiver, and compared these results with Gaussian approximation. The quantum 
limit is 127.5 photons/bit considering the exact noise characteristic on each level. We have 
found that with the Gaussian method, the optimum multilevel spacing and the bit error rate 
can be well predicted and approximated while the thresholds are all underestimated. The 
accuracy for evaluating the optimum levels and bit error rate also implies that the ISI-
considered Gaussian approximation would still works for a practical 4ASK format with 
arbitrary optical and electrical filters. In addition, we point out that the 4ASK format is more 
insensitive to the optical bandwidth and the previously proposed ~5.2-dB gain of binary over 
quaternary format comes from a narrowband optical filter. Note that the method in this paper 
for the optimum symbol spacing can also be used in other advanced modulation format such 
as 8ASK, 8ADPSK or 16ADQPSK [18], in which the time-consuming scanning method 
would be inefficient.  
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